2m-Band/144MHz: Unterschied zwischen den Versionen

(Die Seite wurde neu angelegt: „Kategorie:UKW Frequenzbereiche == 144MHz == Das 2-Meter-Amateurfunkband umfasst den Frequenzbereich von 144 bis 146 MHz (ITU-Region 1: Europa, Russland, Afr…“)
 
K (RV hat sich kaum durchgesetzt, weiterhin ist die Rxx-Bezeichnung üblich.)
 
(27 dazwischenliegende Versionen von 6 Benutzern werden nicht angezeigt)
Zeile 1: Zeile 1:
 
[[Kategorie:UKW Frequenzbereiche]]
 
[[Kategorie:UKW Frequenzbereiche]]
  
== 144MHz ==
+
Das 2m-Amateurfunkband (bei 144 MHz) hat quasioptische Ausbreitungsbedingungen. ausgeprägte Hochdruck-Wetterlagen, Aurora sowie [[144MHz Sporadic E|Sporadic E]] ermöglichen Überreichweiten. Zusätzlich sorgen zahlreiche Relaisstationen für die Überbindung von Hügeln und anderen Sichthinternissen.<br /><br />
  
Das 2-Meter-Amateurfunkband umfasst den Frequenzbereich von 144 bis 146 MHz (ITU-Region 1: Europa, Russland, Afrika); im Rest der Welt (ITU-Regionen 2 und 3, z. B. USA) von 144 bis 148 MHz. Dieses VHF-Band wird gerne für die lokale Kommunikation in FM genutzt, da die Reichweite einer festen Funkstelle bei normalen Ausbreitungsbedingungen etwa 50 km beträgt, die eines Handfunkgerätes vom Geländeprofil abhängig etwa 5 bis 10 km. Relaisfunkstellen, das sind automatisch arbeitende Funkstationen auf exponierten Standorten, ermöglichen zudem regelmäßige Verbindungen über viel größere Strecken als diese mittels direkter Verbindung möglich wären.
+
==Funkbetrieb auf 2-Meter==
  
In den schmalbandigen Modulationsarten CW und SBB sind auf diesem Band täglich Verbindungen über 300 km möglich (mit 10 Watt Sendeleistung und 10 dB horizontalem Antennengewinn), während mit 100 Watt SSB und einer 15 dB Antenne Entfernungen von 500+ km erzielbar sind.
+
Mit dem UKW-Funk, der ja nur auf "quasi Sichweite" funktioniert, wuchs schnell der Wunsch, auch größere Reichweiten zu überbrücken. Schnell kam man auf die Idee, an exponierten Standorten Umsetzer aufzubauen. Dafür wurden eigens Frequenzpaare reserviert, eine davon für den Weg zum Umsetzer (Relais), eine für den zum Empfänger. Damit konnten wesentlich größere Weiten erzielt werden. Auch der fast störungsfreie Betrieb mit mobilen und tragbaren Amateurfunkstellen über größere Entfernung wurde möglich. Bald war ein dichtes Netz solcher Relaisfunkstellen errichtet, ausschließlich bezahlt aus privater Hand. Die Relaisfunkstellen werden in der Modulationsart Frequenzmodulation betrieben, nur wenige sind als Lineartransponder aufgebaut und werden für SSB und CW oder andere Betriebsarten genutzt.
  
== Operating on the 2-meter band ==
+
Die große Vielzahl der zu beobachtenden Ausbreitungsphänomene macht das 2m-Band zu einem der interessantesten DX-Bänder.
  
 +
==Tropo-Bedingungen==
  
Because it is local and reliable, and because the licensing requirements to transmit on the 2-meter band are easy to meet in many parts of the world,[5] this band is one of the most popular non-HF ham bands. This popularity, the compact size of needed radios and antennas, and this band's ability to provide easy reliable local communications also means that it is also the most used band for local emergency communications efforts, such as providing communications between Red Cross shelters and local authorities.[6] In the US, that role in emergency communications is furthered by the fact that seemingly every amateur-radio operator has a 2-meter handheld transceiver (HT), or walkie-talkie.
+
Eine ausgeprägte Hochdruck-Wetterlage ist oft Ursache für Überreichweiten. Ein solches Hochdruckwetter mit wenig Wind und klarem Himmel kommt häufig im Spätsommer und Herbst vor. Die dabei entstehende Temperaturinversion in der Nacht oder am Morgen bewirkt eine Umkehrung des normalen höhenabhängigen Temperaturverlaufs in der Atmosphäre. Da es normalerweise in grösser werdender Höhe immer kälter wird, steigt bei einer Inversion die Temperatur in einer Höhe von 800-1000m an.
 +
Durch die Inversion wird die Ausbreitung im VHF bis UHF-Bereich beeinflusst. Die Funkwellen werden bei troposphärischen überreichweiten nach unten gebrochen und folgen der Erdkrümmung, wogegen sie sich normalerweise geradlinig ausbreiten. In unseren Breitengraden können steigen die erreichbaren Entfernungen bis zu 1000 km, über grossen, warmen Gewässern (z.B. Mittelmeer) auch erheblich weiter.
  
