

Inhaltsverzeichnis

1. 144MHz Sporadic E	19
2. Benutzer Diskussion:OE1CWJ	37
3. Benutzer:OE1CWJ	49

Ausgabe: 30.04.2024

144MHz Sporadic E

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 12. Februar 2014, 17:27 Uhr (Quelltext anzeigen)

OE1CWJ (Diskussion | Beiträge)
(→Sporadic E auf 144MHz)
← Zum vorherigen Versionsunterschied

Aktuelle Version vom 6. Oktober 2023, 14:48 Uhr (Quelltext anzeigen)

OE1CWJ (Diskussion | Beiträge)

Κ

Markierung: Visuelle Bearbeitung

(12 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)

Zeile 1: Zeile 1: [[Kategorie:UKW Frequenzbereiche]] [[Kategorie:UKW Frequenzbereiche]] = 144MHz Sporadic E = == Sporadic E auf 144MHz == ==Sporadic E auf 144MHz== Jedes Jahr in den Sommermonaten besteht Jedes Jahr in den Sommermonaten besteht die Möglichkeit mit üblicher die Möglichkeit mit üblicher Stationsausrüstung im VHF Bereich DX-Stationsausrüstung im VHF Bereich DX-Verbindungen bis zu 2000km und mehr Verbindungen bis zu 2000km und mehr Entfernung abzuwickeln: Sporadic-E (Es). Entfernung abzuwickeln: Sporadic-E (Es). Die kurzzeitige Bildung einer ionisierten Die kurzzeitige Bildung einer ionisierten (=leitenden und somit auch (=leitenden und somit auch reflektierenden) Schicht in einer reflektierenden) Schicht in einer bestimmten Höhe der Atmosphäre trägt bestimmten Höhe der Atmosphäre trägt seit einigen Jahren **auch** bei **mir** zu seit einigen Jahren bei vielen OMs zu erhöhtem Adrenalinausstoß bei. erhöhtem Adrenalinausstoß bei. Über das Zustandekommen dieser Über das Zustandekommen dieser Schichten wurden schon verschiedene Schichten wurden schon verschiedene Theorien veröffentlicht, die im Theorien veröffentlicht, die im Zusammenhang mit der Sonnenaktivität, Meteoritenschauern, bestimmten Höhenwinden und sogar dem Einfluss von

Gewittern in der Literatur lebhaft diskutiert

Zusammenhang mit der Sonnenaktivität,
Meteoritenschauern, bestimmten
Höhenwinden und sogar dem Einfluss von
Gewittern in der Literatur lebhaft diskutiert
werden. (Anhang: Literaturstellen im In
ternet)

werden. Das Thema Sporadic- E auf 144MHz ist mit einem wirklichem Problem verbundenen: der Zeit. Da die Öffnungen im 2m Band deutlich seltener, auch kürzer als auf 6m auftreten (die Literatur spricht von 1:1 0), muss man sich mit einigen Ableitungen von Murphy's law vertraut machen, die da so ähnlich lauten: Solange man berufstätig ist, wird man die schönsten Öffnungen nur im Büro sitzend am DX-Cluster verfolgen können. Wenn man Urlaub in der Es-Saison nimmst. wird man die schönsten Öffnungen an der Station sitzend am DX-Cluster verfolgen können, aber leider einen Steinwurf zu weit weg von der ionisierten Schicht gelegen sein.

Wie an meinem Suffix erkennbar ist, habe ich als begeisterter VHF Amateur schon Ende der siebziger lahre SSB-taugliches equipment auf diverse Tiroler Berge und Anhöhen getragen, um der gespenstischen Stille im Tale zu entkommen und so manchen Contest mit tragbaren Stationen bestritten. Seit der Freigabe des 50MHz Bandes in Österreich kann man mit einfachen Antennen das Phänomen Es beobachten, und so war es dann nur mehr logisch, dass nach meiner Übersiedlung nach Wien der 6m-Empfangsdraht im Dachboden schon bald durch eine vernünftige Antenne abgelöst werden musste - ich erspare Ihnen hier die allseits bekannten **Details mit den lieben** Miteigentümern eines Wohnhauses, sowie den EMV Diskussionen unter "Experten" - schlussendlich wurde der Mast approbiert und gebaut.

Vermutlich liegt aber gerade darin der Reiz, dass einen - wenn es dann klappt die erzielbaren Verbindungen das Warten mehrfach entschädigen, auch wenn die meisten Öffnungen in den Jahren bis zum Ruhestand ohne Dein eigenes Rufzeichen stattfinden werden. Das Beobachten des DX-Clusters ist ein Muss, mit Hilfe des DX-Robot (http://www.gooddx.net/) in den Niederlanden kann man sich auch einen 144MHz Sporadic Alarm als sms aufs Handy (email Account benötigt) schicken lassen. Wenn dieser Alarm das Auftreten von 2m-Sporadic E im europäischen Raum anzeigt, sollte man im günstigsten Falle im shack sitzen und +/-144.300 MHz beobachten können, denn vielleicht wird es nun wieder richtig spannend. Auch die Kontrolle der UKW Rundfunkbänder ist einer der wichtigsten Indikatoren für das Auftreten dieses physikalischen Phänomens.

Ausgabe: 30.04.2024

Und schon sind wir beim Thema Sporadic- E auf 144MHz und dem damit verbundenen, vermutlich einzig wirklichem Problem: der Zeit. Da die Öffnungen im 2m Band deutlich seltener, auch kürzer als auf 6m auftreten (die Literatur spricht von 1: 10) muss man sich mit einigen Ableitungen von Murphy's law vertraut machen, die da so ähnlich lauten: Solange man berufstätig ist, wirst man die schönsten Öffnungen nur im Büro sitzend am DX-Cluster verfolgen können. Wenn man Urlaub in der Es-Saison nimmst, wirst man die schönsten Öffnungen an der Station sitzend am DX-Cluster verfolgen können, aber leider einen Steinwurf zu weit weg von der ionisierten Schicht positioniert sein.

Vermutlich liegt aber gerade darin der Reiz, dass - wenn es dann mal klappt - die erzielbaren Verbindungen das Warten mehrfach entschädigen, auch wenn die meisten Öffnungen in den Jahren bis zum Ruhestand ohne Dein eigenes Rufzeichen stattfinden werden. Das Beobachten des DX-Clusters ist ein Muss, mit Hilfe des DX-Robot (http://www.gooddx.net/) in den Niederlanden kann man sich auch einen 144MHz Sporadic Alarm als sms aufs Handy (email Account benötigt) schicken lassen. Wenn dieser Alarm das Auftreten von 2m-Sporadic E im europäischen Raum anzeigt, sollte man im günstigsten Falle im shack sitzen und +/-144.300 MHz beobachten können, denn vielleicht wird es nun wieder richtig spannend. Auch die Kontrolle der UKW Rundfunkbänder ist einer der wichtigsten Indikatoren für das Auftreten dieses physikalischen Phänomens.

Wenn man in den Lücken zwischen den großen Lokalstationen im Autoradio quer durch die Stadt fahrend z.B. ein gutes Dutzend spanischer UKW Rundfunkstationen teilweise mit eindeutiger RDS Kennung empfangen kann, freut sich das Funkamateurherz schon.

Wenn man in den Lücken zwischen den großen Lokalstationen im Autoradio quer durch die Stadt fahrend z.B. ein gutes Dutzend spanischer UKW Rundfunkstationen teilweise mit eindeutiger RDS Kennung empfangen kann, freut sich das Funkamateurherz schon.

7	انم	ما	21	

Zeile 18:

[[Datei:SporadicE_2m.jpg]]

Die reflektierenden Schichten bilden sich in einer Höhe von 100 bis 110 km über der Erdoberfläche und haben eine Dicke von einigen hundert bis zu tausend Metern. Die Ausdehnung einer E-Schicht variiert sehr stark und lässt sich zudem nicht ohne weiteres ausmessen oder bestimmen. Eine einmal gebildete Schicht ist meist in Bewegung, sowohl in der Reflexionstätigkeit wie auch in der Größe, was sich sehr deutlich darin manifestiert, dass die Signale zum Teil sehr starken Schwankungen ge gibt es bis heute noch keine einfache, eindeutige A unterworfen sind. Im weiteren bleibt die Es-Wolke nicht stationär, sondern sie wandert infolge der Erdrotation in westlicher Richtung. Die meisten Es-Bandöffnungen finden von Mitte Mai bis Mitte August statt. Die Dauer einer Es-Öffnung, variiert zwischen einigen Minuten und einigen Stunden, wobei bei längeren Öffnungen die Feldstärke erheblichen Schwankungen unterworfen ist. Die maximalen Reichweiten betragen ca. 2200 km. In den letzten Jahren wurden wesentlich größere Distanzen

qetätiqt, so z.B. zwischen Portugal und Israel oder in diesem Jahr von der Schweiz nach den Kanarischen Inseln. Es ist nicht ausgeschlossen, dass bei diesen Verbindungen zwei Es-Schichten im Spiel waren.

Die reflektierenden Schichten bilden sich in einer Höhe von 100 bis 110 km über der Erdoberfläche und haben eine Dicke von einigen hundert bis zu tausend Metern. Die Ausdehnung einer E-Schicht variiert sehr stark und lässt sich zudem nicht ohne weiteres ausmessen oder bestimmen. Eine einmal gebildete Schicht ist meist in Bewegung, sowohl in der Reflexionstätigkeit wie auch in der Größe. was sich sehr deutlich darin manifestiert, dass die Signale zum Teil sehr starken Schwankungen ge gibt es bis heute noch keine einfache. eindeutige A unterworfen sind. Im weiteren bleibt die Es-Wolke nicht stationär, sondern sie wandert infolge der Erdrotation in westlicher Richtung. Die meisten Es-Bandöffnungen finden von Mitte Mai bis Mitte August statt. Die Dauer einer Es-Öffnung, variiert zwischen einigen Minuten und einigen Stunden, wobei bei längeren Öffnungen die Feldstärke erheblichen Schwankungen unterworfen ist. Die maximalen Reichweiten betragen ca. 2200 km. In den letzten lahren wurden wesentlich größere Distanzen getätigt, so z.B. zwischen Portugal und Israel oder in diesem Jahr von der Schweiz nach den Kanarischen Inseln. Es ist nicht ausgeschlossen, dass bei diesen Verbindungen zwei Es-Schichten im Spiel waren.

Ausgabe: 30.04.2024 Dieses Dokument wurde erzeugt mit BlueSpice

[[Datei:Es_layers_.jpg]]

[[Datei:Es_layers_.jpg]]

+

Die minimale Stationsausrüstung auf 2m besteht in einem Transceiver mit 2 Watt Ausgangsleistung und einem Rundstrahler. Eine bessere Stationsausrüstung erhöht natürlich die Erfolgsquote. Die überbrückbare Entfernung bei ES liegt zwischen 1200 und 2200 km. Bei den auf 2m relativ seltenen Doppelsprüngen können auch 3500km erreicht werden. Die Zeitschrift Dubus (Nr 4/94) berichtete sogar von einer 2m-Verbindung von OE1SSB & OE1XLU mit RI8TA über 4271km am 21.Juli 89.

Wie kann man nun derartige DX-Bedingungen erkennen?

Grundsätzlich gibt es keine langfristige Vorhersagemöglichkeit, denn wie der Name schon sagt handelt es sich um ein sporadisches Phänomen. Aus statistischen Betrachtungen der vergangenen Jahre hat sich gezeigt, dass ES zwischen Mitte Mai und Anfang September auftreten kann, mit einer erhöhten Wahrscheinlichkeit Anfang Juni und Anfang Juli. Sporadic-Eträchtige Tage erkennt man durch intensive Bandbeobachtung. beginnend mit dem 10m Band. Ein Scanner leistet hier nützliche Dienste. da die Überreichweiten via ES stark frequenzabhängig sind. Beginnend im KW-Bereich steigt die maximal nutzbare Frequenz im tageszeitlichen Verlauf bis über 50MHz. Beobachten kann man dies am einfachsten im Fernsehband 1. Mit einer einfachen Antenne lassen sich hier bei ES

Die minimale Stationsausrüstung auf 2m besteht in einem Transceiver mit 2 Watt Ausgangsleistung und einem Rundstrahler. Eine bessere Stationsausrüstung erhöht natürlich die Erfolgsquote. Die überbrückbare Entfernung bei ES liegt zwischen 1200 und 2200 km. Bei den auf 2m relativ seltenen Doppelsprüngen können auch 3500km erreicht werden. Die Zeitschrift Dubus (Nr 4/94) berichtete sogar von einer 2m-Verbindung von OE1SSB & OE1XLU mit RI8TA über 4271km am 21.Juli 89.

russische, spanische oder sogar nordafrikanische TV-Stationen empfangen. Inzwischen ist auch das Baken- und Stationsangebot im 6m-Afu-Band so gut, dass man dort gut beobachten kann.

