

Inhaltsverzeichnis

1. DXL - APRStracker	 2
2. Hauptseite	3

DXL - APRStracker

Das Inhaltsformat pdf wird vom Inhaltsmodell Wikitext nicht unterstützt.

Zurück zur Seite Hauptseite.

Quelltext der Seite Hauptseite

Sie sind nicht berechtigt, die Seite zu bearbeiten. Gründe:

- Die Aktion, welche Sie beantragt haben, ist auf Benutzer beschränkt, welche einer der Gruppen "Administratoren, Sichter, Prüfer" angehören.
- Die Aktion, welche Sie beantragt haben, ist auf Benutzer beschränkt, welche der Gruppe "editor" angehören.
- Diese Seite wurde geschützt, um Bearbeitungen sowie andere Aktionen zu verhindern.

Sie können den Quelltext dieser Seite betrachten und kopieren.

[[Kategorie:APRS]] [[Kategorie:Selbstbau]] ==Einleitung== Der APRStracker von OE5DXL erlaubt es mit minimalstem Hardwareaufwand in der Betriebsart APRS QRV zu werden. Außerdem wurde bei der Entwicklung der Software darauf geachtet, die derzeitigen Möglichkeiten des APRS-Protokolls in Form von Mice optimalst auszunutzen. In der Praxis ist dies durch extrem kurze Frames erkennbar, was im Mobilbetrieb (QSB) erhebliche Vorteile bringt. Zu dem wird das schon etwas in die Jahre gekommene aber durchaus am effektivsten SSID-Pathrouting (im Configtool 'COMPRESSED' genannt) unterstützt. Als Minimum an Hardware wird benötigt *ein Mikrocontroller ATTiny13, ATTiny2313, Atmea88 oder auch andere Typen mit (Quarz)-Takt durch Anpassen der I/O Pins im Source *Quarz frei waehlbar ca. 6..20MHz (Im Source eingeben). *PTT-Transistor *RC-Tiefpass zum wegfiltern der PWM-Frequenz benoetigt. ==Software== Opensource Software von OE5DXL, in Assembler geschrieben, welche den Tracker zum Leben erweckt: [[Datei:aprsTracker. zip|verweis=Special:FilePath/aprsTracker.zip]] Der Assemblercode wird im einfachsten Fall mit dem Compiler 'gavrasm' [http://www.avr-asm-tutorial.net/gavrasm/index de.html Gerd's AVR Assembler], welcher sowohl für Linux als auch für Windows verfügbar ist, kompiliert und anschließend in den µC gebrannt (z.B.: mit AVRdude [http://www.nongnu.org/avrdude/] und dem USBasp Programmer [http://www.fischl.de/usbasp/]). Es ist auch möglich mit dem von ATMEL angebotenen AVR-Studio den Code zu übersetzen. Fertige Kompilate: {| class=" wikitable sortable" !Prozessor !Systemtakt !GPS-Baud !AFSK Baud !Download |- |ATMEL Tiny13 |10 Mhz |4800 |1200 ||[Datei:dxl-aprsTracker-tiny13-10MHz-4800Bd.zip|verweis=Special:FilePath/dxl-aprsTrackertiny13-10MHz-4800Bd.zip]] |- |ATMEL Tiny13 |10 Mhz |9600 |1200 |[[Datei:dxl-aprsTracker-tiny13-10MHz-9600Bd.zip|verweis=Special:FilePath/dxl-aprsTracker-tiny13-10MHz-9600Bd.zip]] |- |} Als Input dienen serielle GPS-Daten (GPRMC und GPGGA), der Tracker generiert daraus anhand der programmierten Konfiguration als Output (nebst PTT) die AFSK-Moduluation im APRS-Mic-e Format mit Position, Geschwindigkeit, Fahrtrichtung und Hoehe, welche dem Funkgerät zugeführt wird. Dabei sind (pro Profil) 2 Bakenzeiten und eine Geschwindigkeit einstellbar unter/ueber der langsam/schnell gebakt wird. ==Hardware== ===Trackerschaltung=== Schaltungsvorschlag von OE5HPM mit einem Tiny13 (kleinster Prozessor), wie er bereits mehrfach im Einsatz ist: [[Datei:dxlTracker-schematic.png|verweis=Special:FilePath/dxlTrackerschematic.png]] Detailierte Schaltungsbeschreibung folgt. ===Geeignete GPS-Empfänger=== {| class=" wikitable sortable" !Hersteller !Type !Baudrate !Versorgungsspannung !Stromaufnahme !Preis !Datenblatt ! Bezugsquelle |- |Fastrax |UP501 |9600 |3.3V |~30mA |ca. 22€ (inkl.Versand) |http://dlnmh9ip6v2uc.cloudfront. net/datasheets/Sensors/GPS/UP501.pdf