Much of 2-meter FM operation uses a radio repeater, a radio receiver and transmitter that instantly retransmits a signal over a longer distance. However, even without repeaters available, it provides reliable crosstown communications throughout smaller towns, making it ideal for emergency communications. Simple radios for FM repeater operation have become plentiful and inexpensive in recent years.
+
==Sporadic E==
  
 +
Im Frühjahr sorgt die E-Schicht für eine besondere Art von überreichweiten. Meist mittags und abends ballen sich dort die Elektronenwolken zusammen. Diese bewegen sich schnell über Europa hinweg. Man nennt dies eine sporadische E-Schicht (kurz: [[144MHz Sporadic E|Sporadic_E]]) Sie reflektiert Frequenzen von Kurzwelle (20MHz) bis zum VHF-Bereich (150MHz).
  
== Long distance communications ==
+
Sporadic-E-überreichweiten lassen sich nicht vorhersagen. Sie treten normalerweise spontan auf und können zwischen wenigen Minuten bis zu Stunden andauern. Da sich die E-Schicht in grosser Höhe befindet fallen die erzielbaren Reichweiten relativ gross aus: 800-2200km. Jeder weitere Sprung (Erde-E,-Erde-E....) vergrössert die mögliche Reichweite.
  
While the 2-meter band is best known as a local band, there are many opportunities for long distance (DX) communications. Occasionally, bending in the atmosphere's troposphere (ducting) can allow 2-meter signals to carry hundreds of miles. This is called skip
+
Weitere Infos zum separten Wiki-Artikel "[[144MHz Sporadic E]]".
  
In rare cases, Sporadic E propagation can bring contacts well over a 1,000 miles (1,600 km). The 2-meter band is also utilized in conjunction with the 70-centimeter band (Mode B or V/U)[clarification needed] on some amateur radio satellites, giving distances of up to around 3,000 miles (4,800 km) with a Low Earth Orbit satellite.
+
==Aurora==
  
+
Sichtbare Aurora oder Polarlicht entsteht, wenn sehr viele Elektronen des Sonnenwindes, die sich spiralförmig entlang der Erdmagnetfeldlinien bewegen, die neutralen Atome und Moleküle in der oberen Polaratmosphäre ionisieren. Dabei werden deren Hüllenelektronen, die sich um den Atomkern auf festen Energieniveaus befinden, auf ein höheres Energieniveau gehoben. Die Elektronen haben aber das Bestreben, in ihren stabilen Grundzustand zurückzuspringen und geben dabei die ihnen zuvor bei der Ionisation übertragene Energie in Form von Licht ab. Die Farbe des Polarlichtes richtet sich danach, welche Art von Atomen und Molekülen ionisiert wurden. Typische Auroras spielen sich in Höhen zwischen 100 und 250 km ab.
By speeding up Morse code using an audio tape recorder, or using a computer, very short bursts of signal can be bounced off the ionized gas trail of meteor showers allowing DX. This is often called burst transmission.
 
  
Another phenomenon that produces upper atmosphere ionization suitable for 2-meter DXing are the auroras. Since the ionization persists much longer than meteor trails, regular audio signals can be used, but the constant movement of the ionized gas leads to heavy distortion of the signals causing the audio to sound 'ghostly' and whispered.
+
Radio-Aurora ist der Scattereffekt, den wir ausnutzen, indem Funkwellen an den ionisierten Gebieten der oberen Polaratmosphäre gestreut werden. Typisch sind die rauhen, verzerrten Signale: CW-Signale klingen zischend, SSB-Signale heiser.
 +
Ursache sind die sich mit unterschiedlicher Richtung und Geschwindigkeit bewegenden Aurora-Gebiete, an denen die Funksignale rückgestreut werden. Neben diesem Aurora-Fading wird auch der Dopplereffekt beobachtet, indem beispielsweise die 2m-Signale mehrere Hundert Hertz verbreitert und verschoben rückgestreut werden. Typisch für Radio-Aurora ist auch, dass die meisten QSO's am späten Nachmittag und kurz vor Mitternacht möglich sind.
  
