

Inhaltsverzeichnis

Datei:Relaisliste OE23cm.jpg	2
2. 23cm-Band/1300MHz	4
3. Benutzer Diskussion:OE1CWJ	10
4. Benutzer:OE1CWJ	11

Datei:Relaisliste OE23cm.jpg

- Datei
- Dateiversionen
- Dateiverwendung
- Metadaten

RELAISFUNKSTELLEN IN ÖSTERREICH ÖVSV-UKW Referat

Stand: 01.05.2012 ukw@oevsv.at

23cm Relais

KAN.	CALL	STANDORT	LOCATOR	H-NN	VERANTW	. REM
R 34	OE7XBI	RANGGERKÖPFL	JN57OF	1939	OE7WSH	
RS02	OE3XIA	EXELBERG	JN88CF	577	OE1AOA	
RS02	OE6XDF	DOBL	JN76QW	350	OE6THH	4)17)
RS04	OE1XGW	WIEN-SIMMERING	JN88EF	360	OE1WRS	3)
RS04	OE8XFK	VILLACH DOBRATSCH	JN66UO	2166	OE8PTK	5) 14)
RS06	OE1XIW	WIEN-AKH	JN88EF	306	OE1AOA	1)
RS08	OE6XDD	SCHÖCKL	JN77RE	1445	OE6DJG	
RS08	OE8X	MAGDALENSBERG	JN76FR	1066	OE8HJK	3)
RS08	OE3X	KREMS - SANDL	JN78RL	710	OE3WLS	3)
RS10	OE1XFU	WIEN - SATZBERG	JN88DF	380	OE1FFS	3)
RS20	OE3XPC	HINTERALM	JN77TX	1313	OE3CJB	
RS23	OE9X	BREGENZ PFÄNDER	JN47VM	1020	OE9HLH	3)
RS24	OE3XWW -A	MÖNICHKIRCHEN	JN87AM	1002	OE3RPU	19)
RS26	OE1XDS -A	WIEN-AKH	JN88EF	306	OE1AOA	19)

Es ist keine höhere Auflösung vorhanden.

Relaisliste OE23cm.jpg (588 × 307 Pixel, Dateigröße: 87 KB, MIME-Typ: image/jpeg)

Dateiversionen

Klicken Sie auf einen Zeitpunkt, um diese Version zu laden.

	Version vom	Vorschaubild	Maße	Benutzer	Kommentar
aktuell	17:59, 22. Mai 2012		588 × 307 (8	™KB ¢WJ (Diskussion	Beiträge)

Sie können diese Datei nicht überschreiben.

Dateiverwendung

Die folgende Seite verwendet diese Datei:

23cm-Band/1300MHz

Metadaten

Diese Datei enthält weitere Informationen, die in der Regel von der Digitalkamera oder dem verwendeten Scanner stammen. Durch nachträgliche Bearbeitung der Originaldatei können einige Details verändert worden sein.

Kameraausrichtung Normal

Ausgabe: 19.05.2024 Dieses Dokument wurde erzeugt mit BlueSpice

Horizontale Auflösung 72 dpi **Vertikale Auflösung** 72 dpi

23cm-Band/1300MHz

Inhaltsverzeichnis	
1 23cm-Band/1300MHz	5
2 Die Ausbreitung der Mikrowellen	5
3 23cm/1300MHz Relais in Österreich	8
3.1 Frequenzliste	9

23cm-Band/1300MHz

Frequenzen über 1 GHz werden üblicherweise als Mikrowellen bezeichnet. Unser 23cm Band ist, obwohl noch im UHF-Bereich, also unser unterstes Mikrowellenband. Es ist zugleich das beliebteste unter den Mikrowellenbändern. darauf folgt übrigens das 3cm Band (10 GHz) in der Beliebtheitsskala. 13cm und 6cm sind weniger gefragt. 9cm ist nicht in allen Ländern zugelassen. Die Ausbreitungseigenschaften der Mikrowellen sind auf den ersten Blick zuerst einmal ähnlich wie im 2m und im 70 cm Band. Die Ausbreitung erfolgt analog den optischen Gesetzen mit Reflexion, Beugung und Brechung.

