

Inhaltsverzeichnis

Ausgabe: 15.05.2024 Dieses Dokument wurde erzeugt mit BlueSpice

Die Entwicklung der Mikrowelle im Amateurfunk

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 12. März 2009, 17:25 Uhr (Q uelltext anzeigen)

OE3WOG (Diskussion | Beiträge)
← Zum vorherigen Versionsunterschied

Aktuelle Version vom 23. Juni 2015, 14: 06 Uhr (Quelltext anzeigen)

OE6GUE (Diskussion | Beiträge)

(106 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)

Zeile 1:	Zeile 1:
• "", USA """	+ [[Kategorie:Mikrowelle]]
	+ "'• " Die USA "'''
	+
	+
	+
	[[Bild:w7lhlqst.jpq left]] Die ersten bekannt gewordenen Mikrowellen Anwendungen im Amateurfunk stammen aus dem Jahr 1946 und kommen aus den USA. Zu dieser Zeit war in Europa und in anderen Teilen der Welt die Ausübung des Amateurfunks noch stark eingeschränkt wenn nicht komplett untersagt. Erst ab Beginn der 50er Jahre wurden diese Restriktionen aufgehoben und die Funkamateure in Europa konnten wieder offiziell ihr Hobby ausüben.

Die ersten bekannt gewordenen
Mikrowellen Anwendungen im
Amateurfunk stammen aus dem Jahr
1946 und kommen aus den USA. Zu
dieser Zeit war in Europa und in
anderen Teilen der Welt die
Ausübung des Amateurfunks noch

Ausgabe: 15.05.2024 Dieses Dokument wurde erzeugt mit BlueSpice

stark eingeschränkt wenn nicht komplett untersagt. Erst ab Beginn der 50er Jahre wurden diese Restriktionen aufgehoben und die Funkamateure in Europa konnten wieder offiziell ihr Hobby ausüben.

Im Jahre 1927 wurden die ersten Richtlinien durch die im Jahr 1865 gegründete International Telegraph Union (I.T.U) zur Vergabe und Zuteilung von Radiofrequenzen, für die im raschen Wachstum begriffene drahtlose Kommunikationstechnik, erstellt. Bis zum heutigen Zeitpunkt ist es Aufgabe der I.T. U, technische Standards zu definieren und die Radiofrequenzen für die Dienste wie: Land/Mobil, Schifffahrt, Flugfunk, Rundfunk und Amateurfunk, etc., international zu koordinieren. In der 1947 abgehaltenen I.T. U Konferenz in Atlantic City wurde der Grundstein für die zum Teil noch heute gültigen Bandpläne (u.a. auch für den Amateurfunk) gelegt. In der I.T.U werden die Belange der Funkamateure durch die IARU (International Amateur Radio Union) vertreten. Durch das Bemühen der IARU konnten auch Frequenzbänder oberhalb von 1.000MHz für den Amateurfunk "erworben" werden. Seit 1948 ist der Sitz der I.T.U. in Genf (Schweiz).

Im Jahre 1927 wurden die ersten Richtlinien durch die im Jahr 1865 gegründete International Telegraph Union (I.T.U) zur Vergabe und Zuteilung von Radiofrequenzen, für die im raschen Wachstum begriffene drahtlose Kommunikationstechnik, erstellt. Bis zum heutigen Zeitpunkt ist es Aufgabe der I.T. U, technische Standards zu definieren und die Radiofrequenzen für die Dienste wie: Land/Mobil, Schifffahrt, Flugfunk, Rundfunk und Amateurfunk, etc., international zu koordinieren. In der 1947 abgehaltenen I.T. U Konferenz in Atlantic City wurde der Grundstein für die zum Teil noch heute gültigen Bandpläne (u.a. auch für den Amateurfunk) gelegt. In der I.T.U werden die Belange der Funkamateure durch die IARU (International Amateur Radio Union) vertreten. Durch das Bemühen der IARU konnten auch Frequenzbänder oberhalb von 1.000MHz für den Amateurfunk "erworben" werden. Seit 1948 ist der Sitz der I.T.U. in Genf (Schweiz).