To communicate over the longest distances hams use moon bounce. This involves high power and good antennas to reflect the VHF signals off the moon. VHF signals normally escape the Earth's atmosphere, so using the moon as a target is quite practical. Due to the delay of the signal traveling to the moon and back (travel time approx. 2.5 seconds), a person transmitting may hear the end of his own transmission returning.
+
==Meteorscatter==
 +
 
 +
Unter Meteorscatter versteht man eine spezielle Betriebsart im Amateurfunk. Dabei werden die Ionisationsspuren von in die Erdatmosphäre eindringenden und verglühenden Meteoroiden als Reflektoren für die Funksignale verwendet. Der Funkbetrieb über Meteorscatter findet hauptsächlich auf 144 MHz (2-Meter-Band) statt, seltener auf 50 MHz (6-Meter-Band) oder 432 MHz (70-cm-Band).
 +
 
 +
Objekte, die aus dem All in die Erdatmosphäre eintreten und ab einer Höhe von etwa 100km verglühen, hinterlassen auf ihrer Bahn einen Ionisationskanal. Dieser ist sehr kurzlebig. Funkstrahlen, die auf diesen Ionisationskanal auftreffen, werden reflektiert. Die Reflexionsdauer kann von einigen Sekunden bis zu etwa zwei Minuten betragen und ist von der Frequenz abhängig. Darüber hinausgehende Verbindungen sind sehr selten. Es können bis zu 2500 km überbrückt werden. In der kurzen Zeit des Bestehens der Ionenspur können keine langen Verbindungen (QSO) hergestellt werden. Für die QSOs wurde deshalb bis in jüngste Zeit vor allem Telegrafie in sehr hoher Geschwindigkeit verwendet. Früher wurden zum Senden langsam aufgenommene Tonbänder mit sehr hoher Geschwindigkeit abgespielt. Nach dem Empfang der Pings (unter einer Sekunde) oder Bursts (gleich oder größer 1 Sekunde), wie die Erscheinungen genannt werden, ließ man die schnellen Aufnahmen wieder langsamer ablaufen und entzifferte dabei die Sendung. Das war sehr zeitaufwendig und setzte eine hohe Funkdisziplin beider Funkpartner voraus, weil immer zu genauem Zeitpunkt der eine mehrere Minuten senden und der andere empfangen musste. Unterdessen hat die digitale Betriebsart WSJT die Hochgeschwindigkeitstelegrafie weitestgehend abgelöst.
 +
 
 +
==Frequenzliste==
 +
{| border="1"
 +
!Kanal (12,5kHz)
 +
!Kanal (25kHz)
 +
!Ausgabefrequenz
 +
!Eingabefrequenz
 +
|-
 +
|RV46
 +
|R00
 +
|145.575
 +
|144.975
 +
|-
 +
|RV47
 +
|R00x
 +
|145.587,5
 +
|144.987,5
 +
|-
 +
|RV48
 +
|R0
 +
|145.600
 +
|145.000
 +
|-
 +
|RV49
 +
|R0X
 +
|145.612,5
 +
|145.012,5
 +
|-
 +
|RV50
 +
|R1
 +
|145.625
 +
|145.025
 +
|-
 +
|RV51
 +
|R1X
 +
|145.637,5
 +
|145.037,5
 +
|-
 +
|RV52
 +
|R2
 +
|145.650
 +
|145.050
 +
|-
 +
|RV53
 +
|R2X
 +
|145.662,5
 +
|145.062,5
 +
|-
 +
|RV54
 +
|R3
 +
|145.675
 +
|145.075
 +
|-
 +
|RV55
 +
|R3X
 +
|145,687,5
 +
|145,087,5
 +
|-
 +
|RV56
 +
|R4
 +
|145.700
 +
|145.100
 +
|-
 +
|RV57
 +
|R4X
 +
|145.712,5
 +
|145.112,5
 +
|-
 +
|RV58
 +
|R5
 +
|145.725
 +
|145.125
 +
|-
 +
|RV59
 +
|R5X
 +
|145.737,5
 +
|145.137,5
 +
|-
 +
|RV60
 +
|R6
 +
|145.750
 +
|145.150
 +
|-
 +
|RV61
 +
|R6X
 +
|145,762,5
 +
|145,162,5
 +
|-
 +
|RV62
 +
|R7
 +
|145.775
 +
|145.175
 +
|-
 +
|RV63
 +
|R7X
 +
|145,787,5
 +
|145,187,5
 +
|}