Die Ausbreitung der Mikrowellen

© OM Anton, OM HB9ASB

Allgemein herrscht aber die Auffassung, dass die Ausbreitungsbedingungen mit steigender Frequenz schwieriger werden. Stimmt das? Und wenn, wieso ist das so?

Betrachtet man die Freiraumausbreitung (im Vakuum des Weltalls), so stellt man fest, dass die Streckendämpfung mit jeder Verdoppelung der Frequenz um 6 dB zunimmt, gleicher Antennengewinn vorausgesetzt. Grob gerechnet ist die Streckendämpfung im 13cm Band also 6 dB höher als im 23cm Band, und auf 6cm ist sie noch einmal 6dB grösser. Das hat nichts damit zu tun, dass irgend ein geheimnisvoller Geist die Wellen auffrisst oder auf mystische Art Energie im Vakuum vernichtet wird. Ob 23cm oder 6cm Wellen: im Vakuum geht nichts davon verloren. Die Energie wird lediglich durch die Ausbreitung "verdünnt".

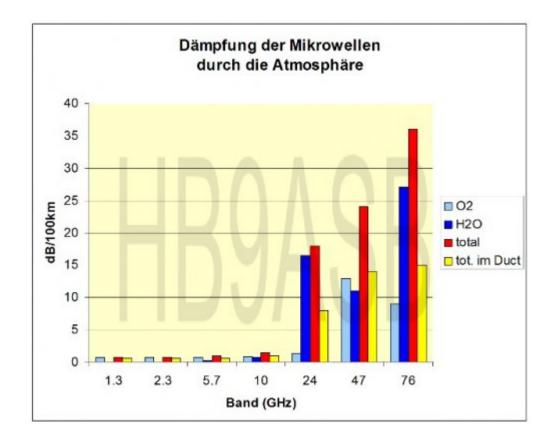
23cm Bandplan				Änderungen seit SA Konferenz in blau dargestellt		Stand: 06.02.2	Stand: 06.02.2012	
Band	Frequenzbereich (MHz)	Bandbreite (Hz)	Betriebsart		erkung	Leistungsstufe	Status	
23 cm	1240,000 - 1243,250	20,000	Alle Betriebsarten ATV, Digital-ATV	Digitalbetrieb Relais-Ausgabe +28MHz Ablage Relais-Ausgabe +28MHz Ablage Packet Radio Duplev +28/+56MHz Abl. Relais-Ausgabe +35MHz Ablage	1240,000-1241,000 MHz 1242,025-1242,250 MHz 1242,275-1242,700 MHz age 1242,725-1243,250 MHz 1258,150-1259,350 MHz	АВ	S	
	1243,230 - 1260,000 1260,000 - 1270,000 1270,000 - 1272,000	20.000	Satelliten Alle Betriebsarten	Satelliten-Betrieb (Erde-Weltraum) Relais-Eingabe -28/+28MHz Ablage Packet Radio Duplex -28MHz Ablage	1270,025-1270,700 MHz 1270,725-1271,250 MHz			
	1272,000 - 1290,994 1290,994 - 1291,481	1) 2) 20,000	ATV, Digital-ATV FM-Relais	in OE empfohlener Bereich für ATV FM-Relais-Eingabe +6MHz Ablage FM-Relais-Eingabe +6MHz Ablage	1291,000 MHz 1291,475 MHz	=		
	1291,494 - 1296,000 1296,000 - 1296,150	500	Alle Betriebsarten CW, Digital	Relais-Eingabe -35MHz Ablage Moonbounce PSK31 Aktivitätszentrum	1293,150-1294,350 MHz 1296,000-1296,025 MHz 1296,138 MHz			
	1296,150 - 1296,800	2.700	CW, SSB, Digital	Schmalbandbetrieb Aktivitätszentrum FSK441 MS-Anruffrequenz Linear Transponder Eingabe SSTV RTTY FAX	1296,200 MHz 1296,370 MHz 1296,400-1296,600 MHz 1296,500 MHz 1296,600 MHz 1296,700 MHz	gelöscht		
	1296,800 - 1296,994	500	CW, Digital	Linear Transponder Ausgabe Baken exklusiv, kein Funkverkehr	1296,600-1296,800 MHz	-		
	1296,994 - 1297,481	20,000	FM-Relais	FM-Relais-Ausgabe -6MHz Ablage FM-Relais-Ausgabe -6MHz Ablage	1297,000 MHz 1297,475 MHz			
	1297,494 - 1297,981 1297.900 - 1297.975		FM Simplex DV 3) FM 4)	FM-Aktivitätszentrum Digitalvoice Simplex Aktivitätszentrum 4 Simplex FM Internet vioce gateways	1297,500 MHz 1297.725 MHz			
	1298,000 - 1299,000	20.000	Alle Betriebsarten analog oder digital	25 kHz Ablage Kanal SM20-SM39 Relais-Ausgabe -28MHz Ablage	1297,500-1297,975 MHz 1298,025-1298,975 MHz			
	1.299,000 - 1.299,750 1.299,750 - 1.300,000		Alle Betriebsarten	High Speed Digital Daten (5x 150kHz k 8x 25 kHz Kanäle für FM/DV	Canāle)			

