

2m-Band/144MHz

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 15. März 2021, 22:08 Uhr (Q uelltext anzeigen)

Oe1kbc (Diskussion | Beiträge)

Markierung: Visuelle Bearbeitung

← Zum vorherigen Versionsunterschied

Aktuelle Version vom 27. Oktober 2021, 01:23 Uhr (Quelltext anzeigen)

OE3DZW (Diskussion | Beiträge)

K (RV hat sich kaum durchgesetzt, weiterhin ist die Rxx-Bezeichnung üblich.)

Markierung: Visuelle Bearbeitung

(3 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)

Zeile 1:

[[Kategorie:UKW Frequenzbereiche]]

=144 MHz=

==Funkbetrieb auf 2-Meter==

Zeile 1:

[[Kategorie:UKW Frequenzbereiche]]

Das 2m-Amateurfunkband (bei 144 MHz) hat quasioptische Ausbreitungsbedingungen. ausgeprägte Hochdruck-Wetterlagen, Aurora sowie [[144MHz Sporadic E|Sporadic E]] ermöglichen Überreichweiten. Zusätzlich sorgen zahlreiche Relaisstationen für die Überbindung von Hügeln und anderen Sichthinternissen.

br />

==Funkbetrieb auf 2-Meter==

Zeile 14:

Durch die Inversion wird die Ausbreitung im VHF bis UHF-Bereich beeinflusst. Die Funkwellen werden bei troposphärischen überreichweiten nach unten gebrochen und folgen der Erdkrümmung, wogegen sie sich normalerweise geradlinig ausbreiten. In unseren Breitengraden können steigen die erreichbaren Entfernungen bis zu 1000 km, über grossen, warmen Gewässern (z.B. Mittelmeer) auch erheblich weiter.

Zeile 14:

Durch die Inversion wird die Ausbreitung im VHF bis UHF-Bereich beeinflusst. Die Funkwellen werden bei troposphärischen überreichweiten nach unten gebrochen und folgen der Erdkrümmung, wogegen sie sich normalerweise geradlinig ausbreiten. In unseren Breitengraden können steigen die erreichbaren Entfernungen bis zu 1000 km, über grossen, warmen Gewässern (z.B. Mittelmeer) auch erheblich weiter.

- ==[[Sporadic E|Sporadic_E]]==

+ ==Sporadic E==

Ausgabe: 26.05.2024 Dieses Dokument wurde erzeugt mit BlueSpice

Im Frühjahr sorgt die E-Schicht für eine besondere Art von überreichweiten. Meist mittags und abends ballen sich dort die Elektronenwolken zusammen. Diese bewegen sich schnell über Europa hinweg. Man nennt dies eine sporadische E-Schicht. Sie reflektiert Frequenzen von Kurzwelle (20MHz) bis zum VHF-Bereich (150MHz).

Im Frühjahr sorgt die E-Schicht für eine besondere Art von überreichweiten. Meist mittags und abends ballen sich dort die Elektronenwolken zusammen. Diese bewegen sich schnell über Europa hinweg. Man nennt dies eine sporadische E-Schicht (kurz: [[144MHz Sporadic E|Sporadic_E]]) Sie reflektiert Frequenzen von Kurzwelle (20MHz) bis

zum VHF-Bereich (150MHz).

Sporadic-E-überreichweiten lassen sich nicht vorhersagen. Sie treten normalerweise spontan auf und können zwischen wenigen Minuten bis zu Stunden andauern. Da sich die E-Schicht in grosser Höhe befindet fallen die erzielbaren Reichweiten relativ gross aus: 800-2200km. Jeder weitere Sprung (Erde-E,-Erde-E....) vergrössert die mögliche Reichweite

Sporadic-E-überreichweiten lassen sich nicht vorhersagen. Sie treten normalerweise spontan auf und können zwischen wenigen Minuten bis zu Stunden andauern. Da sich die E-Schicht in grosser Höhe befindet fallen die erzielbaren Reichweiten relativ gross aus: 800-2200km. Jeder weitere Sprung (Erde-E,-Erde-E....) vergrössert die mögliche Reichweite.

•

Weitere Infos zum separten Wiki-Artikel "[[144MHz Sporadic E]]".

