

10m-Band/28MHz

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 8. Mai 2012, 15:39 Uhr (Que lltext anzeigen)

OE1CWJ (Diskussion | Beiträge) (→Betrieb auf dem 10m-Amateurfunkband über die Bodenwelle)

← Zum vorherigen Versionsunterschied

Version vom 8. Mai 2012, 15:41 Uhr (Que litext anzeigen)

OE1CWJ (Diskussion | Beiträge) (→Betrieb auf dem 10m-Amateurfunkband über die Bodenwelle)

Zum nächsten Versionsunterschied →

Zeile 2:

== Betrieb auf dem 10m-Amateurfunkband über die Bodenwelle ==

Die Eigenheiten des 10m-Amateurfunkbandes im Sonnenflecken-Minimum

DL4NO, Alexander von Obert * http://www.techwriter.de/thema/a-10m.htm

Zeile 2:

== Betrieb auf dem 10m-Amateurfunkband über die Bodenwelle ==

"Die Eigenheiten des 10mAmateurfunkbandes im SonnenfleckenMinimum"

DL4NO, Alexander von Obert * http://www.techwriter.de/thema/a-10m.htm

Zeile 19:

Wer etwas in das 10m-Band hineinriechen will, sollte sein QRP-Gerät mal ins Auto packen und sich eine Magnetfußantenne aus dem CB-Funk auf das Dach kleben.

Je nach Standort wird man damit eines der relativ wenigen 10m-Relais und die eine oder andere Bake hören.

Zeile 19:

Wer etwas in das 10m-Band hineinriechen will, sollte sein QRP-Gerät mal ins Auto packen und sich eine Magnetfußantenne aus dem CB-Funk auf das Dach kleben.

Je nach Standort wird man damit eines der relativ wenigen 10m-Relais und die eine oder andere Bake hören.

+

Warum ich diesen Einstieg empfehle?Er ist einfach, billig und vielseitig:

+

Auf dem Heimweg vom QRL
 erwischt man vielleicht mal eine
 Bandöffnung. Und schon hat

man sein erstes Mobil-QSO auf + Kurzwelle gefahren. Zudem gibt es hier weniger

- Störungen als auf den niedrigeren+ Bändern, das Aufnehmen erfordert also weniger
- + Aufmerksamkeit im fahrenden Auto eine Voraussetzung.
- Man bekommt ein Gefühl dafür,
 was in der eigenen Umgebung auf
 10m läuft.
- Das eine oder andere Aha-Erlebnis wird beeinflussen, wie im QTH die 10m-Ausrüstung aussehen wird.

+

Ein 10W-Sender lässt sich noch problemlos aus dem
Zigarettenanzünder mit Strom versorgen. Die größten Probleme ergeben sich aus der Kratzergefahr auf dem Dach durch die

Hagnetfußantenne und die elektrischen Störungen aus der Fahrzeugelektronik. Auf 10m ist das aber alles noch beherrschbar.

+

+ "Atmosphärisches Rauschen und Empfängerempfindlichkeit"

+

Das Satellitenfernsehen im heutigen Stil gibt es nur, weil es extrem rauscharme Vorverstärker für 10 GHz gibt. Ursprünglich waren die Übertragungsparameter der Fernsehsatelliten für Kabel-Kopfstationen gedacht, die wenigstens 2-m-Schüsseln benutzen. Auch für 70cm und 2m werden extrem rauscharme Vorverstärker angeboten. Wirklich sinnvoll sind sie spätestens auf 2m nur für EME-Betrieb. Denn nur wenn man die Antenne auf den Himmel richtet.

Ausgabe: 06.05.2024

kommt aus der Antenne so wenig
Leistung, dass diese extrem
rauscharmen Vorverstärker mit ihren
Nachteilen wie schlechter
Großsignalfestigkeit sinnvoll sind.
Bleibt als gewöhnliche Aufgabe des
Vorverstärkers nur, direkt am Mast
die Kabeldämpfung bis zum
Empfänger zu kompensieren. Schon
Boden und Kabelverluste rauschen so
stark, dass das Rauschen moderner
Vorverstärker dahinter verschwindet.

+

Ganz anders im Kurzwellenbereich: Jeder Funkamateur kennt den Effekt, dass der Empfänger viel lauter wird, sobald man die Antenne einsteckt. Damit meine ich nicht den Effekt, der abends

auf 40m passiert. Ich rede vom atmosphärischen Geräusch, das aus den verschiedensten, meist natürlichen, Quellen stammt. Die erste Konsequenz ist, dass die Empfängerempfindlichkeit

keine wirkliche Rolle mehr spielt. Die meisten Empfänger könnten allerdings etwas mehr Verstärkung im ZF-Pfad vertragen, damit man den Lautstärkeregler nicht so weit aufreißen muss.