- 1) AM-Fernsehaussendung maximal 9MHz
- 2) FM-Fernsehaussendung maximal 20MHz bei -40dBc bezogen auf den unmodulierten Träger
- 3) Bereich nur für Simplex Anwendungen, keine DV Gateways erlaubt.
- 4) 4 Kanäle auf 1297,900, 1297,925, 1297,950 & 1297,975 MHz
- 5) Das österreichische Bundesamt für Eich- und Vermessungswesen verwendet diesen Bereich zum Empfang des russischen GLONASS Navigationssystems, daher, soll der Bereich von 1272.000 bis 1290.994 für ATV verwendet werden.

Doch für die Berechnung der Freiraumausbreitung muss immer auch die Antenne berücksichtigt werden. Und da die Antennen mit zunehmender Frequenz immer kleiner werden, können sie als Empfangsantenne auch weniger Energie einsammeln. Beispiel: ein Dipol für 10 GHz ist nur halb so gross wie für 5 GHz, er deckt deshalb nur ein Viertel der Fläche ab, kann also nur ein Viertel der Energie einsammeln (-6dB). Doch diese grössere Streckendämpfung kann leicht mit mehr Antennengewinn kompensiert werden. Wenn ich das nur beim Empfänger mache bedeutet das 6dB mehr, wenn ich aber auch die Sendeantenne berücksichtige, komme ich mit je 3dB aus, um die höhere Streckendämpfung bei Frequenzverdoppelung zu kompensieren. Soweit, so gut. Doch ein Nachteil hat das natürlich. Je höher der Antennengewinn ist, desto schärfer wird die Richtwirkung. Bei den kommerziellen Diensten spielt das in der Regel keine Rolle (Richtstrahlverbindung) oder ist sogar erwünscht (Radar, Satelliten). Doch für uns Funkamateure hat es Konsequenzen. Bei starker Bündelung kommen Verbindungen nur noch per Abmachung zustande. CQ-Rufen bringt nichts mehr.

Überhaupt haben die Profis ganz andere Anforderungen an ihre Funkverbindungen als wir Amateure. bei Profis zählt vor allem die Zuverlässigkeit. Eine Funkverbindung sollte möglichst störungsfrei 100% der Zeit funktionieren. Überreichweiten und Ausbreitungskapriolen sind unerwünscht.

Gerade das Gegenteil ist bei uns Funkamateuren gefragt. Wir lieben die Launen der Wellenausbreitung und freuen uns auf Verbindungen, auf die man sich nicht verlassen kann Im Mikrowellengebiet sind das vor allem Überreichweiten durch sogenannten Ducts: Wellenleiter in der Atmosphäre, gebildet durch Inversionsschichten. Mithilfe dieser Ducts können wir auf VHF /UHF und SHF Distanzen überbrücken, die sonst unmöglich wären.


Dummerweise kommen Ducts nicht überall auf der Erde gleich häufig vor. Während sie hier in Zentraleuropa recht selten sind, gehören sie in anderen Weltgegenden zur Tagesordnung. Sehr zum Leidwesen der Profis mit ihren Richtstrahlverbindungen und Radars. Warme Gewässer mit wenig Wind sind ideale Voraussetzungen.