+

Bedingt durch den zeitlichen Vorsprung war es daher nicht verwunderlich dass die ersten Veröffentlichungen,
Gerätebeschreibungen und Berichte über Amateurfunkaktivität im
Mikrowellenfrequenzbereich,
hauptsächlich aus den USA kamen. Die für die Übertragung der Mikrowellensignale verwendeten Geräte wurden vollständig

Bedingt durch den zeitlichen Vorsprung war es daher nicht verwunderlich dass die ersten Veröffentlichungen,
Gerätebeschreibungen und Berichte über Amateurfunkaktivität im
Mikrowellenfrequenzbereich,
hauptsächlich aus den USA kamen. Die für die Übertragung der Mikrowellensignale verwendeten Geräte wurden vollständig

im Eigenbau ("home made") hergestellt, wobei die HF bestimmenden Bauteile großteils aus den "Surplus" Beständen der Industrie und des Militärs kam. Als Modulation wurde Breitband Frequenzmodulation (WBFM) eingesetzt. im Eigenbau ("home made") hergestellt, wobei die HF bestimmenden Bauteile großteils aus den "Surplus" Beständen der Industrie und des Militärs kam. Als Modulation wurde Breitband Frequenzmodulation (WBFM) eingesetzt.

Das erste bekannt gewordene QSO auf dem 3cm Band (10GHz) wurde zwischen W2RJM und W2JN im Jahr 1946 über eine Entfernung von 3,22Km durchgeführt. Im Jahr 1947 stand der "Weltrekord" im 3cm Band, gehalten von W6IFE/3 und W4HPJ/3, immerhin schon bei 12,31km. Das Callsign von W6IFE, Donovan Thompson, ein Mikrowellen Pionier der ersten Stunde, wurde später das Klubrufzeichen der "San Bernhardino Microwave Society" (SBMS). Die SBMS ist die weltweit älteste Amateurfunk Mikrowellen Interessensgruppe und wird bis heute als eigenständiger Verein geführt. 1960 wurde

der Weltrekord im 3cm Band von W7JIP/7

und W7LHL/7 auf (für diese Zeit

Das erste bekannt gewordene QSO auf dem 3cm Band (10GHz) wurde zwischen W2RIM und W2IN im Jahr 1946 über eine Entfernung von 3,22Km durchgeführt. Im Jahr 1947 stand der "Weltrekord" im 3cm Band, gehalten von W6IFE/3 und W4HPJ/3, immerhin schon bei 12,31km. Das Callsign von W6IFE, Donovan Thompson, ein Mikrowellen Pionier der ersten Stunde, wurde später das Klubrufzeichen der "San Bernhardino Microwave Society" (SBMS). Die SBMS ist die weltweit älteste Amateurfunk Mikrowellen Interessensgruppe und wird bis heute als eigenständiger Verein geführt. 1960 wurde der Weltrekord im 3cm Band von W7JIP/7 und W7LHL/7 auf (für diese Zeit

sensationelle) 427km erweitert.	sensationelle) 427km erweitert.
	+
	das Bild links zeigt die Kopie des in + der QST veröffentlichten Photos aus dem Jahr 1960
Zeile 13:	Zeile 22:
Bild w7lhlqst einfügen	

– • """ Europa """	+
	+
	+
	+ "'• " in Europa "'"
	+
	+

In Europa waren es die Funkamateure aus den UK die sich schon früh der Verwendung und dem Einsatz von Mikrowellen zuwandten. Bereits 1943 wurde eine Reihe technischer Artikel über "Communication on centimetre waves" im "RSGB Bulletin" veröffentlicht. 1947 erschien ein aus 54 Seiten bestehendes Buch mit dem Titel "Microwave Technique ". Zu dieser Zeit beschäftigten sich in den UK nur wenige Funkamateure mit Frequenzen oberhalb des 70cm Bandes. 1950 gelang es G3APY und G8UZ, den Weltrekord im 3cm Band auf eine Entfernung von 12 Meilen (ca. 20Km) anzuheben. Nur einen Monat später wurde dieser Rekord durch G3APY und G3ENS/p auf eine Streckendistanz von 27 Meilen (ca. 43Km) verbessert. In Folge wechselten die 3cm Weltrekorde einige Male zwischen USA und UK.