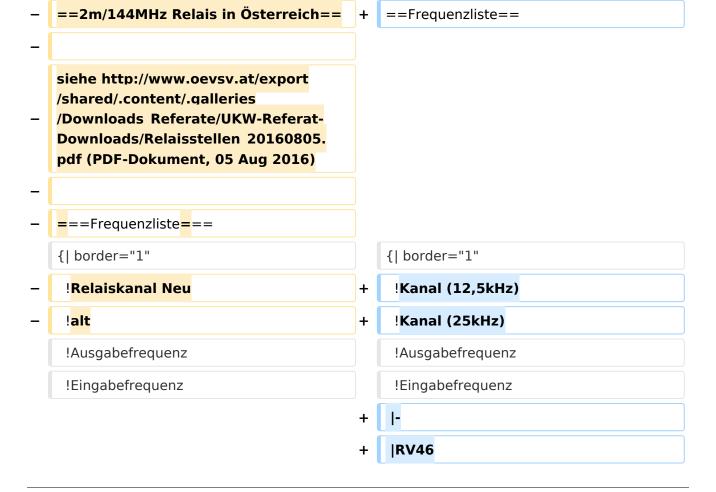
==Aurora==

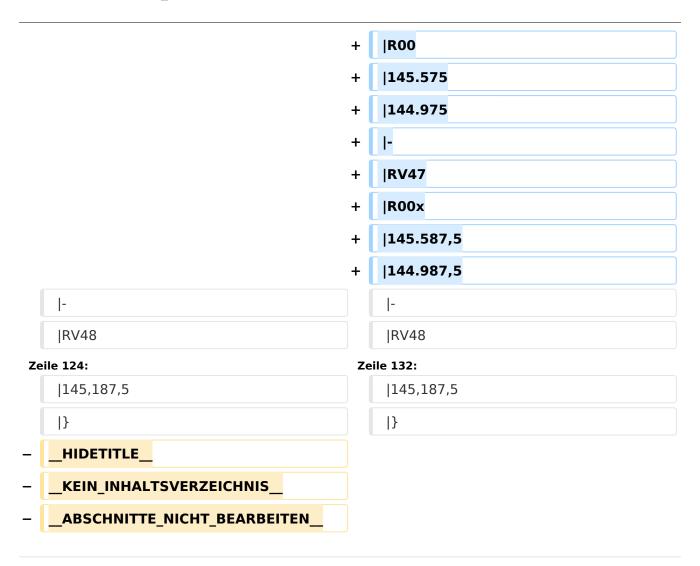
==Aurora==

Zeile 33:

Objekte, die aus dem All in die Erdatmosphäre eintreten und ab einer Höhe von etwa 100km verglühen, hinterlassen auf ihrer Bahn einen Ionisationskanal. Dieser ist sehr kurzlebig. Funkstrahlen, die auf diesen Ionisationskanal auftreffen, werden reflektiert. Die Reflexionsdauer kann von einigen Sekunden bis zu etwa zwei Minuten betragen und ist von der Frequenz abhängig. Darüber hinausgehende Verbindungen sind sehr selten. Es können bis zu 2500 km überbrückt werden. In der kurzen Zeit des

Zeile 35:


Objekte, die aus dem All in die Erdatmosphäre eintreten und ab einer Höhe von etwa 100km verglühen, hinterlassen auf ihrer Bahn einen Ionisationskanal. Dieser ist sehr kurzlebig. Funkstrahlen, die auf diesen Ionisationskanal auftreffen, werden reflektiert. Die Reflexionsdauer kann von einigen Sekunden bis zu etwa zwei Minuten betragen und ist von der Frequenz abhängig. Darüber hinausgehende Verbindungen sind sehr selten. Es können bis zu 2500 km überbrückt werden. In der kurzen Zeit des


Ausgabe: 26.05.2024

Bestehens der Ionenspur können keine langen Verbindungen (QSO) hergestellt werden. Für die QSOs wurde deshalb bis in jüngste Zeit vor allem Telegrafie in sehr hoher Geschwindigkeit verwendet. Früher wurden zum Senden langsam aufgenommene Tonbänder mit sehr hoher Geschwindigkeit abgespielt. Nach dem Empfang der Pings (unter einer Sekunde) oder Bursts (gleich oder größer 1 Sekunde), wie die Erscheinungen genannt werden. ließ man die schnellen Aufnahmen wieder langsamer ablaufen und entzifferte dabei die Sendung. Das war sehr zeitaufwendig und setzte eine hohe Funkdisziplin beider Funkpartner voraus, weil immer zu genauem Zeitpunkt der eine mehrere Minuten senden und der andere empfangen musste. Unterdessen hat die digitale Betriebsart WSJT die Hochgeschwindigkeitstelegrafie weitestgehend abgelöst.