Sind nun auch im 3m-Rundfunkband südeuropäische Stationen auszumachen, sollte man die 2m-SSB oder CW-Anruffrequenz verstärkt beobachten. Transceiver auf die 144.300 (oder 145.500) einstellen und die Antenne in Richtung der zu erwartenden DX-Ausbreitung (entsprechend 3m-und 6m Bandbeobachtung) drehen. Dabei bitte folgendes beachten: DL ist leider kein seltenes Land für europäische OMs. Deshalb möglichst keine oder nur sehr kurze CO-Rufe auf der 144.300 bei ES.. Nur antworten, wenn die DX-Station deutlich zu empfangen ist, nicht deshalb rufen, weil es die anderen OMs im näheren Umfeld auch tun. Sporadic-E ist zum Teil örtlich nur sehr begrenzt nutzbar. Im 50 km Entfernung können die Bedingungen schon wieder völlig anders sein und die DX-Station ist dort nicht mehr aufnehmbar. Ein schnelles OSY weg von der Anruffrequenz erspart oft viel ORM. OSOs möglichst kurz halten. Keine langen Ausführungen über die eigene Stationsausrüstung halten. Die Öffnungen dauern oft nur wenige Minuten, in dieser Zeit möchten möglichst viele OMs die DX-Station arbeiten.

Besonders für Newcomer ist ES ein verblüffendes Phänomen: die Feldstärken der DX-Stationen können kurzzeitig so stark werden, wie die

von der nächsten Ortsstation. So wurden schon Mobil- und Portabelstationen mit 1 Watt-Handys, welche gerade mitten in Athen unterwegs waren, hier in DL rauschfrei aufgenommen auf der S20!

_

VHF Funkbetrieb über Sporadic-EÖffnungen. Er konnte
verschiedentlich UKWRundfunkstationen aus ganz
Grossbritannien mit einfachen Mitteln
in Uster empfangen. Das Phänomen ESporadic machen sich auch
Radioamateure besonders auf 144
MHz und 50MHz für
Weitverbindungen im Funkverkehr zu
Nutze.

Wie und wann kommen solche Vorkommnisse überhaupt zustande? Dazu einige physikalische Erläuterungen dieser Ausbreitungsart für Weitverbindungen auf UKW Frequenzen. (UKW Bereich 30 - 300MHz) Selbst für erfahrene Funkamateure und Rundfunkhörer sind solche Verbindungen jedes mal ein Ereignis von grosser Bedeutung und Faszination. Für einen erfolgreichen Funkverkehr über Sporadic E sind Fachkenntnisse, Geduld und Ausdauer wesentliche Voraussetzungen.

Solche Weitverbindungen sind möglich, weil sich in einer bestimmten Höhe über der Erdoberfläche eine ionisierte Schicht bildet. Ionisierte Schichten sind leitend und somit auch reflektierend. Der Begriff Sporadic E oder abgekürzt Es, wird von der Tatsache abgeleitet, dass die Reflektion in der E-Schicht der Ionosphäre und nur sporadisch auftritt.

Eine Frage, die unter Kennern immer wieder gestellt wird: Wie kommen diese Schichten überhaupt zustande? Auf diese konkrete Fra Mit Sicherheit bekannt ist, dass sich diese räumlich begrenzte Ionisation in der E-Schicht zu ganz bestimmten lahres- und Tageszeiten bildet. Über das Zustandekommen dieser Schichten wurden schon verschiedene Thesen aufgestellt und auch wieder aufgegeben. Eine davon, die zwar einleuchtend, aber noch nicht eindeutig bewiesen ist, soll hier kurz skizziert sein: Horizontal verlaufende Höhenwinde in der Ionosphäre unterliegen dem sogenannten Windshear, d.h. einer Umkehr innerhalb einer geringern Höhendifferenz. Dabei können geladene Teilchen, die von verglühenden Meteoriten stammen. in den erwähnten Windkanälen zusammengetrieben werden und so eine mehr oder weniger reflektierende Schicht bilden. Im weiteren scheinen gute Es-Bandöffnungen immer in Zeiten ruhiger Erdmagnetik (Ak-Wert) aufzutreten. Dies würde darauf hinweisen, dass die Magnetfelder der **Erde eventuell auch einen Einfluss auf** die Bildung der Es-Schichten haben.

Die reflektierenden Schichten bilden sich in einer Höhe von 100 bis 110 km über der Erdoberfläche und haben eine Dicke von einigen hundert bis zu tausend Metern. Die Ausdehnung einer E-Schicht variiert sehr stark und lässt sich zudem nicht ohne weiteres ausmessen oder bestimmen. Eine einmal gebildete Schicht ist meist in Bewegung, sowohl in der Reflexionstätigkeit wie auch in der Grösse, was sich sehr deutlich darin

==Wie kann man nun derartige DX-Be dingungen erkennen?==

Ausgabe: 30.04.2024

manifestiert. dass die Signale zum Teil sehr starken Schwankungen ge gibt es bis heute noch keine einfache, eindeutige A unterworfen sind. Im weiteren bleibt die Es-Wolke nicht stationär, sondern sie wandert infolge der Erdrotation in westlicher Richtung. Die meisten Es-Bandöffnungen finden von Mitte Mai bis Mitte August statt. Die Dauer einer Es-Öffnung, variiert zwischen einigen Minuten und einigen Stunden, wobei bei längeren Öffnungen die Feldstärke erheblichen Schwankungen unterworfen ist. Die maximalen Reichweiten betragen ca. 2200 km. In den letzten Jahren wurden wesentlich grössere Distanzen getätigt, so z.B. zwischen Portugal und Israel oder in diesem lahr von der Schweiz nach den Kanarischen Inseln. Es ist nicht ausgeschlossen, dass bei diesen Verbindungen zwei Es-Schichten im Spiel waren. Aus einer Auswertung von 4000 Es-Verbindungen (DUBUS-Hefte) auf 144 MHz geht hervor, dass die Es-Bandöffnungen zwischen 08:00 - 22:00 UTC zustande kommen.

> Grundsätzlich gibt es keine langfristige Vorhersagemöglichkeit, denn wie der Name schon sagt handelt es sich um ein sporadisches Phänomen. Aus statistischen Betrachtungen der vergangenen lahre hat sich gezeigt, dass ES zwischen Mitte Mai und Anfang September auftreten kann, mit einer erhöhten Wahrscheinlichkeit Anfang Juni und Anfang Juli. Sporadic-Eträchtige Tage erkennt man durch intensive Bandbeobachtung. beginnend mit dem 10m Band. Ein Scanner leistet hier nützliche Dienste. da die Überreichweiten via ES stark

٠

frequenzabhängig sind. Beginnend im KW-Bereich steigt die maximal nutzbare Frequenz im tageszeitlichen Verlauf bis über 50MHz. Beobachten kann man dies am einfachsten im Fernsehband 1. Mit einer einfachen Antenne lassen sich hier bei Es russische, spanische oder sogar nordafrikanische TV-Stationen empfangen. Inzwischen ist auch das Baken- und Stationsangebot im 6m-Afu-Band so gut, dass man dort gut beobachten kann.

Sind nun auch im 3m-Rundfunkband südeuropäische Stationen auszumachen, sollte man die 2m-SSB oder CW-Anruffrequenz verstärkt beobachten. Transceiver auf die 144.300 (oder 145.500) einstellen und die Antenne in Richtung der zu erwartenden DX-Ausbreitung (entsprechend 3m-und 6m Bandbeobachtung) drehen. Dabei bitte folgendes beachten: Nur antworten, wenn die DX-Station deutlich zu empfangen ist, nicht deshalb rufen, weil es die anderen OMs im näheren Umfeld auch tun. Sporadic-E ist zum Teil örtlich nur sehr begrenzt nutzbar. Im 50 km Entfernung können die Bedingungen schon wieder völlig anders sein und die DX-Station ist dort nicht mehr aufnehmbar. Ein schnelles OSY weg von der Anruffrequenz erspart oft viel ORM. OSOs möglichst kurz halten. Keine langen Ausführungen über die eigene Stationsausrüstung halten. Die Öffnungen dauern oft nur wenige Minuten, in dieser Zeit möchten möglichst viele OMs die DX-Station arbeiten.

Ausgabe: 30.04.2024 Dieses Dokument wurde erzeugt mit BlueSpice

Die reflektierenden Schichten bilden sich in einer Höhe von 100 bis 110 km über der Erdoberfläche und haben eine Dicke von einigen hundert bis zu tausend Metern. Die Ausdehnung einer E-Schicht variiert sehr stark und lässt sich zudem nicht ohne weiteres ausmessen oder bestimmen. Im weiteren bleibt die Es-Wolke nicht stationär, sondern sie wandert infolge der Erdrotation in westlicher Richtung. Die meisten Es-Bandöffnungen finden von Mitte Mai bis Mitte August statt. Die Dauer einer Es-Öffnung, variiert zwischen einigen Minuten und einigen Stunden, wobei bei längeren Öffnungen die Feldstärke erheblichen Schwankungen unterworfen ist. Die maximalen Reichweiten betragen ca. 2200 km. In den letzten lahren wurden wesentlich arössere Distanzen getätigt, so z.B. zwischen Portugal und Israel oder in diesem lahr von der Schweiz nach den Kanarischen Inseln. Es ist nicht ausgeschlossen, dass bei diesen Verbindungen zwei Es-Schichten im Spiel waren. Aus einer Auswertung von 4000 Es-Verbindungen (DUBUS-Hefte) auf 144 MHz geht hervor, dass die Es-Bandöffnungen zwischen 08:00 - 22:00 UTC zustande kommen.

Gute Betriebstechnik ist nun wichtig, die entstehenden pile-ups in den meist recht kurzen Zeitfenstern erfordern ständiges Zuhören, Mitschreiben und Beobachten des Clusters und dann: "Fasse Dich kurz" - Rufzeichen, RST und LocatorBesonders für Newcomer verblüffend sind die möglichen Feldstärken der DX-Stationen, die kurzzeitig so stark sein können wie lokale Stationen. So gelang es mir einmal nicht,

Gute Betriebstechnik ist nun wichtig, die entstehenden pile-ups in den meist recht kurzen Zeitfenstern erfordern ständiges Zuhören, Mitschreiben und Beobachten des Clusters und dann: "Fasse Dich kurz" - Rufzeichen, RST und LocatorBesonders für Newcomer verblüffend sind die möglichen Feldstärken der DX-Stationen, die kurzzeitig so stark sein können wie lokale Stationen. So gelang es mir einmal nicht,

ein 59+ FM-QSO auf 145.55MHz mit Stationen aus dem Grossraum Moskau ins Log zu bringen, da die OMs dort wohl den Eindruck hatten von jemandem, der mit gebrochenem Schulrussisch sein Bestes geben wollte, verschaukelt zu werden (hi) ein 59+ FM-QSO auf 145.55MHz mit Stationen aus dem Grossraum Moskau ins Log zu bringen, da die OMs dort wohl den Eindruck hatten von jemandem, der mit gebrochenem Schulrussisch sein Bestes geben wollte, verschaukelt zu werden (hi)

Derartige Erfahrungen lassen die klassischen 2m-DX Anruffrequenzen für SSB und CW (144.050CW/144.300 SSB) für den Anfang wohl sinnvoller erscheinen. Auch mit der Auswertung und Dokumentation dieses Phänomens hilft das Internet einmal mehr: Im Internet findet man nach Tagen sortiert zustande gekommene Sporadic-E Verbindungen, die auch graphisch dargestellt werden.

_

Dieses Portal trägt somit zu einem besseren, praktischen Verständnis der komplexen Prozesse rund um Sporadic-E bei. Im Gegensatz zu den beeindruckenden Erfolgen der etablierten144 MHz Dx Gemeinde in **OE** ist meine Erfolgsbilanz noch recht bescheiden. Jede neue Es-Verbindung, Großfeld oder DXCC Land erinnert mich aber sehr an jene Freude, die mir unser schönes Hobby schon vor Jahrzehnten bereitete, wenn es sich wieder einmal ausgezahlt hatte, seine UKW-Antennen und Ausrüstung auf einen hohen Berg zu schleppen.

	Literatur:			
Zε	eile 42:			
_				

Zeile 53:

Literatur:

Christian Wieser, **OE1CWJ**

+ Christian Wieser, **OE3CWJ**
br />

www. <mark>oe1cwj</mark> .com	+	https://www.qsl.net/oe3cwj/
== Soundfiles ==	+	==Soundfiles==
Hier können Sie einige Audiomitschnitte meiner Es Verbindungen vom QTH in Wien, JN88EE hören:		Hier können Sie einige Audiomitschnitte meiner Es Verbindungen vom QTH in Wien, JN88EE hören:
ile 65:	Ze	eile 54:
[[Datei:SporadicE_2m.jpg thumb QSL Karten Sporadic-E Verbindungen auf 144 MHz]]		[[Datei:SporadicE_2m.jpg thumb QSL Karten Sporadic-E Verbindungen auf 144 MHz]]
[[Media :G4LOH OE3FLU.wav]]	+	[[Medium :G4LOH OE3FLU .wav]]
	- +	
	+	[[Medium:SM2CEW_144312.wav]]
[[Media : SM2CEW144312 .wav]]	+	[[Medium : EA5AFP_144305 .wav]]
[[Media : EA5AFP 144305 .wav]]	+	[[Medium:OH6QU 144308 .wav]]
[[<mark>Media</mark> : <mark>OH6QU_144308</mark> .wav]]	+	[[Medium : EA5ZF_144315 .wav]]
[[Media:EA5ZF_144315.wav]]	+	KEIN_INHALTSVERZEICHNIS

Aktuelle Version vom 6. Oktober 2023, 14:48 Uhr

144MHz Sporadic E

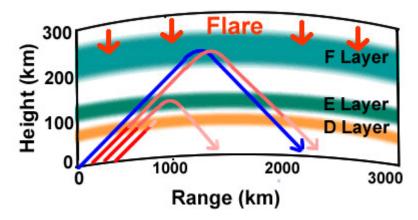
Sporadic E auf 144MHz

Jedes Jahr in den Sommermonaten besteht die Möglichkeit mit üblicher Stationsausrüstung im VHF Bereich DX-Verbindungen bis zu 2000km und mehr Entfernung abzuwickeln: Sporadic-E (Es).