In Europa waren es die Funkamateure aus den UK die sich schon früh der Verwendung und dem Einsatz von Mikrowellen zuwandten. Bereits 1943 wurde eine Reihe technischer Artikel über "Communication on centimetre waves" im "RSGB Bulletin" veröffentlicht. 1947 erschien ein aus 54 Seiten bestehendes Buch mit dem Titel "Microwave Technique ". Zu dieser Zeit beschäftigten sich in den UK nur wenige Funkamateure mit Frequenzen oberhalb des 70cm Bandes. 1950 gelang es G3APY und G8UZ, den Weltrekord im 3cm Band auf eine Entfernung von 12 Meilen (ca. 20Km) anzuheben. Nur einen Monat später wurde dieser Rekord durch G3APY und G3ENS/p auf eine Streckendistanz von 27 Meilen (ca. 43Km) verbessert. In Folge wechselten die 3cm Weltrekorde einige Male zwischen USA und UK.

Ein wesentlicher Beitrag am Erfolg der Mikrowellenaktivität in Europa erfolgte durch die Veröffentlichungen der Artikel und Beiträge von D.S. Evans (G3RPE) und G.R. Jessop (G6JP) im VHF-UHF Manual, das von der RSGB publiziert wurde. In diesem Handbuch wurden die Grundlagen der Mikrowellentechnik als auch die klassischen Mikrowellen Bauteile wie Hohlleiter, Antennen, Messmittel, Klystrons und Gunn Oszillatoren erstmals und

Ein wesentlicher Beitrag am Erfolg der Mikrowellenaktivität in Europa erfolgte durch die Veröffentlichungen der Artikel und Beiträge von D.S. Evans (G3RPE) und G.R. Jessop (G6JP) im VHF-UHF Manual, das von der RSGB publiziert wurde. In diesem Handbuch wurden die Grundlagen der Mikrowellentechnik als auch die klassischen Mikrowellen Bauteile wie Hohlleiter, Antennen, Messmittel, Klystrons und Gunn Oszillatoren erstmals und

detailliert beschrieben. Das VHF-UHF
Manual war in den 60er und 70er Jahren
die Grundlage für den Eigenbau von
Mikrowellen Geräten und ermöglichte
vielen Funkamateuren den Einstieg in die
Thematik der Mikrowellen.

detailliert beschrieben. Das VHF-UHF Manual war in den 60er und 70er Jahren die Grundlage für den Eigenbau von Mikrowellen Geräten und ermöglichte vielen Funkamateuren den Einstieg in die Thematik der Mikrowellen.

Zu Beginn der 70er Jahre wurden in Österreich die ersten Experimente im 3cm Band durch OM Richard Vondra, OE1RVW durchgeführt. OE1RVW baute verschiedene 3cm GUNN-WBFM Transceiver und mechanische Absorptions-Frequenzmesser. Seine Selbstbauprojekte und Berichte über die ersten 3cm Funkverbindungen (QSO`s) zwischen OE1RVW und OE1ABW wurden in der DUBUS und erstmals 1975 in der August Ausgabe der QSP veröffentlicht.

Zu Beginn der 70er Jahre wurden in Österreich die ersten Experimente im 3cm Band durch OM Richard Vondra, OE1RVW durchgeführt. OE1RVW baute verschiedene 3cm GUNN-WBFM Transceiver und mechanische Absorptions-Frequenzmesser. Seine Selbstbauprojekte und Berichte über die ersten 3cm Funkverbindungen (QSO`s) zwischen OE1RVW und OE1ABW wurden in der DUBUS und erstmals 1975 in der August Ausgabe der QSP veröffentlicht.

• "", Die System Generationen ""

• "", Die System Generationen ""

+

+

Die Geschichte der Mikrowellenaktivität im Amateurfunk lässt sich am besten in zeitliche Abschnitte einteilen und entspricht der in jener Zeit machbaren und finanziell tragbaren Technologie. Die Geschichte der Mikrowellenaktivität im Amateurfunk lässt sich am besten in zeitliche Abschnitte einteilen und entspricht der in jener Zeit machbaren und finanziell tragbaren Technologie.