Bestehens der Ionenspur können keine langen Verbindungen (QSO) hergestellt werden. Für die QSOs wurde deshalb bis in jüngste Zeit vor allem Telegrafie in sehr hoher Geschwindigkeit verwendet. Früher wurden zum Senden langsam aufgenommene Tonbänder mit sehr hoher Geschwindigkeit abgespielt. Nach dem Empfang der Pings (unter einer Sekunde) oder Bursts (gleich oder größer 1 Sekunde), wie die Erscheinungen genannt werden. ließ man die schnellen Aufnahmen wieder langsamer ablaufen und entzifferte dabei die Sendung. Das war sehr zeitaufwendig und setzte eine hohe Funkdisziplin beider Funkpartner voraus, weil immer zu genauem Zeitpunkt der eine mehrere Minuten senden und der andere empfangen musste. Unterdessen hat die digitale Betriebsart WSJT die Hochgeschwindigkeitstelegrafie weitestgehend abgelöst.

Aktuelle Version vom 27. Oktober 2021, 01:23 Uhr

Das 2m-Amateurfunkband (bei 144 MHz) hat quasioptische Ausbreitungsbedingungen. ausgeprägte Hochdruck-Wetterlagen, Aurora sowie Sporadic E ermöglichen Überreichweiten. Zusätzlich sorgen zahlreiche Relaisstationen für die Überbindung von Hügeln und anderen Sichthinternissen.

```
Inhaltsverzeichnis1 Funkbetrieb auf 2-Meter52 Tropo-Bedingungen53 Sporadic E54 Aurora65 Meteorscatter66 Frequenzliste7
```


Funkbetrieb auf 2-Meter

Mit dem UKW-Funk, der ja nur auf "quasi Sichweite" funktioniert, wuchs schnell der Wunsch, auch größere Reichweiten zu überbrücken. Schnell kam man auf die Idee, an exponierten Standorten Umsetzer aufzubauen. Dafür wurden eigens Frequenzpaare reserviert, eine davon für den Weg zum Umsetzer (Relais), eine für den zum Empfänger. Damit konnten wesentlich größere Weiten erzielt werden. Auch der fast störungsfreie Betrieb mit mobilen und tragbaren Amateurfunkstellen über größere Entfernung wurde möglich. Bald war ein dichtes Netz solcher Relaisfunkstellen errichtet, ausschließlich bezahlt aus privater Hand. Die Relaisfunkstellen werden in der Modulationsart Frequenzmodulation betrieben, nur wenige sind als Lineartransponder aufgebaut und werden für SSB und CW oder andere Betriebsarten genutzt.

Die große Vielzahl der zu beobachtenden Ausbreitungsphänomene macht das 2m-Band zu einem der interessantesten DX-Bänder.

Tropo-Bedingungen

Eine ausgeprägte Hochdruck-Wetterlage ist oft Ursache für Überreichweiten. Ein solches Hochdruckwetter mit wenig Wind und klarem Himmel kommt häufig im Spätsommer und Herbst vor. Die dabei entstehende Temperaturinversion in der Nacht oder am Morgen bewirkt eine Umkehrung des normalen höhenabhängigen Temperaturverlaufs in der Atmosphäre. Da es normalerweise in grösser werdender Höhe immer kälter wird, steigt bei einer Inversion die Temperatur in einer Höhe von 800-1000m an. Durch die Inversion wird die Ausbreitung im VHF bis UHF-Bereich beeinflusst. Die Funkwellen werden bei troposphärischen überreichweiten nach unten gebrochen und folgen der Erdkrümmung, wogegen sie sich normalerweise geradlinig ausbreiten. In unseren Breitengraden können steigen die erreichbaren Entfernungen bis zu 1000 km, über grossen, warmen Gewässern (z.B. Mittelmeer) auch erheblich weiter.

Sporadic E

Im Frühjahr sorgt die E-Schicht für eine besondere Art von überreichweiten. Meist mittags und abends ballen sich dort die Elektronenwolken zusammen. Diese bewegen sich schnell über Europa hinweg. Man nennt dies eine sporadische E-Schicht (kurz: Sporadic_E) Sie reflektiert Frequenzen von Kurzwelle (20MHz) bis zum VHF-Bereich (150MHz).

Sporadic-E-überreichweiten lassen sich nicht vorhersagen. Sie treten normalerweise spontan auf und können zwischen wenigen Minuten bis zu Stunden andauern. Da sich die E-Schicht in grosser Höhe befindet fallen die erzielbaren Reichweiten relativ gross aus: 800-2200km. Jeder weitere Sprung (Erde-E,-Erde-E....) vergrössert die mögliche Reichweite.

Weitere Infos zum separten Wiki-Artikel "144MHz Sporadic E".