Die kurzzeitige Bildung einer ionisierten (=leitenden und somit auch reflektierenden) Schicht in einer bestimmten Höhe der Atmosphäre trägt seit einigen Jahren bei vielen OMs zu erhöhtem Adrenalinausstoß bei.

Über das Zustandekommen dieser Schichten wurden schon verschiedene Theorien veröffentlicht, die im Zusammenhang mit der Sonnenaktivität, Meteoritenschauern, bestimmten Höhenwinden und sogar dem Einfluss von Gewittern in der Literatur lebhaft diskutiert werden. Das Thema Sporadic- E auf 144MHz ist mit einem wirklichem Problem verbundenen: der Zeit. Da die Öffnungen im 2m Band deutlich seltener, auch kürzer als auf 6m auftreten (die Literatur spricht von 1:10), muss man sich mit einigen Ableitungen von Murphy´s law vertraut machen, die da so ähnlich lauten: Solange man berufstätig ist, wird man die schönsten Öffnungen nur im Büro sitzend am DX-Cluster verfolgen können. Wenn man Urlaub in der Es-Saison nimmst, wird man die schönsten Öffnungen an der Station sitzend am DX-Cluster verfolgen können, aber leider einen Steinwurf zu weit weg von der ionisierten Schicht gelegen sein.

Vermutlich liegt aber gerade darin der Reiz, dass einen – wenn es dann klappt - die erzielbaren Verbindungen das Warten mehrfach entschädigen, auch wenn die meisten Öffnungen in den Jahren bis zum Ruhestand ohne Dein eigenes Rufzeichen stattfinden werden. Das Beobachten des DX-Clusters ist ein Muss, mit Hilfe des DX-Robot (http://www.gooddx.net/) in den Niederlanden kann man sich auch einen 144MHz Sporadic Alarm als sms aufs Handy (email Account benötigt) schicken lassen. Wenn dieser Alarm das Auftreten von 2m-Sporadic E im europäischen Raum anzeigt, sollte man im günstigsten Falle im shack sitzen und +/-144.300 MHz beobachten können, denn vielleicht wird es nun wieder richtig spannend. Auch die Kontrolle der UKW Rundfunkbänder ist einer der wichtigsten Indikatoren für das Auftreten dieses physikalischen Phänomens.


Wenn man in den Lücken zwischen den großen Lokalstationen im Autoradio quer durch die Stadt fahrend z.B. ein gutes Dutzend spanischer UKW Rundfunkstationen teilweise mit eindeutiger RDS Kennung empfangen kann, freut sich das Funkamateurherz schon.

Die reflektierenden Schichten bilden sich in einer Höhe von 100 bis 110 km über der Erdoberfläche und haben eine Dicke von einigen hundert bis zu tausend Metern. Die Ausdehnung einer E-Schicht variiert sehr stark und lässt sich zudem nicht ohne weiteres ausmessen oder bestimmen. Eine einmal gebildete Schicht ist meist in Bewegung, sowohl in der Reflexionstätigkeit wie auch in der Größe, was sich sehr deutlich darin manifestiert, dass die Signale zum Teil sehr starken Schwankungen ge gibt es bis heute noch keine einfache, eindeutige A unterworfen sind. Im weiteren bleibt die Es-Wolke nicht stationär, sondern sie wandert infolge der Erdrotation in westlicher Richtung. Die meisten Es-Bandöffnungen finden von Mitte Mai bis Mitte August statt. Die Dauer einer Es-Öffnung, variiert zwischen einigen Minuten

Ausgabe: 30.04.2024

und einigen Stunden, wobei bei längeren Öffnungen die Feldstärke erheblichen Schwankungen unterworfen ist. Die maximalen Reichweiten betragen ca. 2200 km. In den letzten Jahren wurden wesentlich größere Distanzen getätigt, so z.B. zwischen Portugal und Israel oder in diesem Jahr von der Schweiz nach den Kanarischen Inseln. Es ist nicht ausgeschlossen, dass bei diesen Verbindungen zwei Es-Schichten im Spiel waren.

Die minimale Stationsausrüstung auf 2m besteht in einem Transceiver mit 2 Watt Ausgangsleistung und einem Rundstrahler. Eine bessere Stationsausrüstung erhöht natürlich die Erfolgsquote. Die überbrückbare Entfernung bei ES liegt zwischen 1200 und 2200 km. Bei den auf 2m relativ seltenen Doppelsprüngen können auch 3500km erreicht werden. Die Zeitschrift Dubus (Nr 4/94) berichtete sogar von einer 2m-Verbindung von OE1SSB & OE1XLU mit RI8TA über 4271km am 21.Juli 89.

Wie kann man nun derartige DX-Bedingungen erkennen?

Grundsätzlich gibt es keine langfristige Vorhersagemöglichkeit, denn wie der Name schon sagt handelt es sich um ein sporadisches Phänomen. Aus statistischen Betrachtungen der vergangenen Jahre hat sich gezeigt, dass ES zwischen Mitte Mai und Anfang September auftreten kann, mit einer erhöhten Wahrscheinlichkeit Anfang Juni und Anfang Juli. Sporadic-E-trächtige Tage erkennt man durch intensive Bandbeobachtung, beginnend mit dem 10m Band. Ein Scanner leistet hier nützliche Dienste, da die Überreichweiten via ES stark frequenzabhängig sind. Beginnend im KW-Bereich steigt die maximal nutzbare Frequenz im tageszeitlichen Verlauf bis über 50MHz. Beobachten kann man dies am einfachsten im Fernsehband 1. Mit einer einfachen Antenne lassen sich hier bei Es russische, spanische oder sogar nordafrikanische TV-Stationen empfangen. Inzwischen ist auch das Baken- und Stationsangebot im 6m-Afu-Band so gut, dass man dort gut beobachten kann. Sind nun auch im 3m-Rundfunkband südeuropäische Stationen auszumachen, sollte man die 2m-SSB oder CW-Anruffrequenz verstärkt beobachten. Transceiver auf die 144.300 (oder 145.500) einstellen und die Antenne in Richtung der zu erwartenden DX-Ausbreitung (entsprechend 3m-und 6m Bandbeobachtung) drehen. Dabei bitte folgendes beachten: Nur antworten, wenn die DX-Station deutlich zu empfangen ist, nicht deshalb rufen, weil es die anderen OMs im näheren Umfeld auch tun. Sporadic-E ist zum Teil örtlich nur sehr begrenzt nutzbar. Im 50 km Entfernung können die Bedingungen schon wieder völlig anders sein und die DX-Station ist dort nicht mehr aufnehmbar. Ein schnelles QSY weg von der Anruffrequenz erspart oft viel QRM. QSOs möglichst kurz halten. Keine langen Ausführungen über die eigene Stationsausrüstung halten. Die Öffnungen dauern oft nur wenige Minuten, in dieser Zeit möchten möglichst viele OMs die DX-Station arbeiten.

Die reflektierenden Schichten bilden sich in einer Höhe von 100 bis 110 km über der Erdoberfläche und haben eine Dicke von einigen hundert bis zu tausend Metern. Die Ausdehnung einer E-Schicht variiert sehr stark und lässt sich zudem nicht ohne weiteres ausmessen oder bestimmen. Im weiteren bleibt die Es-Wolke nicht stationär, sondern sie wandert infolge der Erdrotation in westlicher Richtung. Die meisten Es-Bandöffnungen finden von Mitte Mai bis Mitte August statt. Die Dauer einer Es-Öffnung, variiert zwischen einigen Minuten und einigen Stunden, wobei bei längeren Öffnungen die Feldstärke erheblichen Schwankungen unterworfen ist. Die maximalen Reichweiten betragen ca. 2200 km. In den letzten Jahren wurden wesentlich grössere Distanzen getätigt, so z.B. zwischen Portugal und Israel oder in diesem Jahr von der Schweiz nach den Kanarischen Inseln. Es ist nicht ausgeschlossen, dass bei diesen Verbindungen zwei Es-Schichten im Spiel waren. Aus einer Auswertung von 4000 Es-Verbindungen (DUBUS-Hefte) auf 144 MHz geht hervor, dass die Es-Bandöffnungen zwischen 08:00 – 22:00 UTC zustande kommen.

Gute Betriebstechnik ist nun wichtig, die entstehenden pile-ups in den meist recht kurzen Zeitfenstern erfordern ständiges Zuhören, Mitschreiben und Beobachten des Clusters und dann: "Fasse Dich kurz" - Rufzeichen, RST und LocatorBesonders für Newcomer verblüffend sind die möglichen Feldstärken der DX-Stationen, die kurzzeitig so stark sein können wie lokale Stationen. So gelang es mir einmal nicht, ein 59+ FM-QSO auf 145.55MHz mit Stationen aus dem Grossraum Moskau ins Log zu bringen, da die OMs dort wohl den Eindruck hatten von jemandem, der mit gebrochenem Schulrussisch sein Bestes geben wollte, verschaukelt zu werden (hi)

Literatur: Sporadic-E propagation at VHF: A review of progress and prospects, ARRL/ QST April 1988 Emil Pocock, W3EP

Christian Wieser, OE3CWJ https://www.qsl.net/oe3cwj/

Soundfiles

Hier können Sie einige Audiomitschnitte meiner Es Verbindungen vom QTH in Wien, JN88EE hören:

Medium:G4LOH OE3FLU.wav


Medium:SM2CEW_144312.wav

Medium:EA5AFP_144305.wav

Medium:OH6QU_144308.wav

Medium:EA5ZF 144315.wav

Ausgabe: 30.04.2024

144MHz Sporadic E: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 12. Februar 2014, 17:27 Uhr (Quelltext anzeigen)

OE1CWJ (Diskussion | Beiträge)
(→Sporadic E auf 144MHz)
← Zum vorherigen Versionsunterschied

Aktuelle Version vom 6. Oktober 2023, 14:48 Uhr (Quelltext anzeigen) OE1CWJ (Diskussion | Beiträge)

K

Markierung: Visuelle Bearbeitung

(12 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)

Zeile 1: Zeile 1:

[[Kategorie:UKW Frequenzbereiche]]

[[Kategorie:UKW Frequenzbereiche]]

= 144MHz Sporadic E =

== Sporadic E auf 144MHz ==

==Sporadic E auf 144MHz==

Jedes Jahr in den Sommermonaten besteht die Möglichkeit mit üblicher Stationsausrüstung im VHF Bereich DX-Verbindungen bis zu 2000km und mehr Entfernung abzuwickeln: Sporadic-E (Es). Jedes Jahr in den Sommermonaten besteht die Möglichkeit mit üblicher Stationsausrüstung im VHF Bereich DX-Verbindungen bis zu 2000km und mehr Entfernung abzuwickeln: Sporadic-E (Es).

Die kurzzeitige Bildung einer ionisierten (=leitenden und somit auch reflektierenden) Schicht in einer bestimmten Höhe der Atmosphäre trägt seit einigen Jahren **auch** bei **mir** zu erhöhtem Adrenalinausstoß bei.

Die kurzzeitige Bildung einer ionisierten (=leitenden und somit auch reflektierenden) Schicht in einer bestimmten Höhe der Atmosphäre trägt seit einigen Jahren bei vielen OMs zu erhöhtem Adrenalinausstoß bei.

Über das Zustandekommen dieser
Schichten wurden schon verschiedene
Theorien veröffentlicht, die im
Zusammenhang mit der Sonnenaktivität,
Meteoritenschauern, bestimmten
Höhenwinden und sogar dem Einfluss von
Gewittern in der Literatur lebhaft diskutiert
werden. (Anhang: Literaturstellen im In
ternet)

Über das Zustandekommen dieser Schichten wurden schon verschiedene Theorien veröffentlicht, die im Zusammenhang mit der Sonnenaktivität, Meteoritenschauern, bestimmten Höhenwinden und sogar dem Einfluss von Gewittern in der Literatur lebhaft diskutiert werden. Das Thema Sporadic- E auf 144MHz ist mit einem wirklichem Problem verbundenen: der Zeit. Da die Öffnungen im 2m Band deutlich seltener, auch kürzer als auf 6m auftreten (die Literatur spricht von 1:1 0), muss man sich mit einigen Ableitungen von Murphy's law vertraut machen, die da so ähnlich lauten: Solange man berufstätig ist, wird man die schönsten Öffnungen nur im Büro sitzend am DX-Cluster verfolgen können. Wenn man Urlaub in der Es-Saison nimmst, wird man

Wie an meinem Suffix erkennbar ist, habe ich als begeisterter VHF Amateur schon Ende der siebziger lahre SSB-taugliches equipment auf diverse Tiroler Berge und Anhöhen getragen, um der gespenstischen Stille im Tale zu entkommen und so manchen Contest mit tragbaren Stationen bestritten. Seit der Freigabe des 50MHz Bandes in Österreich kann man mit einfachen Antennen das Phänomen Es beobachten, und so war es dann nur mehr logisch, dass nach meiner Übersiedlung nach Wien der 6m-Empfangsdraht im Dachboden schon bald durch eine vernünftige Antenne abgelöst werden musste - ich erspare Ihnen hier die allseits bekannten Details mit den lieben Miteigentümern eines Wohnhauses, sowie den EMV Diskussionen unter "Experten" - schlussendlich wurde

Und schon sind wir beim Thema
Sporadic- E auf 144MHz und dem
damit verbundenen, vermutlich einzig
wirklichem Problem: der Zeit. Da die
Öffnungen im 2m Band deutlich
seltener, auch kürzer als auf 6m
auftreten (die Literatur spricht von 1:
10) muss man sich mit einigen
Ableitungen von Murphy's law
vertraut machen, die da so ähnlich
lauten: Solange man berufstätig ist,
wirst man die schönsten Öffnungen

nur im Büro sitzend am DX-Cluster verfolgen können. Wenn man Urlaub die schönsten Öffnungen an der Station sitzend am DX-Cluster verfolgen können, aber leider einen Steinwurf zu weit weg von der ionisierten Schicht gelegen sein.