Aktuelle Version vom 27. Oktober 2021, 00:23 Uhr


Das 2m-Amateurfunkband (bei 144 MHz) hat quasioptische Ausbreitungsbedingungen. ausgeprägte Hochdruck-Wetterlagen, Aurora sowie Sporadic E ermöglichen Überreichweiten. Zusätzlich sorgen zahlreiche Relaisstationen für die Überbindung von Hügeln und anderen Sichthinternissen.

Funkbetrieb auf 2-Meter

Mit dem UKW-Funk, der ja nur auf "quasi Sichweite" funktioniert, wuchs schnell der Wunsch, auch größere Reichweiten zu überbrücken. Schnell kam man auf die Idee, an exponierten Standorten Umsetzer aufzubauen. Dafür wurden eigens Frequenzpaare reserviert, eine davon für den Weg zum Umsetzer (Relais), eine für den zum Empfänger. Damit konnten wesentlich größere Weiten erzielt werden. Auch der fast störungsfreie Betrieb mit mobilen und tragbaren Amateurfunkstellen über größere Entfernung wurde möglich. Bald war ein dichtes Netz solcher Relaisfunkstellen errichtet, ausschließlich bezahlt aus privater Hand. Die Relaisfunkstellen werden in der Modulationsart Frequenzmodulation betrieben, nur wenige sind als Lineartransponder aufgebaut und werden für SSB und CW oder andere Betriebsarten genutzt.

Die große Vielzahl der zu beobachtenden Ausbreitungsphänomene macht das 2m-Band zu einem der interessantesten DX-Bänder.

Tropo-Bedingungen

Eine ausgeprägte Hochdruck-Wetterlage ist oft Ursache für Überreichweiten. Ein solches Hochdruckwetter mit wenig Wind und klarem Himmel kommt häufig im Spätsommer und Herbst vor. Die dabei entstehende Temperaturinversion in der Nacht oder am Morgen bewirkt eine Umkehrung des normalen höhenabhängigen Temperaturverlaufs in der Atmosphäre. Da es normalerweise in grösser werdender Höhe immer kälter wird, steigt bei einer Inversion die Temperatur in einer Höhe von 800-1000m an. Durch die Inversion wird die Ausbreitung im VHF bis UHF-Bereich beeinflusst. Die Funkwellen werden bei troposphärischen überreichweiten nach unten gebrochen und folgen der Erdkrümmung, wogegen sie sich normalerweise geradlinig ausbreiten. In unseren Breitengraden können steigen die erreichbaren Entfernungen bis zu 1000 km, über grossen, warmen Gewässern (z.B. Mittelmeer) auch erheblich weiter.

Sporadic E

Im Frühjahr sorgt die E-Schicht für eine besondere Art von überreichweiten. Meist mittags und abends ballen sich dort die Elektronenwolken zusammen. Diese bewegen sich schnell über Europa hinweg. Man nennt dies eine sporadische E-Schicht (kurz: Sporadic_E) Sie reflektiert Frequenzen von Kurzwelle (20MHz) bis zum VHF-Bereich (150MHz).

Sporadic-E-überreichweiten lassen sich nicht vorhersagen. Sie treten normalerweise spontan auf und können zwischen wenigen Minuten bis zu Stunden andauern. Da sich die E-Schicht in grosser Höhe befindet fallen die erzielbaren Reichweiten relativ gross aus: 800-2200km. Jeder weitere Sprung (Erde-E,-Erde-E....) vergrössert die mögliche Reichweite.

Weitere Infos zum separten Wiki-Artikel "144MHz Sporadic E".