1946 bis 1972: Breitband FM modulierte Systeme mit Klystrons

1972 bis 1982: Breitband FM modulierte Systeme mit Gunn Elemente und passiven Halbleitern

:"' 1946 bis 1972: Breitband FM modulierte Systeme mit Klystrons''

+

1972 bis 1982: Breitband FM
 modulierte Systeme mit Gunn Elemente und passiven Halbleitern''

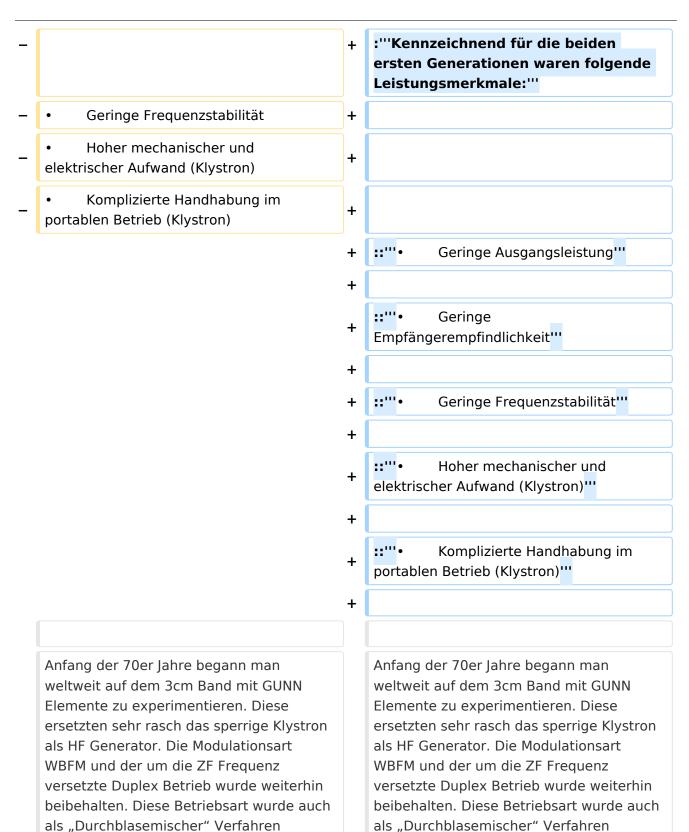
+

:" ab 1980: Schmalband (SSB/CW /FM modulierbare) Transverter Systeme unter Verwendung aktiver Halbleiterschaltungen (GaAs-Halbleiter, MMIC`s, etc.)"

ab 1980: Schmalband (SSB/CW /FM modulierbare) Transverter Systeme unter Verwendung aktiver Halbleiterschaltungen (GaAs-Halbleiter,

MMIC's, etc.)

Bei den Geräten der ersten beiden Generationen wurde die Endfrequenz direkt und freischwingend erzeugt. Als Modulation wurde "Wide Band" FM Modulation (WBFM) mit sehr großen Frequenzhüben verwendet. Die Empfänger Eingangsstufe (front end) bestand üblicherweise aus einer Mikrowellen Germaniumdiode vom Typ 1N23(x). Die ZF Bandbreite des Empfangsteils war breitbandig um einerseits die großen Hübe zu verarbeiten und um andererseits den Problemen der Systembedingten Frequenzunstabilität einigermaßen entgegenzuwirken.


Bei den Geräten der ersten beiden Generationen wurde die Endfrequenz direkt und freischwingend erzeugt. Als Modulation wurde "Wide Band" FM Modulation (WBFM) mit sehr großen Frequenzhüben verwendet. Die Empfänger Eingangsstufe (front end) bestand üblicherweise aus einer Mikrowellen Germaniumdiode vom Typ 1N23(x). Die ZF Bandbreite des Empfangsteils war breitbandig um einerseits die großen Hübe zu verarbeiten und um andererseits den Problemen der Systembedingten Frequenzunstabilität einigermaßen entgegenzuwirken.