Vermutlich liegt aber gerade darin der Reiz, dass einen - wenn es dann klappt die erzielbaren Verbindungen das Warten mehrfach entschädigen, auch wenn die meisten Öffnungen in den Jahren bis zum Ruhestand ohne Dein eigenes Rufzeichen stattfinden werden. Das Beobachten des DX-Clusters ist ein Muss, mit Hilfe des DX-Robot (http://www.gooddx.net/) in den Niederlanden kann man sich auch einen 144MHz Sporadic Alarm als sms aufs Handy (email Account benötigt) schicken lassen. Wenn dieser Alarm das Auftreten von 2m-Sporadic E im europäischen Raum anzeigt, sollte man im günstigsten Falle im shack sitzen und +/-144.300 MHz beobachten können, denn vielleicht wird es nun wieder richtig spannend. Auch die Kontrolle der UKW Rundfunkbänder ist einer der wichtigsten Indikatoren für das Auftreten dieses physikalischen Phänomens.

Ausgabe: 30.04.2024 Dieses Dokument wurde erzeugt mit BlueSpice

in der Es-Saison nimmst, wirst man die schönsten Öffnungen an der Station sitzend am DX-Cluster verfolgen können, aber leider einen Steinwurf zu weit weg von der ionisierten Schicht positioniert sein.

Vermutlich liegt aber gerade darin der Reiz, dass - wenn es dann mal klappt - die erzielbaren Verbindungen das Warten mehrfach entschädigen, auch wenn die meisten Öffnungen in den Jahren bis zum Ruhestand ohne Dein eigenes Rufzeichen stattfinden werden. Das Beobachten des DX-Clusters ist ein Muss. mit Hilfe des DX-Robot (http://www.gooddx.net/) in den Niederlanden kann man sich auch einen 144MHz Sporadic Alarm als sms aufs Handy (email Account benötigt) schicken lassen. Wenn dieser Alarm das Auftreten von 2m-Sporadic E im europäischen Raum anzeigt, sollte man im günstigsten Falle im shack sitzen und +/-144.300 MHz beobachten können, denn vielleicht wird es nun wieder richtig spannend. Auch die Kontrolle der UKW Rundfunkbänder ist einer der wichtigsten Indikatoren für das Auftreten dieses physikalischen Phänomens.

Wenn man in den Lücken zwischen den großen Lokalstationen im Autoradio quer durch die Stadt fahrend z.B. ein gutes Dutzend spanischer UKW Rundfunkstationen teilweise mit eindeutiger RDS Kennung empfangen kann, freut sich das Funkamateurherz schon.

Wenn man in den Lücken zwischen den großen Lokalstationen im Autoradio quer durch die Stadt fahrend z.B. ein gutes Dutzend spanischer UKW Rundfunkstationen teilweise mit eindeutiger RDS Kennung empfangen kann, freut sich das Funkamateurherz schon.

Zeile 21:	Zeile 18:		
[[Datei:SporadicE_2m.jpg]]			

Die reflektierenden Schichten bilden sich in einer Höhe von 100 bis 110 km über der Erdoberfläche und haben eine Dicke von einigen hundert bis zu tausend Metern. Die Ausdehnung einer E-Schicht variiert sehr stark und lässt sich zudem nicht ohne weiteres ausmessen oder bestimmen. Eine einmal gebildete Schicht ist meist in Bewegung, sowohl in der Reflexionstätigkeit wie auch in der Größe, was sich sehr deutlich darin manifestiert, dass die Signale zum Teil sehr starken Schwankungen ge gibt es bis heute noch keine einfache, eindeutige A unterworfen sind. Im weiteren bleibt die Es-Wolke nicht stationär, sondern sie wandert infolge der Erdrotation in westlicher Richtung. Die meisten Es-Bandöffnungen finden von Mitte Mai bis Mitte August statt. Die Dauer einer Es-Öffnung, variiert zwischen einigen Minuten und einigen Stunden, wobei bei längeren Öffnungen die Feldstärke erheblichen Schwankungen unterworfen ist. Die maximalen Reichweiten betragen ca. 2200 km. In den letzten lahren wurden wesentlich größere Distanzen getätigt, so z.B. zwischen Portugal und Israel oder in diesem Jahr von der Schweiz nach den Kanarischen Inseln. Es ist nicht ausgeschlossen, dass bei diesen Verbindungen zwei Es-Schichten im Spiel waren.

+

Die reflektierenden Schichten bilden sich in einer Höhe von 100 bis 110 km über der Erdoberfläche und haben eine Dicke von einigen hundert bis zu tausend Metern. Die Ausdehnung einer E-Schicht variiert sehr stark und lässt sich zudem nicht ohne weiteres

Ausgabe: 30.04.2024

ausmessen oder bestimmen. Eine einmal gebildete Schicht ist meist in Bewegung, sowohl in der Reflexionstätigkeit wie auch in der Größe, was sich sehr deutlich darin manifestiert, dass die Signale zum Teil sehr starken Schwankungen ge gibt es bis heute noch keine einfache, eindeutige A unterworfen sind. Im weiteren bleibt die Es-Wolke nicht stationär, sondern sie wandert infolge der Erdrotation in westlicher Richtung. Die meisten Es-Bandöffnungen finden von Mitte Mai bis Mitte August statt. Die Dauer einer Es-Öffnung, variiert zwischen einigen Minuten und einigen Stunden, wobei bei längeren Öffnungen die Feldstärke erheblichen Schwankungen unterworfen ist. Die maximalen Reichweiten betragen ca. 2200 km. In den letzten lahren wurden wesentlich größere Distanzen getätigt, so z.B. zwischen Portugal und Israel oder in diesem Jahr von der Schweiz nach den Kanarischen Inseln. Es ist nicht ausgeschlossen, dass bei diesen Verbindungen zwei Es-Schichten im Spiel waren.

[[Datei:Es_layers_.jpg]]

[[Datei:Es_layers_.jpg]]

Die minimale Stationsausrüstung auf 2m besteht in einem Transceiver mit 2 Watt Ausgangsleistung und einem Rundstrahler. Eine bessere Stationsausrüstung erhöht natürlich die Erfolgsquote. Die überbrückbare Entfernung bei ES liegt zwischen 1200 und 2200 km. Bei den auf

Die minimale Stationsausrüstung auf 2m besteht in einem Transceiver mit 2 Watt Ausgangsleistung und einem Rundstrahler. Eine bessere Stationsausrüstung erhöht natürlich die Erfolgsquote. Die überbrückbare Entfernung bei ES liegt zwischen 1200 und 2200 km. Bei den auf

2m relativ seltenen Doppelsprüngen können auch 3500km erreicht werden. Die Zeitschrift Dubus (Nr 4/94) berichtete sogar von einer 2m-Verbindung von OE1SSB & OE1XLU mit RI8TA über 4271km am 21.Juli 89.

Wie kann man nun derartige DX-Bedingungen erkennen?

Grundsätzlich gibt es keine langfristige Vorhersagemöglichkeit, denn wie der Name schon sagt handelt es sich um ein sporadisches Phänomen. Aus statistischen Betrachtungen der vergangenen lahre hat sich gezeigt, dass ES zwischen Mitte Mai und Anfang September auftreten kann, mit einer erhöhten Wahrscheinlichkeit Anfang Iuni und Anfang Iuli, Sporadic-Eträchtige Tage erkennt man durch intensive Bandbeobachtung, beginnend mit dem 10m Band. Ein Scanner leistet hier nützliche Dienste, da die Überreichweiten via ES stark frequenzabhängig sind. Beginnend im KW-Bereich steigt die maximal nutzbare Frequenz im tageszeitlichen Verlauf bis über 50MHz. Beobachten kann man dies am einfachsten im Fernsehband 1. Mit einer einfachen Antenne lassen sich hier bei ES russische, spanische oder sogar nordafrikanische TV-Stationen empfangen. Inzwischen ist auch das Baken- und Stationsangebot im 6m-Afu-Band so gut, dass man dort gut beobachten kann.

Sind nun auch im 3m-Rundfunkband südeuropäische Stationen auszumachen, sollte man die 2m-SSB oder CW-Anruffrequenz verstärkt beobachten. Transceiver auf die 144.300 (oder 145.500) einstellen und die Antenne in Richtung der zu erwartenden DX-Ausbreitung

Ausgabe: 30.04.2024

2m relativ seltenen Doppelsprüngen können auch 3500km erreicht werden. Die Zeitschrift Dubus (Nr 4/94) berichtete sogar von einer 2m-Verbindung von OE1SSB & OE1XLU mit RI8TA über 4271km am 21.Juli 89.

(entsprechend 3m-und 6m) Bandbeobachtung) drehen. Dabei bitte folgendes beachten: DL ist leider kein seltenes Land für europäische OMs. Deshalb möglichst keine oder nur sehr kurze CO-Rufe auf der 144.300 bei ES.. Nur antworten, wenn die DX-Station deutlich zu empfangen ist, nicht deshalb rufen, weil es die anderen OMs im näheren Umfeld auch tun. Sporadic-E ist zum Teil örtlich nur sehr begrenzt nutzbar. Im 50 km Entfernung können die Bedingungen schon wieder völlig anders sein und die DX-Station ist dort nicht mehr aufnehmbar. Ein schnelles QSY weg von der Anruffrequenz erspart oft viel QRM. QSOs möglichst kurz halten. Keine langen Ausführungen über die eigene Stationsausrüstung halten. Die Öffnungen dauern oft nur wenige Minuten, in dieser Zeit möchten möglichst viele OMs die DX-Station arbeiten.

Besonders für Newcomer ist ES ein verblüffendes Phänomen: die Feldstärken der DX-Stationen können kurzzeitig so stark werden, wie die von der nächsten Ortsstation. So wurden schon Mobil- und Portabelstationen mit 1 Watt-Handys, welche gerade mitten in Athen unterwegs waren, hier in DL rauschfrei aufgenommen auf der S20!

VHF Funkbetrieb über Sporadic-E-Öffnungen. Er konnte verschiedentlich UKW-Rundfunkstationen aus ganz Grossbritannien mit einfachen Mitteln

in Uster empfangen. Das Phänomen E-Sporadic machen sich auch Radioamateure besonders auf 144 MHz und 50MHz für Weitverbindungen im Funkverkehr zu Nutze.

Wie und wann kommen solche
Vorkommnisse überhaupt zustande?
Dazu einige physikalische
Erläuterungen dieser Ausbreitungsart
für Weitverbindungen auf UKW
Frequenzen. (UKW Bereich 30 300MHz) Selbst für erfahrene
Funkamateure und Rundfunkhörer
sind solche Verbindungen jedes mal
ein Ereignis von grosser Bedeutung
und Faszination. Für einen
erfolgreichen Funkverkehr über
Sporadic E sind Fachkenntnisse,
Geduld und Ausdauer wesentliche
Voraussetzungen.

Solche Weitverbindungen sind möglich, weil sich in einer bestimmten Höhe über der Erdoberfläche eine ionisierte Schicht bildet. Ionisierte Schichten sind leitend und somit auch reflektierend. Der Begriff Sporadic E oder abgekürzt Es, wird von der Tatsache abgeleitet, dass die Reflektion in der E-Schicht der Ionosphäre und nur sporadisch auftritt.

Eine Frage, die unter Kennern immer wieder gestellt wird: Wie kommen diese Schichten überhaupt zustande? Auf diese konkrete Fra Mit Sicherheit bekannt ist, dass sich diese räumlich begrenzte Ionisation in der E-Schicht zu ganz bestimmten Jahres- und Tageszeiten bildet. Über das Zustandekommen dieser Schichten wurden schon verschiedene Thesen aufgestellt und auch wieder aufgegeben. Eine davon, die zwar einleuchtend, aber noch nicht

eindeutig bewiesen ist, soll hier kurz skizziert sein: Horizontal verlaufende Höhenwinde in der Ionosphäre unterliegen dem sogenannten Windshear, d.h. einer Umkehr innerhalb einer geringern Höhendifferenz. Dabei können geladene Teilchen, die von verglühenden Meteoriten stammen. in den erwähnten Windkanälen zusammengetrieben werden und so eine mehr oder weniger reflektierende Schicht bilden. Im weiteren scheinen gute Es-Bandöffnungen immer in Zeiten ruhiger Erdmagnetik (Ak-Wert) aufzutreten. Dies würde darauf hinweisen, dass die Magnetfelder der Erde eventuell auch einen Einfluss auf die Bildung der Es-Schichten haben.