Das Rauschen führt auch dazu, dass empfangsseitig der Antennenwirkungsgrad kaum eine Rolle spielt. Wie ich schon anlässlich einer VHF/UHF-Mobilantenne bemerkte,

unterscheidet sich eine gute Antenne von einer schlechten in erster Linie durch ihre Richtcharakteristik.

Ausgabe: 06.05.2024

+ Sendeseitig soll die Antenne die Strahlung möglichst in die Richtung der Kommunikationspartner abstrahlen, empfangsseitig Störungen aus möglichst vielen Richtungen abschrmen.

+

"Beruhigende" Feststellung: Jedes fahrtaugliche Auto ist so klein, dass 10m-Antennen mit wirklicher Richtwirkung nicht möglich sind. Schon eine λ/4 erhöht ein Auto bis in die

Gegend der StraßenbahnOberleitung. An eine vernünftige
Groundplane kommt keine

Mobilantenne heran, weil ein
ordnungsgemäßes Gegengewicht
fehlt. Ein wesentlicher Teil

der Sendeleistung wird also im
Untergrund unter dem Auto verheizt.

+ Eine verkürzte Antenne macht sich
aber empfangsseitig kaum negativ
bemerkbar.

Der schlechte Antennenwirkungsgrad wirkt sich aber natürlich auf die Feldstärke bei der Gegenstation aus, zumal man ja dort das atmosphärische Rauschen überbrüllen muss.

In gewissen Grenzen hat ein Funkamateur aber die Chance, eine handliche Antenne mit mehr Sendeleistung zu kompensieren. 100 W Sendeleistung aus einem FT-857 oder so im Auto

passen also recht gut zu z.B. 10...50 W Sendeleistung eines 10m-Relais.

== 10m/28MHz Relais in Österreich ==

== 10m/28MHz Relais in Österreich ==

Version vom 8. Mai 2012, 15:41 Uhr

Betrieb auf dem 10m-Amateurfunkband über die Bodenwelle

Die Eigenheiten des 10m-Amateurfunkbandes im Sonnenflecken-Minimum

DL4NO, Alexander von Obert * http://www.techwriter.de/thema/a-10m.htm

In Zeiten des Sonnenflecken-Minimums ist auf den höchsten Amateurfunk-Kurzwellenbändern nur selten konventioneller Betrieb über die Raumwelle möglich. Wer sich aber etwas intensiver mit dem 10m-Band beschäftigt, wird dort durchaus Signale entdecken. Das 10m-Amateurfunkband ist ein Zwitter zwischen Kurzwelle und den höheren HF/UHF-Bändern. Abhängig vom elfjährigen Sonnenfleckenzyklus wirkt die Ionosphäre mal mehr und mal weniger als Reflektor. Im Sonnenflecken-Minimum wie gegenwärtig ist Betrieb über Reflexionen an der Ionosphäre ("Raumwelle") nur sporadisch möglich. So ist es meist sehr ruhig in diesem Band. Aber längst nicht so ruhig wie im VHF/UHF-Bereich, was zu einigen technischen Besonderheiten führt. Wer also von oben kommt, muss an einigen Stellen etwas umdenken.

Nur sehr wenige Funkamateure können auf Kurzwelle mit Richtantennen arbeiten. Antennengebilde mit sinnvollen Abstrahlcharakteristiken und Wirkungsgraden sind für die meisten OMs auf den gegenwärtig nutzbaren Kurzwellenbändern nur schwer zu errichten: Ein 20m-Beam hat einen Drehradius von wenigstens 5 m - auf einem typischen Reihenhaus-Dach kriegt man solch ein Gebilde nur mit Zustimmung des Nachbarn unter. Wenn überhaupt, dann gibt es solche Möglichkeiten für die allerhöchsten Bänder, vor allem 10m. Dort hat man zusätzlich den Vorteil, dass man für Experimente auf billiges Material aus dem CB-Funk-Bereich zurückgreifen kann. Hier steht allerdings bewusst billig und nicht preiswert, denn mit der Qualität ist es gewöhnlich nicht weit her. Aber da steht ja auch Experimente...

Der Einstieg für 20 EUR

Ausgabe: 06.05.2024

Wer etwas in das 10m-Band hineinriechen will, sollte sein QRP-Gerät mal ins Auto packen und sich eine Magnetfußantenne aus dem CB-Funk auf das Dach kleben. Je nach Standort wird man damit eines der relativ wenigen 10m-Relais und die eine oder andere Bake hören.