br>http://www.adafruit.com/datasheets/UP501 brochure rev 1 2. pdf |http://www.ebay.de/itm/170979281074 |- |Ublox |NEO-6M |9600 |3.3V |~22mA |ca. 10€ (inkl.Versand) | [https://www.u-blox.com/images/downloads/Product_Docs/NEO-6_DataSheet_(GPS.G6-HW-09005).pdf Ublox NEO-6M Datenblatt] |http://www.ebay.de/itm/181439462539 |- |Globaltop |GTPA013 |9600 |3.3V |~20mA |ca. 19€ |http://www.adafruit.com/datasheets/GlobalTop-FGPMMOPA6H-Datasheet-V0A.pdf |http://shop.trenzelectronic.de/catalog/product info.php?cPath=105 181&products id=1096 |} ==Konfiguration== [[Datei: DXLtrackerConfig.png|rechts|mini|300px|Screenshot DXL-Trackerconfig]] GPS und Config-Programm liefern die seriellen Daten in TTL- oder RS232-Pegel. Der Pegel wird mittels einem (10k) Widerstand und der im Prozessor eingebauten Schutzdiode angepasst, die Polarisation erkennt die Software automatisch. Baudraten vom GPS bzw. PC zur Konfiguration sind je nach Prozessortakt im Bereich 300..200000, ueblich 4800, 9600. AFSK-Baud und Tonfrequenzen (Shift) sind ebenso frei Konfigurierbar, gebräuchlich sind: *300 auf Kurzwelle *1200 auf UKW Zur Einstellung von HUB bzw. Mikrofonpegel eignet sich am besten ein Poti. Um die PTT von Handfunkgeräten aufzutasten muss der Mikrofoneingang mit dem PTT Transistor kombiniert werden. Einfachste Variante is im obigen Schaltungsbild sichtbar, der FET T402 zieht über einen 2k2 Widerstand den MIC-Eingang vom Handfunk gegen Masse und aktiviert dadurch die PTT, über C403 (100nF) wird die Modulation "eingekoppelt". Als Option kann mit einem Jumper/Schalter (im Schaltbild SW401) zwischen 2 (am Tiny13) oder 4 (auf größeren Prozessoren) User-Profilen ausgewaehlt werden, zB. Fahrrad/Auto. An einer Blink-Led für korrekten GPS-Empfang am Prozessor Pin wird gearbeitet. Zur Konfiguration kommt ein kleines Tool von OE5HPM - DXLtrackerConfig zum Einsatz, dies generiert einen Konfigurationsstring für den DXLtracker und schickt selbigen über die serielle Schnittstelle raus. [[Datei:DXLtrackerConfig.zip]]

Ausgabe: 20.05.2024 Dieses Dokument wurde erzeugt mit BlueSpice

==Reterenzprojekte== ===OE5EEP, Heinz=== [[Datei:oe5eep_2.