- Kennzeichnend für die beiden ersten

 Generationen waren folgende
 Leistungsmerkmale:
- Geringe Ausgangsleistung
 - Geringe Empfängerempfindlichkeit

Ausgabe: 15.05.2024 Dieses Dokument wurde erzeugt mit BlueSpice

Ausgabe: 15.05.2024 Dieses Dokument wurde erzeugt mit BlueSpice

bekannt. Zur Besonderheit dieser

Betriebsart gehörte, dass ein Funkverkehr

nur dann durchgeführt werden konnte

bekannt. Zur Besonderheit dieser

Betriebsart gehörte, dass ein Funkverkehr

nur dann durchgeführt werden konnte

wenn beide Stationen die gleiche Zwischenfrequenz (ZF) verwendeten, was nach anfänglichen Variationen (man verwendete auch UKW-FM Autoradios als ZF Module) letztendlich zur Normung der ZF-Frequenz von 30MHz führte. wenn beide Stationen die gleiche Zwischenfrequenz (ZF) verwendeten, was nach anfänglichen Variationen (man verwendete auch UKW-FM Autoradios als ZF Module) letztendlich zur Normung der ZF-Frequenz von 30MHz führte.

+

Etwa 1975 kamen X-Band Radar Module (ursprünglich als Bewegungsmelder konzipiert) unter der Bezeichnung GUNNPLEXER, zu finanziell erschwinglichen Bedingungen auf den Markt. Die Hersteller waren: Microwave Associates mit dem Typ MA 87127 und AEI Semiconductors mit dem Typ DA-8525/DA-8001 (unter den Entwicklern waren sicher einige Amateure). Diese GUNNPLEXER wurden damals als Set, zusammen mit einer rechteckigen 17db Hornantenne, zum Stückpreis von ca. 50 Euro angeboten. Der Einsatz solcher GUNNPLEXER für den Bau von 3cm WBFM Amateurfunk Transceivern wurde in vielen Fachzeitschriften beschrieben und war für lange Zeit Stand der Amateurfunktechnik im 3cm Band. Geräte die GUNN Elemente verwendeten waren nachbausicher, handlich und zu wesentlich günstigeren Bedingungen herstellbar.

Etwa 1975 kamen X-Band Radar Module (ursprünglich als Bewegungsmelder konzipiert) unter der Bezeichnung GUNNPLEXER, zu finanziell erschwinglichen Bedingungen auf den Markt. Die Hersteller waren: Microwave Associates mit dem Typ MA 87127 und AEI Semiconductors mit dem Typ DA-8525/DA-8001 (unter den Entwicklern waren sicher einige Amateure). Diese GUNNPLEXER wurden damals als Set, zusammen mit einer rechteckigen 17db Hornantenne, zum Stückpreis von ca. 50 Euro angeboten. Der Einsatz solcher GUNNPLEXER für den Bau von 3cm WBFM Amateurfunk Transceivern wurde in vielen Fachzeitschriften beschrieben und war für lange Zeit Stand der Amateurfunktechnik im 3cm Band. Geräte die GUNN Elemente verwendeten waren nachbausicher, handlich und zu wesentlich günstigeren Bedingungen herstellbar.

Die Geräte der dritten Generation bestehen aus Transverter Systeme und sind damit für Schmalbandbetrieb (CW/SSB/NBFM) wie auch für den Breitbandbetrieb (TV, Daten, etc.) gleichermaßen geeignet. Für den Schmalbandbetrieb wird üblicherweise ein 2m oder 70cm Allmode Portable Transceiver zur Aufbereitung der Modulationssignale bzw. als Empfänger-Nachsetzer verwendet. Der Sende/Empfangs Nachsetzer dient somit nur als ZF

Ausgabe: 15.05.2024

Stufe (Basisband) für den eigentlichen Mikrowellen Sende-Empfangsmischer (Transverter) der auf der endgültigen Endfrequenz arbeitet. Die Modulation /Demodulationseigenschaften und die Selektivität werden durch den Nachsetzer bestimmt. Die Aufgabe des Mikrowellen Transverter ist die lineare Umsetzung der ZF Signale auf die Endfrequenz (TX Pfad) und umgekehrt (RX Pfad) wobei die Ausgangsleistung und die Empfangsempfindlichkeit der gesamten Anlage nur von den HF Eigenschaften des Transverters selbst abhängig sind.