Die reflektierenden Schichten bilden sich in einer Höhe von 100 bis 110 km über der Erdoberfläche und haben eine Dicke von einigen hundert bis zu tausend Metern. Die Ausdehnung einer E-Schicht variiert sehr stark und lässt sich zudem nicht ohne weiteres ausmessen oder bestimmen. Eine einmal gebildete Schicht ist meist in Bewegung, sowohl in der Reflexionstätigkeit wie auch in der Grösse, was sich sehr deutlich darin manifestiert, dass die Signale zum Teil sehr starken Schwankungen ge gibt es bis heute noch keine einfache, eindeutige A unterworfen sind. Im weiteren bleibt die Es-Wolke nicht stationär, sondern sie wandert infolge der Erdrotation in westlicher Richtung. Die meisten Es-Bandöffnungen finden von Mitte Mai bis Mitte August statt. Die Dauer einer Es-Öffnung, variiert zwischen einigen Minuten und einigen Stunden,

wobei bei längeren Öffnungen die

==Wie kann man nun derartige DX-Be dingungen erkennen?==

Ausgabe: 30.04.2024 Dieses Dokument wurde erzeugt mit BlueSpice

Feldstärke erheblichen Schwankungen unterworfen ist. Die maximalen Reichweiten betragen ca. 2200 km. In den letzten lahren wurden wesentlich grössere Distanzen getätigt, so z.B. zwischen Portugal und Israel oder in diesem Jahr von der Schweiz nach den Kanarischen Inseln. Es ist nicht ausgeschlossen, dass bei diesen Verbindungen zwei Es-Schichten im Spiel waren. Aus einer Auswertung von 4000 Es-Verbindungen (DUBUS-Hefte) auf 144 MHz geht hervor, dass die Es-Bandöffnungen zwischen 08:00 - 22:00 UTC zustande kommen.

> Grundsätzlich gibt es keine langfristige Vorhersagemöglichkeit, denn wie der Name schon sagt handelt es sich um ein sporadisches Phänomen. Aus statistischen Betrachtungen der vergangenen Jahre hat sich gezeigt, dass ES zwischen Mitte Mai und Anfang September auftreten kann, mit einer erhöhten Wahrscheinlichkeit Anfang Juni und Anfang Juli. Sporadic-Eträchtige Tage erkennt man durch intensive Bandbeobachtung, beginnend mit dem 10m Band. Ein Scanner leistet hier nützliche Dienste, da die Überreichweiten via ES stark frequenzabhängig sind. Beginnend im KW-Bereich steigt die maximal nutzbare Frequenz im tageszeitlichen Verlauf bis über 50MHz. Beobachten kann man dies am einfachsten im Fernsehband 1. Mit einer einfachen Antenne lassen sich hier bei Es russische, spanische oder sogar nordafrikanische TV-Stationen empfangen. Inzwischen ist auch das Baken- und Stationsangebot im 6m-Afu-Band so gut, dass man dort gut beobachten kann.

Ausgabe: 30.04.2024 Dieses Dokument wurde erzeugt mit BlueSpice

Sind nun auch im 3m-Rundfunkband südeuropäische Stationen auszumachen, sollte man die 2m-SSB oder CW-Anruffrequenz verstärkt beobachten. Transceiver auf die 144.300 (oder 145.500) einstellen und die Antenne in Richtung der zu erwartenden DX-Ausbreitung (entsprechend 3m-und 6m) Bandbeobachtung) drehen. Dabei bitte folgendes beachten: Nur antworten, wenn die DX-Station deutlich zu empfangen ist, nicht deshalb rufen, weil es die anderen OMs im näheren Umfeld auch tun. Sporadic-E ist zum Teil örtlich nur sehr begrenzt nutzbar. Im 50 km Entfernung können die Bedingungen schon wieder völlig anders sein und die DX-Station ist dort nicht mehr aufnehmbar. Ein schnelles OSY weg von der Anruffrequenz erspart oft viel ORM. OSOs möglichst kurz halten. Keine langen Ausführungen über die eigene Stationsausrüstung halten. Die Öffnungen dauern oft nur wenige Minuten, in dieser Zeit möchten möglichst viele OMs die DX-Station arbeiten.

Die reflektierenden Schichten bilden sich in einer Höhe von 100 bis 110 km über der Erdoberfläche und haben eine Dicke von einigen hundert bis zu tausend Metern. Die Ausdehnung einer E-Schicht variiert sehr stark und lässt sich zudem nicht ohne weiteres ausmessen oder bestimmen. Im weiteren bleibt die Es-Wolke nicht stationär, sondern sie wandert infolge der Erdrotation in westlicher Richtung. Die meisten Es-Bandöffnungen finden von Mitte Mai bis Mitte August statt. Die Dauer einer Es-Öffnung, variiert zwischen einigen Minuten und einigen Stunden,

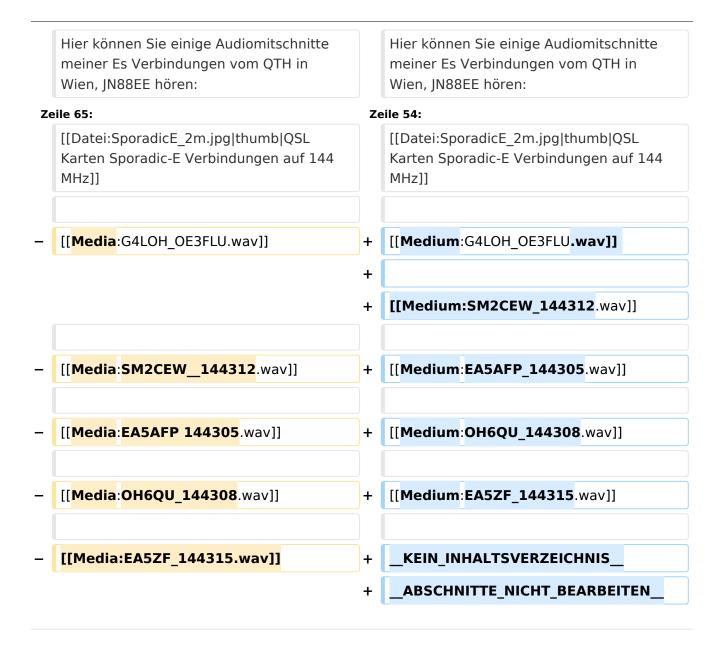
wobei bei längeren Öffnungen die Feldstärke erheblichen Schwankungen unterworfen ist. Die maximalen Reichweiten betragen ca. 2200 km. In den letzten Jahren wurden wesentlich arössere Distanzen getätigt, so z.B. zwischen Portugal und Israel oder in diesem lahr von der Schweiz nach den Kanarischen Inseln. Es ist nicht ausgeschlossen, dass bei diesen Verbindungen zwei Es-Schichten im Spiel waren. Aus einer Auswertung von 4000 Es-Verbindungen (DUBUS-Hefte) auf 144 MHz geht hervor, dass die Es-Bandöffnungen zwischen 08:00 - 22:00 UTC zustande kommen.

Gute Betriebstechnik ist nun wichtig, die entstehenden pile-ups in den meist recht kurzen Zeitfenstern erfordern ständiges Zuhören, Mitschreiben und Beobachten des Clusters und dann: "Fasse Dich kurz" -Rufzeichen, RST und LocatorBesonders für Newcomer verblüffend sind die möglichen Feldstärken der DX-Stationen, die kurzzeitig so stark sein können wie lokale Stationen. So gelang es mir einmal nicht, ein 59+ FM-QSO auf 145.55MHz mit Stationen aus dem Grossraum Moskau ins Log zu bringen, da die OMs dort wohl den Eindruck hatten von jemandem, der mit gebrochenem Schulrussisch sein Bestes geben wollte, verschaukelt zu werden (hi)

Gute Betriebstechnik ist nun wichtig, die entstehenden pile-ups in den meist recht kurzen Zeitfenstern erfordern ständiges Zuhören, Mitschreiben und Beobachten des Clusters und dann: "Fasse Dich kurz" -Rufzeichen, RST und LocatorBesonders für Newcomer verblüffend sind die möglichen Feldstärken der DX-Stationen, die kurzzeitig so stark sein können wie lokale Stationen. So gelang es mir einmal nicht, ein 59+ FM-QSO auf 145.55MHz mit Stationen aus dem Grossraum Moskau ins Log zu bringen, da die OMs dort wohl den Eindruck hatten von jemandem, der mit gebrochenem Schulrussisch sein Bestes geben wollte, verschaukelt zu werden (hi)

Derartige Erfahrungen lassen die klassischen 2m-DX Anruffrequenzen für SSB und CW (144.050CW/144.300 SSB) für den Anfang wohl sinnvoller erscheinen. Auch mit der Auswertung

Ausgabe: 30.04.2024



und Dokumentation dieses
Phänomens hilft das Internet einmal
mehr: Im Internet findet man nach
Tagen sortiert zustande gekommene
Sporadic-E Verbindungen, die auch
graphisch dargestellt werden.

Dieses Portal trägt somit zu einem besseren, praktischen Verständnis der komplexen Prozesse rund um Sporadic-E bei. Im Gegensatz zu den beeindruckenden Erfolgen der etablierten144 MHz Dx Gemeinde in **OE** ist meine Erfolgsbilanz noch recht bescheiden. Iede neue Es-Verbindung, Großfeld oder DXCC Land erinnert mich aber sehr an iene Freude, die mir unser schönes Hobby schon vor Jahrzehnten bereitete, wenn es sich wieder einmal ausgezahlt hatte, seine UKW-Antennen und Ausrüstung auf einen hohen Berg zu schleppen.

Literatur:			Literatur:
Zeile 53:		Ze	ile 42:
Christian Wieser, OE1CWJ <	br /> +	+	Christian Wieser, OE3CWJ br />
www. <mark>oe1cwj</mark> .com	+	+	https://www.qsl.net/oe3cwj/
== Soundfiles ==	+	+	==Soundfiles==

Aktuelle Version vom 6. Oktober 2023, 14:48 Uhr

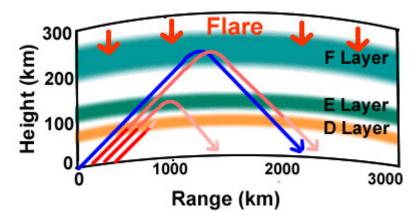
144MHz Sporadic E

Sporadic E auf 144MHz

Jedes Jahr in den Sommermonaten besteht die Möglichkeit mit üblicher Stationsausrüstung im VHF Bereich DX-Verbindungen bis zu 2000km und mehr Entfernung abzuwickeln: Sporadic-E (Es).

Die kurzzeitige Bildung einer ionisierten (=leitenden und somit auch reflektierenden) Schicht in einer bestimmten Höhe der Atmosphäre trägt seit einigen Jahren bei vielen OMs zu erhöhtem Adrenalinausstoß bei.

Über das Zustandekommen dieser Schichten wurden schon verschiedene Theorien veröffentlicht, die im Zusammenhang mit der Sonnenaktivität, Meteoritenschauern, bestimmten Höhenwinden und sogar dem Einfluss von Gewittern in der Literatur lebhaft diskutiert werden. Das Thema


Ausgabe: 30.04.2024

Sporadic- E auf 144MHz ist mit einem wirklichem Problem verbundenen: der Zeit. Da die Öffnungen im 2m Band deutlich seltener, auch kürzer als auf 6m auftreten (die Literatur spricht von 1:10), muss man sich mit einigen Ableitungen von Murphy´s law vertraut machen, die da so ähnlich lauten: Solange man berufstätig ist, wird man die schönsten Öffnungen nur im Büro sitzend am DX-Cluster verfolgen können. Wenn man Urlaub in der Es-Saison nimmst, wird man die schönsten Öffnungen an der Station sitzend am DX-Cluster verfolgen können, aber leider einen Steinwurf zu weit weg von der ionisierten Schicht gelegen sein.

Vermutlich liegt aber gerade darin der Reiz, dass einen – wenn es dann klappt - die erzielbaren Verbindungen das Warten mehrfach entschädigen, auch wenn die meisten Öffnungen in den Jahren bis zum Ruhestand ohne Dein eigenes Rufzeichen stattfinden werden. Das Beobachten des DX-Clusters ist ein Muss, mit Hilfe des DX-Robot (http://www.gooddx.net/) in den Niederlanden kann man sich auch einen 144MHz Sporadic Alarm als sms aufs Handy (email Account benötigt) schicken lassen. Wenn dieser Alarm das Auftreten von 2m-Sporadic E im europäischen Raum anzeigt, sollte man im günstigsten Falle im shack sitzen und +/-144.300 MHz beobachten können, denn vielleicht wird es nun wieder richtig spannend. Auch die Kontrolle der UKW Rundfunkbänder ist einer der wichtigsten Indikatoren für das Auftreten dieses physikalischen Phänomens.