Warum ich diesen Einstieg empfehle? Er ist einfach, billig und vielseitig:

• Auf dem Heimweg vom QRL erwischt man vielleicht mal eine Bandöffnung. Und schon hat man sein erstes Mobil-QSO auf Kurzwelle gefahren. Zudem gibt es hier weniger Störungen als auf den niedrigeren Bändern, das Aufnehmen erfordert also weniger Aufmerksamkeit - im fahrenden Auto eine Voraussetzung. • Man bekommt ein Gefühl dafür, was in der eigenen Umgebung auf 10m läuft. • Das eine oder andere Aha-Erlebnis wird beeinflussen, wie im QTH die 10m-Ausrüstung aussehen wird.

Ein 10W-Sender lässt sich noch problemlos aus dem Zigarettenanzünder mit Strom versorgen. Die größten Probleme ergeben sich aus der Kratzergefahr auf dem Dach durch die Magnetfußantenne und die elektrischen Störungen aus der Fahrzeugelektronik. Auf 10m ist das aber alles noch beherrschbar.

Atmosphärisches Rauschen und Empfängerempfindlichkeit

Das Satellitenfernsehen im heutigen Stil gibt es nur, weil es extrem rauscharme Vorverstärker für 10 GHz gibt. Ursprünglich waren die Übertragungsparameter der Fernsehsatelliten für Kabel-Kopfstationen gedacht, die wenigstens 2-m-Schüsseln benutzen. Auch für 70cm und 2m werden extrem rauscharme Vorverstärker angeboten. Wirklich sinnvoll sind sie spätestens auf 2m nur für EME-Betrieb. Denn nur wenn man die Antenne auf den Himmel richtet, kommt aus der Antenne so wenig Leistung, dass diese extrem rauscharmen Vorverstärker mit ihren Nachteilen wie schlechter Großsignalfestigkeit sinnvoll sind. Bleibt als gewöhnliche Aufgabe des Vorverstärkers nur, direkt am Mast die Kabeldämpfung bis zum Empfänger zu kompensieren. Schon Boden und Kabelverluste rauschen so stark, dass das Rauschen moderner Vorverstärker dahinter verschwindet.

Ganz anders im Kurzwellenbereich: Jeder Funkamateur kennt den Effekt, dass der Empfänger viel lauter wird, sobald man die Antenne einsteckt. Damit meine ich nicht den Effekt, der abends auf 40m passiert. Ich rede vom atmosphärischen Geräusch, das aus den verschiedensten, meist natürlichen, Quellen stammt. Die erste Konsequenz ist, dass die Empfängerempfindlichkeit keine wirkliche Rolle mehr spielt. Die meisten Empfänger könnten allerdings etwas mehr Verstärkung im ZF-Pfad vertragen, damit man den Lautstärkeregler nicht so weit aufreißen muss. Das Rauschen führt auch dazu, dass empfangsseitig der Antennenwirkungsgrad kaum eine Rolle spielt. Wie ich schon anlässlich einer VHF/UHF-Mobilantenne bemerkte, unterscheidet sich eine gute Antenne von einer schlechten in erster Linie durch ihre Richtcharakteristik. Sendeseitig soll die Antenne die Strahlung möglichst in die Richtung der Kommunikationspartner abstrahlen, empfangsseitig Störungen aus möglichst vielen Richtungen abschrmen.

"Beruhigende" Feststellung: Jedes fahrtaugliche Auto ist so klein, dass 10m-Antennen mit wirklicher Richtwirkung nicht möglich sind. Schon eine $\lambda/4$ erhöht ein Auto bis in die Gegend der Straßenbahn-Oberleitung. An eine vernünftige Groundplane kommt keine Mobilantenne heran, weil ein ordnungsgemäßes Gegengewicht fehlt. Ein wesentlicher Teil der Sendeleistung wird also im Untergrund unter dem Auto verheizt. Eine verkürzte Antenne macht sich aber empfangsseitig kaum negativ bemerkbar. Der schlechte Antennenwirkungsgrad wirkt sich aber natürlich auf die Feldstärke bei der Gegenstation aus, zumal man ja dort das atmosphärische Rauschen überbrüllen muss. In gewissen Grenzen hat ein Funkamateur aber die Chance, eine handliche Antenne mit mehr Sendeleistung zu kompensieren. 100 W Sendeleistung aus einem FT-857 oder so im Auto passen also recht gut zu z.B. 10...50 W Sendeleistung eines 10m-Relais.

10m/28MHz Relais in Österreich

siehe http://www.oevsv.at/export/oevsv/download/relais_neu.pdf (PDF-Dokument)

Frequenzliste

Relaiskanal	Ausgabefrequenz	Eingabefrequenz
RH1	29.660	29.560