JT9

Ausgabe: Dieses Dokument wurde erzeugt mit

22.07.2025 BlueSpice

Seite von

JT9

Digitale Betriebsarten im Detail\: JT9

JT9 ist eine digitale Betriebsart, die sehr geeignet ist für niedrige Sendeleistung ("QRP-Betrieb") und für Stationen mit Antennendefiziten. Diese Betriebsart wurde speziell entwickelt für die Lang- und Mittelwellenbänder. Implementiert wird diese digitale Betriebsart über die Soundkarte eines PC. Zuerst eingeführt wurde JT9 mit Hilfe der Implementierung als Open Source Software WSJT-X. Dies ist eine experimentelle Version der Software WSJT, die auf Joe Taylor (K1JT) zurückgeht.

Die aktuelle Programmversion ist WSJT-X Version 2.3.0 (Stand: 14. Feb. 2021, siehe <u>WSJT-X 2.3</u> <u>Benutzerhandbuch</u>.

JT9 hat viele Gemeinsamkeiten mit <u>JT65</u> und <u>JT4</u>. Diese digitalen Modi verwenden fast identische Nachrichtenstruktur und Quellencodierung. Details zur Quellencodierung wurden veröffentlicht im Artikel "
<u>The JT65 Communications Protocol</u>", der in der Zeitschrift <u>QEX</u> während 2005 veröffentlicht wurde.

Das Signal besteht aus 9 Tönen: Ein Synchronisationston und 8 weitere Töne, die die Information transportieren: 8-FSK. Diese Betriebsart ist speziell entworfen für den Betrieb auf Mittel- und Kurzwelle. Digitale Daten werden strukturiert in Paketen mit 72 Informationsbits, wie bei JT65. (Eine typische Nachricht besteht aus zwei Rufzeichen, die jeweils mit 28 bit dargestellt werden, einem Grid-Locator, dargestellt durch 15 bit, und einem Signalisierungsbit, dass den Nachrichtentyp festlegt) Die Informationsbits werden kodiert mit einem Faltungscode der Rate r=1/2 und Einflusslänge K=32. Dies führt zu codierten Nachrichten der Länge $(72+31) \times 2 = 206$ Bit. JT9 belegt 15,6 Hz Bandbreite, daher passen leicht hundert JT9 Signale nebeneinander in ein Spektrum mit 2kHz Bandbreite.

Die folgende Tabelle listet die üblichen Frequenzbereiche für JT9 (Stand 2018). Die "Dial Frequency" gibt dabei die Frequenz des (unterdrückten) Trägers an. Dies ist also die angezeigte Frequenz am Funkgerät. Das Funkgerät moduliert das obere Seitenband (USB-Modulation).

Dial Frequency

160m	1,839 MHz
80m	3,572 MHz
60m	in Österreich freigegeben seit Dez. 2020: 5,357 MHz
40m	7,078 MHz
30m	10,140 MHz
20m	14,078 MHz
17m	18,104 MHz
15m	21,078 MHz
12m	24,919 MHz
10m	28,078 MHz

6m	50,312 MHz
2m	144,xxx MHz

Die PC-Uhr muss auf 2 Sekunden genau sein In einer Aussendung werden maximal 13 ASCII Zeichen übertragen. Es werden nur folgende Informationen übertragen: Rufzeichen, Rapport in dB und LOC (4 Stellen).

Der JT9 Signalrapport für das S/N ist beschränkt auf den Bereich zwischen –50 und +49 dB. In aktuellen JT9 Dekodern (Stand: WSJT-X 1.6.0) ist die S/N Skala in guter Näherung linear, stellt aber keineswegs eine Präzisionsmessung dar.

JT9 ist etwa 2 dB empfindlicher als JT65.

Weitere Informationen: WSJT (Wikipedia), WSJT, AC4M Digital Radio Site, WSJT-X und Signal Identification Wiki

Siehe auch: <u>Grundlagen Digitale Betriebsarten</u>, <u>JT65</u>, <u>JT4</u>, <u>WSPR</u>, <u>QRA64</u>, <u>FT8</u>, <u>FT4</u>, <u>MSK144</u>, <u>FSK441</u> und <u>JT6M</u>