Die Transvertertechnik ist nicht neu und wird auch oft zur Erzeugung von VHF und UHF Frequenzen eingesetzt, als Nachsetzer dienen dabei Kurzwellen Sende-Empfangsgeräte (KW Transceivern). Grund dafür ist, dass einige KW Geräte mehr Features u nd bessere HF- Eigenschaften (z.B. bei ZF-Bandbreite/Selektivität /Oszillatorrauschen) aufweisen als so manches VHF/UHF Allmode Funkgerät. Diese (Transverter) Konfig uration ist bei Kontest-Stationen und auch bei EME Operatoren sehr beliebt. Während Transverter schon früher für den Betrieb auf 70cm, 23cm oder 13cm eingesetzt wurden, musste man im Mikrowellenbereich auf die Entwicklung und die Verfügbarkeit von geeigneten und kostengünstigen Bauteilen warten. Transverter für Frequenzen von VHF bis zu 47/76GHz. werden heute in Halbleitertechnik realisiert und üblicherweise mit 12VDC betrieben, was den Einsatz für den "portablen" Betrieb wesentlich erleichtert.

Die Geräte der dritten Generation bestehen aus Transverter Systeme un d sind damit für Schmalbandbetrieb (C W/SSB/NBFM) wie auch für den Breitban dbetrieb (TV, Daten, etc.) gleichermaßen geeignet. Für den Schmalbandbetrieb wird üblicherweise ein 2m oder 70cm Allmode Portable Transceiver zur Aufbereitung der Modulationssignale bzw. als Empfänger-Nachsetzer verwendet.

Transvertersysteme haben folgende Eigenschaften.

 Hohe Ausgangsleistung durch aktive Endstufen (Ausgangsleistung frequenzabhängig) Der Sende/Empfangs Nachsetzer dient somit nur als ZF Stufe (Basisband) für den eigentlichen Mikrowellen Sende-Empfangsmischer (Transverter) der auf der endgültigen **Endfrequenz arbeitet. Die Modulation** /Demodulationseigenschaften und die Selektivität werden durch den Nachsetzer bestimmt. Die Aufgabe des Mikrowellen Transverter ist die lineare Umsetzung der ZF Signale auf die Endfrequenz (TX Pfad) und umgekehrt (RX Pfad) wobei die Ausgangsleistung und die Empfangsempfindlichkeit der gesamten Anlage nur von den HF Eigenschaften des Transverters selbst abhängig sind.

- Geringe Empfangs-System
 Rauschzahl durch aktive rauscharme LNA`s
- Hohe Frequenzstabilität durch Quarzsteuerung bzw. Einsatz von OCXO's
 - Geringer mechanischer Aufwand

Die Transvertertechnik ist nicht neu und wird auch oft zur Erzeugung von VHF und UHF Frequenzen eingesetzt, als Nachsetzer dienen dabei Kurzwellen Sende-Empfangsgeräte (KW Transceivern). Grund dafür ist, dass einige KW Geräte mehr Features und bessere HF- Eigenschaften (z.B. bei ZF-Bandbreite/Selektivität /Oszillatorrauschen) aufweisen als so manches VHF/UHF Allmode Funkgerät.