jpg|rechts|mini|hochkant|200px|Gesamtansicht|verweis=Special:FilePath/oe5eep_2.jpg]] [[Datei:oe5eep_1. jpg|rechts|mini|200px|Gesamtansicht|verweis=Special:FilePath/oe5eep_1.jpg]] [[Datei:oe5eep_3. jpg|rechts|mini|200px|Innenleben|verweis=Special:FilePath/oe5eep_3.jpg]] [[Datei:oe5eep_4h. jpg|rechts|mini|200px|Innenleben-Detail-Tracker+GPS-RX|verweis=Special:FilePath/oe5eep_4h.jpg]] Mein Aufbau eines DXL Modems mit einem Fastrax UP501 GPS Empfänger, den ich für Bergtouren im Rahmen des SOTA-Programms einsetzen möchte: Das DXL Modem wurde mir freundlicherweise vom ADL501 zur Verfügung gestellt, der UP501 ist über e-Bay zu beziehen. Als Spannungsquelle für beide Baugruppen gemeinsam dienen 4 NiMH AAA-Zellen von Conrad mit einer nominalen Kapazität von 1100mAh, was für einen ganzen Bergtag leicht ausreicht. Die stabilisierte Spannung von 3,3V für des GPS Modul kann nach Brückung einer Diode an Pin 7 des Sub-D Anschlusses des DXL Trackers abgegriffen werden. Da ich der Verlässlichkeit von freien Verkabelungen nicht traue, hab ich das GPS Modul mittels der mitgelieferten Steckerleiste auf einer Lochrasterplatte aufgelötet und die Verkabelungen zum DXL Modem auf beiden Seiten der Lochrasterplatte auf eine 9-polige Sub-D Buchse geführt. Dazu kommt noch ein Aus/Ein Schalter und ein Halter für die NiMH Zellen. Eingebaut hab ich das Ganze in eine ehemalige Präsentationsverpackung von 2 Kugelschreibern. Dieses transparente Kunststoffgehäuse erlaubt es, das Aufleuchten der LED im Sendefall von außen zu erkennen und passt von der Größe her gut zum verwendeten Handfunkgerät (siehe Fotos). Der Aufbau wird am Handfunkgerät einfach mit Gummibändern (Stücke von einem Fahrradschlauch) befestigt. Die einzige elektrische Verbindung zum Handfunkgerät ist eine Audioleitung zur Mikrofonbuchse, in meinem Fall mit einem 2,5mm Mono-Klinkenstecker. Bisher hab ich den Tracker auf mehreren Bergtouren eingesetzt und positive Erfahrungen gemacht. Der GPS Empfänger findet binnen weniger Minuten eine Position. Die Empfindlichkeit ist ausgezeichnet. Teilweise kann ich im Inneren von Gebäuden eine Position bekommen, allerdings dann mit größerem Fehler. Jedenfalls ist der GPS-Empfänger deutlich empfindlicher als der in meinem LG Smartphone. Im Zusammenspiel mit einem schon etwas älteren IC-2e mit etwa 3W Sendeleistung und Gummiantenne ist es mir auf Touren in den Kalkalpen immer gelungen APRS-Meldungen im Gipfelbereich abzusetzen. Im Funkschatten von Bergen verlief das nicht so verlässlich. Das ist aber kein Problem der Kombination Tracker und Handfunkgerät sondern ist auf den dünnen Ausbau der sonstige APRS Infrastruktur zurückzuführen. Dieses Selbstbauprojekt ist sowohl technisch als auch finanziell überschaubar. Ich hoffe, dass genaue Positionsmeldungen während meiner Bergtouren die SOTA Jäger unterstützen und gegebenenfalls zu meiner Sicherheit in den Bergen beitragen! Danke an OE5DXL für die Entwicklung der Basis für dieses nette Selbstbaulprojekt! 73 Heinz, OE5EEP ==Prämiert== Der DXL APRStracker wurde mit dem € 2000,- dotierten ÖVSV Innovationspreis 2013 prämiert ! GRATULATION !! == LoRa Variante == Von OE5DXL gibt es auch

eine LoRa Variante für Hardware-Tracker des Typs TTGO bzw. LILYGO inkl. Unterstützung für komprimierte Aussendung und Verwendung von MIC-E. Zu finden ist die fertige INO-Datei in verschiedenen Ausführung, neben anderer Software, wie immer im [http://oe5dxl.ampr.org/aprs/tracker/ HAMNET Indexserver von OE5DXL]. ==Weitere Projekte== Weiter passende Projekte von OE5DXL aus dieser Serie sind *[[DXL - APRSmap]] - Der neue APRS Client für Windows, Linux und ARM auf OSM Basis *[[TCE Tinycore Linux Projekt]] - Der mächtige und innovative Digipeater für APRS, Packet Radio, Echolink, u.v.m.

Die folgende Vorlage wird auf dieser Seite verwendet:

Vorlage:Box Note (Quelltext anzeigen) (schreibgeschützt)

Zurück zur Seite Hauptseite.

Ausgabe: 20.05.2024