Aber auch ohne Ducts ist die Ausbreitung auf der Erde alles andere als eine Freiraumausbreitung. Im Gegensatz zum Weltall haben wir es nicht nur mit der Topografie zu tun, sondern auch mit unserer Atmosphäre. Vor allem Sauerstoff und Wasserdampf absorbieren unsere Mikrowellen. Wie sich diese zusätzliche Dämpfung auswirkt, ist hier zu sehen. Man sieht sehr schön, dass es verschiedene Maxima gibt. Ein sehr ausgeprägtes existiert bei 60 GHz. In diesem Bereich muss mit einer atmosphärischen Zusatzdämpfung von bis zu 16 dB pro km gerechnet werden. Dort sind Funkverbingungen nur über einige wenige km möglich. Ein ideales Band für abhörsichere kurze Strecken, ein Albtraum für Funkamateure.

Wie sich die atmosphärische Dämpfung auf die Ausbreitung in unseren Bändern auswirkt, ist im Bild oben zu sehen. Hellblau ist die Dämpfung durch den Sauerstoff dargestellt, dunkelblau die durch den Wasserdampf. Rot ist die Kombination von beiden. Wie man sieht, spielt die Adsorption durch die Atmosphäre bis zum 10 GHz Band keine grosse Rolle. Doch danach wird es kritisch. Bereits im 24 GHz Band ist sie für DX Verbindungen entscheidend. Vor allem die Dämpfung durch die Luftfeuchtigkeit (dunkelblau), während die Adsorption durch den Sauerstoff noch nicht so eine grosse Rolle spielt.

Trockene Luft findet man auf hohen Bergen und da dort auch grosse Sichtdistanzen möglich sind, scheinen sie ideale Standorte für DX zu sein. Doch leider gibt es auf den einsamen Gipfeln ein anderes Problem: in so grosser Höhe sind Ducts selten. Glücklicherweise herrschen in Ducts aber normalerweise bessere Bedingungen (trockenere Luft), und die Dämpfung ist geringer (siehe gelbe Säulen im Bild)

23cm/1300MHz Relais in Österreich

RELAISFUNKSTELLEN IN ÖSTERREICH Stand: 01.05.2012 ÖVSV-UKW Referat ukw@oevsv.at

23cm Relais

KAN.	CALL	STANDORT	LOCATOR	H-NN	VERANTW.	REM
R 34	OE7XBI	RANGGERKÖPFL	JN57OF	1939	OE7WSH	
RS02	OE3XIA	EXELBERG	JN88CF	577	OE1AOA	
RS02	OE6XDF	DOBL	JN76QW	350	OE6THH	4)17)
RS04	OE1XGW	WIEN-SIMMERING	JN88EF	360	OE1WRS	3)
RS04	OE8XFK	VILLACH DOBRATSCH	JN66UO	2166	OE8PTK	5) 14)
RS06	OE1XIW	WIEN-AKH	JN88EF	306	OE1AOA	1)
RS08	OE6XDD	SCHÖCKL	JN77RE	1445	OE6DJG	
RS08	OE8X	MAGDALENSBERG	JN76FR	1066	OE8HJK	3)
RS08	OE3X	KREMS - SANDL	JN78RL	710	OE3WLS	3)
RS10	OE1XFU	WIEN - SATZBERG	JN88DF	380	OE1FFS	3)
RS20	OE3XPC	HINTERALM	JN77TX	1313	OE3CJB	
RS23	OE9X	BREGENZ PFÄNDER	JN47VM	1020	OE9HLH	3)
RS24	OE3XWW -A	MÖNICHKIRCHEN	JN87AM	1002	OE3RPU	19)
RS26	OE1XDS -A	WIEN-AKH	JN88EF	306	OE1AOA	19)

siehe http://www.oevsv.at/export/oevsv/download/relais_neu.pdf (PDF-Dokument)

Frequenzliste

Ausgabe: 19.05.2024

Relaiskanal	Ausgabefrequenz	Eingabefrequenz
RS01	1298.025	1270.025
RS02	1298.050	1270.050
RS03	1298.075	1270.075
RS04	1298.100	1270.100
RS10	1298.250	1270.250
RS26	1298.650	1270.650
R26	1258.600	1293.600
R34	1259.200	1294.200

Satellitenfunk

Weiterleitung nach:

ARISSat-1/KEDR

Echolink

Weiterleitung nach:

• Echolink mit dem iPhone