Wenn man in den Lücken zwischen den großen Lokalstationen im Autoradio quer durch die Stadt fahrend z.B. ein gutes Dutzend spanischer UKW Rundfunkstationen teilweise mit eindeutiger RDS Kennung empfangen kann, freut sich das Funkamateurherz schon.

Die reflektierenden Schichten bilden sich in einer Höhe von 100 bis 110 km über der Erdoberfläche und haben eine Dicke von einigen hundert bis zu tausend Metern. Die Ausdehnung einer E-Schicht variiert sehr stark und lässt sich zudem nicht ohne weiteres ausmessen oder bestimmen. Eine einmal gebildete Schicht ist meist in Bewegung, sowohl in der Reflexionstätigkeit wie auch in der Größe, was sich sehr deutlich darin manifestiert, dass die Signale zum Teil sehr starken Schwankungen ge gibt es bis heute noch keine einfache, eindeutige A unterworfen sind. Im weiteren bleibt die Es-Wolke nicht stationär, sondern sie wandert infolge der Erdrotation in westlicher Richtung. Die meisten Es-Bandöffnungen finden von Mitte Mai bis Mitte August statt. Die Dauer einer Es-Öffnung, variiert zwischen einigen Minuten und einigen Stunden, wobei bei längeren Öffnungen die Feldstärke erheblichen Schwankungen unterworfen ist. Die maximalen Reichweiten betragen ca. 2200 km. In den letzten Jahren wurden wesentlich größere Distanzen getätigt, so z.B. zwischen Portugal und Israel oder in diesem Jahr von der Schweiz nach den Kanarischen Inseln. Es ist nicht ausgeschlossen, dass bei diesen Verbindungen zwei Es-Schichten im Spiel waren.

Die minimale Stationsausrüstung auf 2m besteht in einem Transceiver mit 2 Watt Ausgangsleistung und einem Rundstrahler. Eine bessere Stationsausrüstung erhöht natürlich die Erfolgsquote. Die überbrückbare Entfernung bei ES liegt zwischen 1200 und 2200 km. Bei den auf 2m relativ seltenen Doppelsprüngen können auch 3500km erreicht werden. Die Zeitschrift Dubus (Nr 4/94) berichtete sogar von einer 2m-Verbindung von OE1SSB & OE1XLU mit RI8TA über 4271km am 21.Juli 89.

Wie kann man nun derartige DX-Bedingungen erkennen?

Grundsätzlich gibt es keine langfristige Vorhersagemöglichkeit, denn wie der Name schon sagt handelt es sich um ein sporadisches Phänomen. Aus statistischen Betrachtungen der vergangenen Jahre hat sich gezeigt, dass ES zwischen Mitte Mai und Anfang September auftreten kann, mit einer erhöhten Wahrscheinlichkeit Anfang Juni und Anfang Juli. Sporadic-E-trächtige Tage erkennt man durch intensive Bandbeobachtung, beginnend mit dem 10m Band. Ein Scanner leistet hier nützliche Dienste, da die Überreichweiten via ES stark frequenzabhängig sind. Beginnend im KW-Bereich steigt die maximal nutzbare Frequenz im tageszeitlichen Verlauf bis über 50MHz. Beobachten kann man dies am einfachsten im Fernsehband 1. Mit einer einfachen Antenne lassen sich hier bei Es russische, spanische oder sogar nordafrikanische TV-Stationen empfangen. Inzwischen ist auch das Baken- und Stationsangebot im 6m-Afu-Band so gut, dass man dort gut beobachten kann. Sind nun auch im 3m-Rundfunkband südeuropäische Stationen auszumachen, sollte man die 2m-SSB oder CW-Anruffrequenz verstärkt beobachten. Transceiver auf die 144.300 (oder 145.500) einstellen und die Antenne in Richtung der zu erwartenden DX-Ausbreitung (entsprechend 3m-und 6m Bandbeobachtung) drehen. Dabei bitte folgendes beachten: Nur antworten, wenn die DX-Station deutlich zu empfangen ist, nicht deshalb rufen, weil es die anderen OMs im näheren Umfeld auch tun. Sporadic-E ist zum Teil örtlich nur sehr begrenzt nutzbar. Im 50 km Entfernung können die Bedingungen schon wieder völlig anders sein und die DX-Station ist dort nicht mehr aufnehmbar. Ein schnelles QSY weg von der Anruffrequenz erspart oft viel QRM. QSOs möglichst kurz halten. Keine langen Ausführungen über die eigene Stationsausrüstung halten. Die Öffnungen dauern oft nur wenige Minuten, in dieser Zeit möchten möglichst viele OMs die DX-Station arbeiten.

Die reflektierenden Schichten bilden sich in einer Höhe von 100 bis 110 km über der Erdoberfläche und haben eine Dicke von einigen hundert bis zu tausend Metern. Die Ausdehnung einer E-Schicht variiert sehr stark und lässt sich zudem nicht ohne weiteres ausmessen oder bestimmen. Im weiteren bleibt die Es-Wolke nicht stationär, sondern sie wandert infolge der Erdrotation in westlicher Richtung. Die meisten Es-Bandöffnungen finden von Mitte Mai bis Mitte

August statt. Die Dauer einer Es-Öffnung, variiert zwischen einigen Minuten und einigen Stunden, wobei bei längeren Öffnungen die Feldstärke erheblichen Schwankungen unterworfen ist. Die maximalen Reichweiten betragen ca. 2200 km. In den letzten Jahren wurden wesentlich grössere Distanzen getätigt, so z.B. zwischen Portugal und Israel oder in diesem Jahr von der Schweiz nach den Kanarischen Inseln. Es ist nicht ausgeschlossen, dass bei diesen Verbindungen zwei Es-Schichten im Spiel waren. Aus einer Auswertung von 4000 Es-Verbindungen (DUBUS-Hefte) auf 144 MHz geht hervor, dass die Es-Bandöffnungen zwischen 08:00 – 22:00 UTC zustande kommen.

Gute Betriebstechnik ist nun wichtig, die entstehenden pile-ups in den meist recht kurzen Zeitfenstern erfordern ständiges Zuhören, Mitschreiben und Beobachten des Clusters und dann: "Fasse Dich kurz" - Rufzeichen, RST und LocatorBesonders für Newcomer verblüffend sind die möglichen Feldstärken der DX-Stationen, die kurzzeitig so stark sein können wie lokale Stationen. So gelang es mir einmal nicht, ein 59+ FM-QSO auf 145.55MHz mit Stationen aus dem Grossraum Moskau ins Log zu bringen, da die OMs dort wohl den Eindruck hatten von jemandem, der mit gebrochenem Schulrussisch sein Bestes geben wollte, verschaukelt zu werden (hi)

Literatur: Sporadic-E propagation at VHF: A review of progress and prospects, ARRL/ QST April 1988 Emil Pocock, W3EP

Christian Wieser, OE3CWJ https://www.qsl.net/oe3cwj/

Soundfiles

Hier können Sie einige Audiomitschnitte meiner Es Verbindungen vom QTH in Wien, JN88EE hören:

Medium:G4LOH OE3FLU.wav

Medium:SM2CEW_144312.wav

Medium: EA5AFP 144305.wav

Medium:OH6QU 144308.wav

Medium:EA5ZF_144315.wav

Ausgabe: 30.04.2024

144MHz Sporadic E und Satellitenfunk: Unterschied zwischen den Seiten

VisuellWikitext

Version vom 12. Februar 2014, 17:27 Uhr (Quelltext anzeigen)

OE1CWJ (Diskussion | Beiträge) (→Sporadic E auf 144MHz) Aktuelle Version vom 29. Januar 2012, 19:52 Uhr (Quelltext anzeigen)

OE1CWJ (Diskussion | Beiträge)
(hat "Satellitenfunk" nach "ARISSat-1/KEDR"
verschoben)

Zeile 1: Zeile 1:

[[Kategorie:UKW Frequenzbereiche]]

+ #WEITERLEITUNG [[ARISSat-1/KEDR]]

_			
_			

== Sporadic E auf 144MHz ==

_

Jedes Jahr in den Sommermonaten besteht die Möglichkeit mit üblicher Stationsausrüstung im VHF Bereich DX-Verbindungen bis zu 2000km und mehr Entfernung abzuwickeln: Sporadic-E (Es).

_

Die kurzzeitige Bildung einer ionisierten (=leitenden und somit auch reflektierenden) Schicht in einer bestimmten Höhe der Atmosphäre trägt seit einigen Jahren auch bei mir zu erhöhtem Adrenalinausstoß bei.

_

Über das Zustandekommen dieser Schichten wurden schon verschiedene Theorien veröffentlicht, die im Zusammenhang mit der Sonnenaktivität, Meteoritenschauern, bestimmten Höhenwinden und sogar dem Einfluss von Gewittern in der Literatur lebhaft diskutiert werden. (Anhang: Literaturstellen im Internet)

-

Wie an meinem Suffix erkennbar ist, habe ich als begeisterter VHF
Amateur schon Ende der siebziger
Jahre SSB-taugliches equipment auf diverse Tiroler Berge und Anhöhen getragen, um der gespenstischen Stille im Tale zu entkommen und so manchen Contest mit tragbaren Stationen bestritten. Seit der Freigabe des 50MHz Bandes in Österreich kann man mit einfachen

Antennen das Phänomen Es
beobachten, und so war es dann nur
mehr logisch, dass nach meiner
Übersiedlung nach Wien der 6mEmpfangsdraht im Dachboden schon
bald durch eine vernünftige Antenne
abgelöst werden musste - ich erspare
Ihnen hier die allseits bekannten
Details mit den lieben
Miteigentümern eines Wohnhauses,
sowie den EMV Diskussionen unter
"Experten" - schlussendlich wurde
der Mast approbiert und gebaut.

Und schon sind wir beim Thema Sporadic- E auf 144MHz und dem damit verbundenen, vermutlich einzig wirklichem Problem: der Zeit. Da die Öffnungen im 2m Band deutlich seltener, auch kürzer als auf 6m auftreten (die Literatur spricht von 1: 10) muss man sich mit einigen Ableitungen von Murphy's law vertraut machen, die da so ähnlich lauten: Solange man berufstätig ist, wirst man die schönsten Öffnungen nur im Büro sitzend am DX-Cluster verfolgen können. Wenn man Urlaub in der Es-Saison nimmst, wirst man die schönsten Öffnungen an der Station sitzend am DX-Cluster verfolgen können, aber leider einen Steinwurf zu weit weg von der ionisierten Schicht positioniert sein.

Vermutlich liegt aber gerade darin der Reiz, dass - wenn es dann mal klappt - die erzielbaren Verbindungen das Warten mehrfach entschädigen, auch wenn die meisten Öffnungen in den Jahren bis zum Ruhestand ohne Dein eigenes Rufzeichen stattfinden werden. Das Beobachten des DX-Clusters ist ein Muss, mit Hilfe des DX-Robot (http://www.gooddx.net

/) in den Niederlanden kann man sich auch einen 144MHz Sporadic Alarm als sms aufs Handy (email Account benötigt) schicken lassen. Wenn dieser Alarm das Auftreten von 2m-Sporadic E im europäischen Raum anzeigt, sollte man im günstigsten Falle im shack sitzen und +/-144.300 MHz beobachten können, denn vielleicht wird es nun wieder richtig spannend. Auch die Kontrolle der UKW Rundfunkbänder ist einer der wichtigsten Indikatoren für das Auftreten dieses physikalischen Phänomens.

Wenn man in den Lücken zwischen den großen Lokalstationen im Autoradio quer durch die Stadt fahrend z.B. ein gutes Dutzend spanischer UKW Rundfunkstationen teilweise mit eindeutiger RDS Kennung empfangen kann, freut sich das Funkamateurherz schon.

_	<pre><pre><pre>DI /></pre></pre></pre>
_	
-	

[[Datei:SporadicE_2m.jpg]]

Ausgabe: 30.04.2024

Die reflektierenden Schichten bilden sich in einer Höhe von 100 bis 110 km über der Erdoberfläche und haben eine Dicke von einigen hundert bis zu tausend Metern. Die Ausdehnung einer E-Schicht variiert sehr stark und lässt sich zudem nicht ohne weiteres ausmessen oder bestimmen. Eine einmal gebildete Schicht ist meist in Bewegung, sowohl in der Reflexionstätigkeit wie auch in der Größe, was sich sehr deutlich darin manifestiert, dass die Signale zum

Teil sehr starken Schwankungen ge gibt es bis heute noch keine einfache, eindeutige A unterworfen sind. Im weiteren bleibt die Es-Wolke nicht stationär, sondern sie wandert infolge der Erdrotation in westlicher Richtung. Die meisten Es-Bandöffnungen finden von Mitte Mai bis Mitte August statt. Die Dauer einer Es-Öffnung, variiert zwischen einigen Minuten und einigen Stunden, wobei bei längeren Öffnungen die Feldstärke erheblichen Schwankungen unterworfen ist. Die maximalen Reichweiten betragen ca. 2200 km. In den letzten Jahren wurden wesentlich größere Distanzen getätigt, so z.B. zwischen Portugal und Israel oder in diesem Jahr von der Schweiz nach den Kanarischen Inseln. Es ist nicht ausgeschlossen, dass bei diesen Verbindungen zwei Es-Schichten im Spiel waren.