Aurora

Sichtbare Aurora oder Polarlicht entsteht, wenn sehr viele Elektronen des Sonnenwindes, die sich spiralförmig entlang der Erdmagnetfeldlinien bewegen, die neutralen Atome und Moleküle in der oberen Polaratmosphäre ionisieren. Dabei werden deren Hüllenelektronen, die sich um den Atomkern auf festen Energieniveaus befinden, auf ein höheres Energieniveau gehoben. Die Elektronen haben aber das Bestreben, in ihren stabilen Grundzustand zurückzuspringen und geben dabei die ihnen zuvor bei der Ionisation übertragene Energie in Form von Licht ab. Die Farbe des Polarlichtes richtet sich danach, welche Art von Atomen und Molekülen ionisiert wurden. Typische Auroras spielen sich in Höhen zwischen 100 und 250 km ab.

Radio-Aurora ist der Scattereffekt, den wir ausnutzen, indem Funkwellen an den ionisierten Gebieten der oberen Polaratmosphäre gestreut werden. Typisch sind die rauhen, verzerrten Signale: CW-Signale klingen zischend, SSB-Signale heiser. Ursache sind die sich mit unterschiedlicher Richtung und Geschwindigkeit bewegenden Aurora-Gebiete, an denen die Funksignale rückgestreut werden. Neben diesem Aurora-Fading wird auch der Dopplereffekt beobachtet, indem beispielsweise die 2m-Signale mehrere Hundert Hertz verbreitert und verschoben rückgestreut werden. Typisch für Radio-Aurora ist auch, dass die meisten QSO's am späten Nachmittag und kurz vor Mitternacht möglich sind.

Meteorscatter

Unter Meteorscatter versteht man eine spezielle Betriebsart im Amateurfunk. Dabei werden die Ionisationsspuren von in die Erdatmosphäre eindringenden und verglühenden Meteoroiden als Reflektoren für die Funksignale verwendet. Der Funkbetrieb über Meteorscatter findet hauptsächlich auf 144 MHz (2-Meter-Band) statt, seltener auf 50 MHz (6-Meter-Band) oder 432 MHz (70-cm-Band).

Objekte, die aus dem All in die Erdatmosphäre eintreten und ab einer Höhe von etwa 100km verglühen, hinterlassen auf ihrer Bahn einen Ionisationskanal. Dieser ist sehr kurzlebig. Funkstrahlen, die auf diesen Ionisationskanal auftreffen, werden reflektiert. Die Reflexionsdauer kann von einigen Sekunden bis zu etwa zwei Minuten betragen und ist von der Frequenz abhängig. Darüber hinausgehende Verbindungen sind sehr selten. Es können bis zu 2500 km überbrückt werden. In der kurzen Zeit des Bestehens der Ionenspur können keine langen Verbindungen (QSO) hergestellt werden. Für die QSOs wurde deshalb bis in jüngste Zeit vor allem Telegrafie in sehr hoher Geschwindigkeit verwendet. Früher wurden zum Senden langsam aufgenommene Tonbänder mit sehr hoher Geschwindigkeit abgespielt. Nach dem Empfang der Pings (unter einer Sekunde) oder Bursts (gleich oder größer 1 Sekunde), wie die Erscheinungen genannt werden, ließ man die schnellen Aufnahmen wieder langsamer ablaufen und entzifferte dabei die Sendung. Das war sehr zeitaufwendig und setzte eine hohe Funkdisziplin beider Funkpartner voraus, weil immer zu genauem Zeitpunkt der eine mehrere Minuten senden und der andere empfangen musste. Unterdessen hat die digitale Betriebsart WSJT die Hochgeschwindigkeitstelegrafie weitestgehend abgelöst.

Frequenzliste

Kanal (12,5 kHz)	Kanal (25kHz)	Ausgabefrequenz	Eingabefrequenz
RV46	R00	145.575	144.975
RV47	R00x	145.587,5	144.987,5
RV48	R0	145.600	145.000
RV49	R0X	145.612,5	145.012,5
RV50	R1	145.625	145.025
RV51	R1X	145.637,5	145.037,5
RV52	R2	145.650	145.050
RV53	R2X	145.662,5	145.062,5
RV54	R3	145.675	145.075
RV55	R3X	145,687,5	145,087,5
RV56	R4	145.700	145.100
RV57	R4X	145.712,5	145.112,5
RV58	R5	145.725	145.125
RV59	R5X	145.737,5	145.137,5
RV60	R6	145.750	145.150
RV61	R6X	145,762,5	145,162,5
RV62	R7	145.775	145.175
RV63	R7X	145,787,5	145,187,5