Aurora

Sichtbare Aurora oder Polarlicht entsteht, wenn sehr viele Elektronen des Sonnenwindes, die sich spiralförmig entlang der Erdmagnetfeldlinien bewegen, die neutralen Atome und Moleküle in der oberen Polaratmosphäre ionisieren. Dabei werden deren Hüllenelektronen, die sich um den Atomkern auf festen Energieniveaus befinden, auf ein höheres Energieniveau gehoben. Die Elektronen haben aber das Bestreben, in ihren stabilen Grundzustand zurückzuspringen und geben dabei die ihnen zuvor bei der Ionisation übertragene Energie in Form von Licht ab. Die Farbe des Polarlichtes richtet sich danach, welche Art von Atomen und Molekülen ionisiert wurden. Typische Auroras spielen sich in Höhen zwischen 100 und 250 km ab.

Radio-Aurora ist der Scattereffekt, den wir ausnutzen, indem Funkwellen an den ionisierten Gebieten der oberen Polaratmosphäre gestreut werden. Typisch sind die rauhen, verzerrten Signale: CW-Signale klingen zischend, SSB-Signale heiser. Ursache sind die sich mit unterschiedlicher Richtung und Geschwindigkeit bewegenden Aurora-Gebiete, an denen die Funksignale rückgestreut werden. Neben diesem Aurora-Fading wird auch der Dopplereffekt beobachtet, indem beispielsweise die 2m-Signale mehrere Hundert Hertz verbreitert und verschoben rückgestreut werden. Typisch für Radio-Aurora ist auch, dass die meisten QSO's am späten Nachmittag und kurz vor Mitternacht möglich sind.

Meteorscatter

Unter Meteorscatter versteht man eine spezielle Betriebsart im Amateurfunk. Dabei werden die Ionisationsspuren von in die Erdatmosphäre eindringenden und verglühenden Meteoroiden als Reflektoren für die Funksignale verwendet. Der Funkbetrieb über Meteorscatter findet hauptsächlich auf 144 MHz (2-Meter-Band) statt, seltener auf 50 MHz (6-Meter-Band) oder 432 MHz (70-cm-Band).

Objekte, die aus dem All in die Erdatmosphäre eintreten und ab einer Höhe von etwa 100km verglühen, hinterlassen auf ihrer Bahn einen Ionisationskanal. Dieser ist sehr kurzlebig. Funkstrahlen, die auf diesen Ionisationskanal auftreffen, werden reflektiert. Die Reflexionsdauer kann von einigen Sekunden bis zu etwa zwei Minuten betragen und ist von der Frequenz abhängig. Darüber hinausgehende Verbindungen sind sehr selten. Es können bis zu 2500 km überbrückt werden. In der kurzen Zeit des Bestehens der Ionenspur können keine langen Verbindungen (QSO) hergestellt werden. Für die QSOs wurde deshalb bis in jüngste Zeit vor allem Telegrafie in sehr hoher Geschwindigkeit verwendet. Früher wurden zum Senden langsam aufgenommene Tonbänder mit sehr hoher Geschwindigkeit abgespielt. Nach dem Empfang der Pings (unter einer Sekunde) oder Bursts (gleich oder größer 1 Sekunde), wie die Erscheinungen genannt werden, ließ man die schnellen Aufnahmen wieder langsamer ablaufen und entzifferte dabei die Sendung. Das war sehr zeitaufwendig und setzte eine hohe Funkdisziplin beider Funkpartner voraus, weil immer zu genauem Zeitpunkt der eine mehrere Minuten senden und der andere empfangen musste. Unterdessen hat die digitale Betriebsart WSJT die Hochgeschwindigkeitstelegrafie weitestgehend abgelöst.

Frequenzliste

Kanal (12,5kHz) Kanal (25kHz) Ausgabefrequenz Eingabefrequenz
RV46 R00 145.575 144.975
RV47 R00x 145.587,5 144.987,5
RV48 R0 145.600 145.000
RV49 R0X 145.612,5 145.012,5
RV50 R1 145.625 145.025
RV51 R1X 145.637,5 145.037,5
RV52 R2 145.650 145.050
RV53 R2X 145.662,5 145.062,5
RV54 R3 145.675 145.075
RV55 R3X 145,687,5 145,087,5
RV56 R4 145.700 145.100
RV57 R4X 145.712,5 145.112,5
RV58 R5 145.725 145.125
RV59 R5X 145.737,5 145.137,5
RV60 R6 145.750 145.150
RV61 R6X 145,762,5 145,162,5
RV62 R7 145.775 145.175
RV63 R7X 145,787,5 145,187,5

Diskussionen

Anhänge