- [[Datei:Es_layers_.jpg]]

Die minimale Stationsausrüstung auf 2m besteht in einem Transceiver mit 2 Watt Ausgangsleistung und einem Rundstrahler. Eine bessere Stationsausrüstung erhöht natürlich die Erfolgsquote. Die überbrückbare Entfernung bei ES liegt zwischen 1200 und 2200 km. Bei den auf 2m relativ seltenen Doppelsprüngen können auch 3500km erreicht werden. Die Zeitschrift Dubus (Nr 4/94) berichtete sogar von einer 2m-Verbindung von OE1SSB & OE1XLU mit RI8TA über 4271km am 21.Juli 89.

Wie kann man nun derartige DX-Bedingungen erkennen?

Grundsätzlich gibt es keine langfristige Vorhersagemöglichkeit, denn wie der Name schon sagt handelt es sich um ein sporadisches Phänomen. Aus statistischen Betrachtungen der vergangenen lahre hat sich gezeigt, dass ES zwischen Mitte Mai und Anfang September auftreten kann, mit einer erhöhten Wahrscheinlichkeit Anfang Juni und Anfang Juli. Sporadic-Eträchtige Tage erkennt man durch intensive Bandbeobachtung, beginnend mit dem 10m Band. Ein Scanner leistet hier nützliche Dienste, da die Überreichweiten via ES stark frequenzabhängig sind. Beginnend im KW-Bereich steigt die maximal nutzbare Frequenz im tageszeitlichen Verlauf bis über 50MHz. Beobachten kann man dies am einfachsten im Fernsehband 1. Mit einer einfachen Antenne lassen sich hier bei ES russische, spanische oder sogar nordafrikanische TV-Stationen empfangen. Inzwischen ist auch das Baken- und Stationsangebot im 6m-Afu-Band so gut, dass man dort gut beobachten kann.

Sind nun auch im 3m-Rundfunkband südeuropäische Stationen auszumachen, sollte man die 2m-SSB oder CW-Anruffrequenz verstärkt beobachten. Transceiver auf die 144.300 (oder 145.500) einstellen und die Antenne in Richtung der zu erwartenden DX-Ausbreitung (entsprechend 3m-und 6m Bandbeobachtung) drehen. Dabei bitte folgendes beachten: DL ist leider kein seltenes Land für europäische OMs. Deshalb möglichst keine oder nur sehr kurze CQ-Rufe auf der 144.300 bei ES.. Nur antworten, wenn die DX-Station deutlich zu empfangen ist, nicht deshalb rufen, weil es die anderen

OMs im näheren Umfeld auch tun. Sporadic-E ist zum Teil örtlich nur sehr begrenzt nutzbar. Im 50 km Entfernung können die Bedingungen schon wieder völlig anders sein und die DX-Station ist dort nicht mehr aufnehmbar. Ein schnelles QSY weg von der Anruffrequenz erspart oft viel QRM. QSOs möglichst kurz halten. Keine langen Ausführungen über die eigene Stationsausrüstung halten. Die Öffnungen dauern oft nur wenige Minuten, in dieser Zeit möchten möglichst viele OMs die DX-Station arbeiten.

Besonders für Newcomer ist ES ein verblüffendes Phänomen: die Feldstärken der DX-Stationen können kurzzeitig so stark werden, wie die von der nächsten Ortsstation. So wurden schon Mobil- und Portabelstationen mit 1 Watt-Handys, welche gerade mitten in Athen unterwegs waren, hier in DL rauschfrei aufgenommen auf der S20!

VHF Funkbetrieb über Sporadic-EÖffnungen. Er konnte
verschiedentlich UKWRundfunkstationen aus ganz
Grossbritannien mit einfachen Mitteln
in Uster empfangen. Das Phänomen ESporadic machen sich auch
Radioamateure besonders auf 144
MHz und 50MHz für
Weitverbindungen im Funkverkehr zu
Nutze.

Wie und wann kommen solche Vorkommnisse überhaupt zustande? Dazu einige physikalische Erläuterungen dieser Ausbreitungsart für Weitverbindungen auf UKW Frequenzen. (UKW Bereich 30 -300MHz) Selbst für erfahrene Funkamateure und Rundfunkhörer

ein Ereignis von grosser Bedeutung und Faszination. Für einen erfolgreichen Funkverkehr über Sporadic E sind Fachkenntnisse, Geduld und Ausdauer wesentliche Voraussetzungen.

Solche Weitverbindungen sind möglich, weil sich in einer bestimmten Höhe über der Erdoberfläche eine ionisierte Schicht bildet. Ionisierte Schichten sind leitend und somit auch reflektierend. Der Begriff Sporadic E oder abgekürzt Es, wird von der Tatsache abgeleitet, dass die Reflektion in der E-Schicht der Ionosphäre und nur sporadisch auftritt.

Eine Frage, die unter Kennern immer wieder gestellt wird: Wie kommen diese Schichten überhaupt zustande? Auf diese konkrete Fra Mit Sicherheit bekannt ist, dass sich diese räumlich begrenzte Ionisation in der E-Schicht zu ganz bestimmten lahres- und Tageszeiten bildet. Über das Zustandekommen dieser Schichten wurden schon verschiedene Thesen aufgestellt und auch wieder aufgegeben. Eine davon, die zwar einleuchtend, aber noch nicht eindeutig bewiesen ist, soll hier kurz skizziert sein: Horizontal verlaufende Höhenwinde in der Ionosphäre unterliegen dem sogenannten Windshear, d.h. einer Umkehr innerhalb einer geringern Höhendifferenz. Dabei können geladene Teilchen, die von verglühenden Meteoriten stammen, in den erwähnten Windkanälen zusammengetrieben werden und so eine mehr oder weniger reflektierende Schicht bilden. Im weiteren scheinen aute Es-Bandöffnungen immer in Zeiten

ruhiger Erdmagnetik (Ak-Wert)
aufzutreten. Dies würde darauf
hinweisen, dass die Magnetfelder der
Erde eventuell auch einen Einfluss auf
die Bildung der Es-Schichten haben.

_

Die reflektierenden Schichten bilden sich in einer Höhe von 100 bis 110 km über der Erdoberfläche und haben eine Dicke von einigen hundert bis zu tausend Metern. Die Ausdehnung einer E-Schicht variiert sehr stark und lässt sich zudem nicht ohne weiteres ausmessen oder bestimmen. Eine einmal gebildete Schicht ist meist in Bewegung, sowohl in der Reflexionstätigkeit wie auch in der Grösse, was sich sehr deutlich darin manifestiert, dass die Signale zum Teil sehr starken Schwankungen ge gibt es bis heute noch keine einfache, eindeutige A unterworfen sind. Im weiteren bleibt die Es-Wolke nicht stationär, sondern sie wandert infolge der Erdrotation in westlicher Richtung. Die meisten Es-Bandöffnungen finden von Mitte Mai bis Mitte August statt. Die Dauer einer Es-Öffnung, variiert zwischen einigen Minuten und einigen Stunden, wobei bei längeren Öffnungen die Feldstärke erheblichen Schwankungen unterworfen ist. Die maximalen Reichweiten betragen ca. 2200 km. In den letzten Jahren wurden wesentlich grössere Distanzen getätigt, so z.B. zwischen Portugal und Israel oder in diesem lahr von der Schweiz nach den Kanarischen Inseln. Es ist nicht ausgeschlossen, dass bei diesen

Verbindungen zwei Es-Schichten im Spiel waren. Aus einer Auswertung von 4000 Es-Verbindungen (DUBUS-Hefte) auf 144 MHz geht hervor, dass die Es-Bandöffnungen zwischen 08:00 - 22:00 UTC zustande kommen.

-

Gute Betriebstechnik ist nun wichtig, die entstehenden pile-ups in den meist recht kurzen Zeitfenstern erfordern ständiges Zuhören, Mitschreiben und Beobachten des Clusters und dann: "Fasse Dich kurz" - Rufzeichen, RST und **LocatorBesonders für Newcomer** verblüffend sind die möglichen Feldstärken der DX-Stationen, die kurzzeitig so stark sein können wie lokale Stationen. So gelang es mir einmal nicht. ein 59+ FM-OSO auf 145.55MHz mit Stationen aus dem Grossraum Moskau ins Log zu bringen, da die OMs dort wohl den Eindruck hatten von iemandem. der mit gebrochenem Schulrussisch sein Bestes geben wollte, verschaukelt zu werden (hi)

Derartige Erfahrungen lassen die klassischen 2m-DX Anruffrequenzen für SSB und CW (144.050CW/144.300 SSB) für den Anfang wohl sinnvoller erscheinen. Auch mit der Auswertung und Dokumentation dieses Phänomens hilft das Internet einmal mehr: Im Internet findet man nach Tagen sortiert zustande gekommene Sporadic-E Verbindungen, die auch graphisch dargestellt werden.

Dieses Portal trägt somit zu einem besseren, praktischen Verständnis der komplexen Prozesse rund um Sporadic-E bei. Im Gegensatz zu den beeindruckenden Erfolgen der etablierten144 MHz Dx Gemeinde in OE ist meine Erfolgsbilanz noch recht bescheiden. Jede neue Es-Verbindung, Großfeld oder DXCC Land erinnert mich aber sehr an jene Freude, die mir unser schönes Hobby schon vor Jahrzehnten bereitete, wenn es sich wieder einmal ausgezahlt hatte, seine UKW-Antennen und Ausrüstung auf einen hohen Berg zu schleppen.

	hohen Berg zu schleppen.		
-			
-	Literatur:		
-	Sporadic-E propagation at VHF: A review of progress and prospects, ARRL/ QST April 1988 Emil Pocock, W3EP V3EP 		
-	 		
-			
-			
-	Christian Wieser, OE1CWJ 		
-	www.oe1cwj.com		
-	 		
-	 		
-	 		
-			
-	== Soundfiles ==		
-			
_	Hier können Sie einige Audiomitschnitte meiner Es Verbindungen vom QTH in Wien, JN88EE hören:		

-	
_	[[Datei:SporadicE 2m.jpg thumb QSL Karten Sporadic-E Verbindungen auf
_	144 MHz]]
_	[[Media:G4LOH_OE3FLU.wav]]
-	
-	[[Media:SM2CEW_144312.wav]]
-	
-	[[Media:EA5AFP 144305.wav]]
_	[[Media:OH6QU_144308.wav]]
_	
-	[[Media:EA5ZF_144315.wav]]

Aktuelle Version vom 29. Januar 2012, 19:52 Uhr

Weiterleitung nach:

ARISSat-1/KEDR

144MHz Sporadic E und Echolink: Unterschied zwischen den Seiten

VisuellWikitext

7-11- 1-

Version vom 12. Februar 2014, 17:27 Uhr (Quelltext anzeigen)

OE1CWJ (Diskussion | Beiträge) (→Sporadic E auf 144MHz)

Aktuelle Version vom 16. März 2010, 12: 32 Uhr (Quelltext anzeigen)

OE1CWJ (Diskussion | Beiträge)
(hat "Echolink" nach "Echolink mit dem
iPhone" verschoben)

26	ille 1;	Zei	iie 1:			
-	[[Kategorie:UKW Frequenzbereiche]]	+	#WEITE	RLEITUN	G [[Echolink	mit dem iP
-						
-						
-	== Sporadic E auf 144MHz ==					
-						
-						
_	Jedes Jahr in den Sommermonaten besteht die Möglichkeit mit üblicher Stationsausrüstung im VHF Bereich DX-Verbindungen bis zu 2000km und mehr Entfernung abzuwickeln: Sporadic-E (Es).					
-						
_	Die kurzzeitige Bildung einer ionisierten (=leitenden und somit auch reflektierenden) Schicht in einer bestimmten Höhe der Atmosphäre trägt seit einigen Jahren auch bei mir zu erhöhtem Adrenalinausstoß bei.					
-						
_	Über das Zustandekommen dieser Schichten wurden schon verschiedene Theorien veröffentlicht, die im					

Zusammenhang mit der Sonnenaktivität, Meteoritenschauern, bestimmten Höhenwinden und sogar dem Einfluss von Gewittern in der Literatur lebhaft diskutiert werden. (Anhang: Literaturstellen im Internet)

_

Wie an meinem Suffix erkennbar ist, habe ich als begeisterter VHF Amateur schon Ende der siebziger lahre SSB-taugliches equipment auf diverse Tiroler Berge und Anhöhen getragen, um der gespenstischen Stille im Tale zu entkommen und so manchen Contest mit tragbaren Stationen bestritten. Seit der Freigabe des 50MHz Bandes in Österreich kann man mit einfachen Antennen das Phänomen Es beobachten, und so war es dann nur mehr logisch, dass nach meiner Übersiedlung nach Wien der 6m-Empfangsdraht im Dachboden schon bald durch eine vernünftige Antenne abgelöst werden musste - ich erspare Ihnen hier die allseits bekannten **Details mit den lieben** Miteigentümern eines Wohnhauses. sowie den EMV Diskussionen unter "Experten" - schlussendlich wurde der Mast approbiert und gebaut.

_

Und schon sind wir beim Thema
Sporadic- E auf 144MHz und dem
damit verbundenen, vermutlich einzig
wirklichem Problem: der Zeit. Da die
Öffnungen im 2m Band deutlich
seltener, auch kürzer als auf 6m
auftreten (die Literatur spricht von 1:
10) muss man sich mit einigen
Ableitungen von Murphy's law
vertraut machen, die da so ähnlich
lauten: Solange man berufstätig ist,
wirst man die schönsten Öffnungen
nur im Büro sitzend am DX-Cluster

verfolgen können. Wenn man Urlaub in der Es-Saison nimmst, wirst man die schönsten Öffnungen an der Station sitzend am DX-Cluster verfolgen können, aber leider einen Steinwurf zu weit weg von der ionisierten Schicht positioniert sein.

_

Vermutlich liegt aber gerade darin der Reiz, dass - wenn es dann mal klappt - die erzielbaren Verbindungen das Warten mehrfach entschädigen, auch wenn die meisten Öffnungen in den Jahren bis zum Ruhestand ohne Dein eigenes Rufzeichen stattfinden werden. Das Beobachten des DX-Clusters ist ein Muss, mit Hilfe des DX-Robot (http://www.gooddx.net /) in den Niederlanden kann man sich auch einen 144MHz Sporadic Alarm als sms aufs Handy (email Account benötigt) schicken lassen. Wenn dieser Alarm das Auftreten von 2m-Sporadic E im europäischen Raum anzeigt, sollte man im günstigsten Falle im shack sitzen und +/-144.300 MHz beobachten können, denn vielleicht wird es nun wieder richtig spannend. Auch die Kontrolle der UKW Rundfunkbänder ist einer der wichtigsten Indikatoren für das Auftreten dieses physikalischen Phänomens.

_

Wenn man in den Lücken zwischen den großen Lokalstationen im Autoradio guer durch die Stadt fahrend z.B. ein gutes Dutzend spanischer UKW Rundfunkstationen teilweise mit eindeutiger RDS Kennung empfangen kann, freut sich das Funkamateurherz schon.

-

_	
_	
_	[[Datei:SporadicE_2m.jpg]]
_	
	Die reflektierenden Schichten bilden
	sich in einer Höhe von 100 bis 110 km
	über der Erdoberfläche und haben
	eine Dicke von einigen hundert bis zu
	tausend Metern. Die Ausdehnung
	einer E-Schicht variiert sehr stark und
	lässt sich zudem nicht ohne weiteres
	ausmessen oder bestimmen. Eine
	einmal gebildete Schicht ist meist in
	Bewegung, sowohl in der
	Reflexionstätigkeit wie auch in der
	Größe, was sich sehr deutlich darin
	manifestiert, dass die Signale zum
	Teil sehr starken Schwankungen ge
	gibt es bis heute noch keine einfache,
	eindeutige A unterworfen sind. Im
	weiteren bleibt die Es-Wolke nicht
_	stationär, sondern sie wandert
	infolge der Erdrotation in westlicher
	Richtung. Die meisten Es-
	Bandöffnungen finden von Mitte Mai
	bis Mitte August statt. Die Dauer einer Es-Öffnung, variiert zwischen
	einigen Minuten und einigen Stunden,
	wobei bei längeren Öffnungen die
	Feldstärke erheblichen
	Schwankungen unterworfen ist. Die
	maximalen Reichweiten betragen ca.

Es ist nicht ausgeschlossen, dass bei diesen Verbindungen zwei Es-Schichten im Spiel waren.

2200 km. In den letzten Jahren

wurden wesentlich größere Distanzen getätigt, so z.B. zwischen Portugal und Israel oder in diesem Jahr von der Schweiz nach den Kanarischen Inseln.

- [[Datei:Es_layers_.jpg]]

Ausgabe: 30.04.2024

_

Die minimale Stationsausrüstung auf 2m besteht in einem Transceiver mit 2 Watt Ausgangsleistung und einem Rundstrahler. Eine bessere Stationsausrüstung erhöht natürlich die Erfolgsquote. Die überbrückbare Entfernung bei ES liegt zwischen 1200 und 2200 km. Bei den auf 2m relativ seltenen Doppelsprüngen können auch 3500km erreicht werden. Die Zeitschrift Dubus (Nr 4/94) berichtete sogar von einer 2m-Verbindung von OE1SSB & OE1XLU mit RI8TA über 4271km am 21.Juli 89.

Wie kann man nun derartige DX-Bedingungen erkennen?

Grundsätzlich gibt es keine langfristige Vorhersagemöglichkeit, denn wie der Name schon sagt handelt es sich um ein sporadisches Phänomen. Aus statistischen Betrachtungen der vergangenen Jahre hat sich gezeigt, dass ES zwischen Mitte Mai und Anfang September auftreten kann, mit einer erhöhten Wahrscheinlichkeit Anfang Juni und Anfang Juli. Sporadic-Eträchtige Tage erkennt man durch intensive Bandbeobachtung. beginnend mit dem 10m Band. Ein Scanner leistet hier nützliche Dienste. da die Überreichweiten via ES stark frequenzabhängig sind. Beginnend im KW-Bereich steigt die maximal nutzbare Frequenz im tageszeitlichen Verlauf bis über 50MHz. Beobachten kann man dies am einfachsten im Fernsehband 1. Mit einer einfachen Antenne lassen sich hier bei ES russische, spanische oder sogar nordafrikanische TV-Stationen empfangen. Inzwischen ist auch das Baken- und Stationsangebot im 6m-Afu-Band so gut, dass man dort gut beobachten kann.

Sind nun auch im 3m-Rundfunkband südeuropäische Stationen auszumachen, sollte man die 2m-SSB oder CW-Anruffrequenz verstärkt beobachten. Transceiver auf die 144.300 (oder 145.500) einstellen und die Antenne in Richtung der zu erwartenden DX-Ausbreitung (entsprechend 3m-und 6m) Bandbeobachtung) drehen. Dabei bitte folgendes beachten: DL ist leider kein seltenes Land für europäische OMs. Deshalb möglichst keine oder nur sehr kurze CQ-Rufe auf der 144.300 bei ES.. Nur antworten, wenn die DX-Station deutlich zu empfangen ist, nicht deshalb rufen, weil es die anderen OMs im näheren Umfeld auch tun. Sporadic-E ist zum Teil örtlich nur sehr begrenzt nutzbar. Im 50 km Entfernung können die Bedingungen schon wieder völlig anders sein und die DX-Station ist dort nicht mehr aufnehmbar. Ein schnelles OSY weg von der Anruffrequenz erspart oft viel QRM. QSOs möglichst kurz halten. Keine langen Ausführungen über die eigene Stationsausrüstung halten. Die Öffnungen dauern oft nur wenige Minuten, in dieser Zeit möchten möglichst viele OMs die DX-Station arbeiten.

Besonders für Newcomer ist ES ein verblüffendes Phänomen: die Feldstärken der DX-Stationen können kurzzeitig so stark werden, wie die von der nächsten Ortsstation. So wurden schon Mobil- und Portabelstationen mit 1 Watt-Handys, welche gerade mitten in Athen unterwegs waren, hier in DL rauschfrei aufgenommen auf der S20!

VHF Funkbetrieb über Sporadic-EÖffnungen. Er konnte
verschiedentlich UKWRundfunkstationen aus ganz
Grossbritannien mit einfachen Mitteln
in Uster empfangen. Das Phänomen ESporadic machen sich auch
Radioamateure besonders auf 144
MHz und 50MHz für
Weitverbindungen im Funkverkehr zu
Nutze.

Wie und wann kommen solche
Vorkommnisse überhaupt zustande?
Dazu einige physikalische
Erläuterungen dieser Ausbreitungsart
für Weitverbindungen auf UKW
Frequenzen. (UKW Bereich 30 300MHz) Selbst für erfahrene
Funkamateure und Rundfunkhörer
sind solche Verbindungen jedes mal
ein Ereignis von grosser Bedeutung
und Faszination. Für einen
erfolgreichen Funkverkehr über
Sporadic E sind Fachkenntnisse,
Geduld und Ausdauer wesentliche
Voraussetzungen.

Solche Weitverbindungen sind möglich, weil sich in einer bestimmten Höhe über der Erdoberfläche eine ionisierte Schicht bildet. Ionisierte Schichten sind leitend und somit auch reflektierend. Der Begriff Sporadic E oder abgekürzt Es, wird von der Tatsache abgeleitet, dass die Reflektion in der E-Schicht der Ionosphäre und nur sporadisch auftritt.

Eine Frage, die unter Kennern immer wieder gestellt wird: Wie kommen diese Schichten überhaupt zustande? Auf diese konkrete Fra Mit Sicherheit bekannt ist, dass sich diese räumlich begrenzte Ionisation in der E-Schicht zu ganz bestimmten Jahres- und Tageszeiten bildet. Über das

Zustandekommen dieser Schichten wurden schon verschiedene Thesen aufgestellt und auch wieder aufgegeben. Eine davon, die zwar einleuchtend, aber noch nicht eindeutig bewiesen ist, soll hier kurz skizziert sein: Horizontal verlaufende Höhenwinde in der Ionosphäre unterliegen dem sogenannten Windshear, d.h. einer Umkehr innerhalb einer geringern Höhendifferenz. Dabei können geladene Teilchen, die von verglühenden Meteoriten stammen, in den erwähnten Windkanälen zusammengetrieben werden und so eine mehr oder weniger reflektierende Schicht bilden. Im weiteren scheinen gute Es-Bandöffnungen immer in Zeiten ruhiger Erdmagnetik (Ak-Wert) aufzutreten. Dies würde darauf hinweisen, dass die Magnetfelder der Erde eventuell auch einen Einfluss auf die Bildung der Es-Schichten haben.

Die reflektierenden Schichten bilden sich in einer Höhe von 100 bis 110 km über der Erdoberfläche und haben eine Dicke von einigen hundert bis zu tausend Metern. Die Ausdehnung einer E-Schicht variiert sehr stark und lässt sich zudem nicht ohne weiteres ausmessen oder bestimmen. Eine einmal gebildete Schicht ist meist in Bewegung, sowohl in der Reflexionstätigkeit wie auch in der Grösse, was sich sehr deutlich darin manifestiert, dass die Signale zum Teil sehr starken Schwankungen ge gibt es bis heute noch keine einfache, eindeutige A unterworfen sind. Im weiteren bleibt die Es-Wolke nicht stationär, sondern sie wandert infolge der Erdrotation in westlicher

Richtung. Die meisten Es-

Bandöffnungen finden von Mitte Mai bis Mitte August statt. Die Dauer einer Es-Öffnung, variiert zwischen einigen Minuten und einigen Stunden, wobei bei längeren Öffnungen die Feldstärke erheblichen Schwankungen unterworfen ist. Die maximalen Reichweiten betragen ca. 2200 km. In den letzten lahren wurden wesentlich grössere Distanzen getätigt, so z.B. zwischen Portugal und Israel oder in diesem Jahr von der Schweiz nach den Kanarischen Inseln. Es ist nicht ausgeschlossen, dass bei diesen Verbindungen zwei Es-Schichten im Spiel waren. Aus einer Auswertung von 4000 Es-Verbindungen (DUBUS-Hefte) auf 144 MHz geht hervor, dass die Es-Bandöffnungen zwischen 08:00 - 22:00 UTC zustande kommen.

Gute Betriebstechnik ist nun wichtig, die entstehenden pile-ups in den meist recht kurzen Zeitfenstern erfordern ständiges Zuhören. Mitschreiben und Beobachten des Clusters und dann: "Fasse Dich kurz" - Rufzeichen, RST und LocatorBesonders für Newcomer verblüffend sind die möglichen Feldstärken der DX-Stationen, die kurzzeitig so stark sein können wie lokale Stationen. So gelang es mir einmal nicht, ein 59+ FM-QSO auf 145.55MHz mit Stationen aus dem Grossraum Moskau ins Log zu bringen, da die OMs dort wohl den Eindruck hatten von jemandem, der mit gebrochenem Schulrussisch sein Bestes geben wollte, verschaukelt zu werden (hi)

Derartige Erfahrungen lassen die klassischen 2m-DX Anruffrequenzen für SSB und CW (144.050CW/144.300 SSB) für den Anfang wohl sinnvoller erscheinen. Auch mit der Auswertung und Dokumentation dieses Phänomens hilft das Internet einmal mehr: Im Internet findet man nach Tagen sortiert zustande gekommene Sporadic-E Verbindungen, die auch graphisch dargestellt werden.

Dieses Portal trägt somit zu einem besseren, praktischen Verständnis der komplexen Prozesse rund um Sporadic-E bei. Im Gegensatz zu den beeindruckenden Erfolgen der etablierten144 MHz Dx Gemeinde in **OE** ist meine Erfolgsbilanz noch recht bescheiden. lede neue Es-Verbindung, Großfeld oder DXCC Land erinnert mich aber sehr an jene Freude, die mir unser schönes Hobby schon vor Jahrzehnten bereitete, wenn es sich wieder einmal ausgezahlt hatte, seine UKW-Antennen und Ausrüstung auf einen hohen Berg zu schleppen.

Literatur:

Sporadic-E propagation at VHF: A review of progress and prospects,
ARRL/ QST April 1988 Emil Pocock,
W3EP

W3EP

V

Christian Wieser, OE1CWJ

www.oe1cwj.com

Aktuelle Version vom 16. März 2010, 12:32 Uhr

Weiterleitung nach:

Echolink mit dem iPhone