 Hervorragende Eignung für den portablen Betrieb

+

+

Diese (Transverter) Konfiguration ist bei Kontest-Stationen und auch bei EME Operatoren sehr beliebt. Während Transverter schon früher für den Betrieb auf 70cm, 23cm oder 13cm eingesetzt wurden, musste man im Mikrowellenbereich auf die Entwicklung und die Verfügbarkeit von geeigneten und kostengünstigen Bauteilen warten. Transverter für Frequenzen von VHF bis zu 47/76GHz, werden heute in Halbleitertechnik realisiert und üblicherweise mit 12VDC betrieben, was den Einsatz für den "portablen" Betrieb wesentlich erleichtert. :"'Transvertersysteme haben folgende Eigenschaften:" + Hohe Ausgangsleistung durch aktive Endstufen (Ausgangsleistung frequenzabhängig)" ::'''• Geringe Empfangs-System Rauschzahl durch aktive rauscharme LNA's + Hohe Frequenzstabilität durch Quarzsteuerung bzw. Einsatz von OCXO's" Geringer mechanischer Aufwand"

Hervorragende Eignung für den portablen Betrieb'''

+

Mit dem heutigen Stand der Transverter Technik ist es dem Funkamateur möglich, z.B. auf 3cm die gleichen Performance wie die eines üblichen KW/VHF/UHF Amateurfunkgerätes zu erreichen, bzw. dieses in einigen Parameter sogar zu übertreffen.

Mit dem heutigen Stand der Transverter Technik ist es dem Funkamateur möglich, z.B. auf 3cm die gleichen Performance wie die eines üblichen KW/VHF/UHF Amateurfunkgerätes zu erreichen, bzw. dieses in einigen Parameter sogar zu übertreffen.

+

Günstig für die Entwicklung der Mikrowellen Amateurfunk Aktivität, erwies sich die (fast) weltweite Zuteilung des 3cm Frequenzbandes (X-Band) von 10,0 bis 10,5GHz. Damit wurde der Grundstock für eine genügend große kritische Masse an potentiellen Teilnehmern gelegt. (die für OE gültigen Frequenz Bandpläne findet man auf der Wiki Seite: Was sind Mikrowellen?) bzw. regional gültige Bandp läne im "VHF Managers Handbook" der IARU Region 1.

Günstig für die Entwicklung der Mikrowellen Amateurfunk Aktivität, erwies sich die (fast) weltweite Zuteilung des 3cm Frequenzbandes (X-Band) von 10,0 bis 10,5GHz. Damit wurde der Grundstock für eine genügend große kritische Masse an potentiellen Teilnehmern gelegt. (die für OE gültigen Frequenz Bandpläne findet man auf der Wiki Seite: [[Was sind Mikrowellen?]]) bzw. die regional gültigen Bandpläne, im "VHF Managers Handbook" der IARU Region 1.

+

+

Glücklicherweise besitzt das 3cm
Band eine relativ günstige
Ausbreitungscharakteristik, da die
Frequenzen im Bereich um die 10GHz
durch Atmosphärische Dämpfungen
weniger betroffen sind. Das X Band
wird auch das Weltraumband
genannt, die Funkfrequenzen die für
die Radiokommunikation in den
Weltraum zugeteilt sind, liegen bei
8GHz. Ein weiterer Treiber fand sich
in der Verfügbarkeit von "Surplus"
Material, wie z.B. Hohlleiter,
Klystrons, GUNN Module,
Parabolantennen, etc., die aus

Restbeständen der zivilen und militärischen Radaranwendungen im 9GHz Bereich gewonnen werden konnten und von den Funkamateuren für den Einsatz auf 10GHz "reanimiert" wurden.

Zusätzlich besitzt das 3cm Band eine relativ günstige Ausbreitungscharakteristik, da Frequenzen um 10GHz durch Atmosphärische Dämpfungen weniger betroffen sind. Das X Band wird auch das Weltraumband genannt, die Funkfrequenzen die für die Radiokommunikation in den Weltraum zugeteilt sind, liegen bei 8GHz. Ein weiterer Treiber fand sich in der Verfügbarkeit von "Surplus" Material, wie z.B. Hohlleiter, Klystrons. GUNN Module. Parabolantennen, etc., die aus Restbeständen der zivilen und militärischen Radaranwendungen im 9GHz Bereich gewonnen werden konnten und von den Funkamateuren für den Einsatz auf 10GHz "reanimiert " wurden.

Halbleiter und Bauteile für den SHF
Bereich sind in der Zwischenzeit für
Amateure verfügbar und erschwinglich
geworden. Grund dafür ist, der in den
letzten 30 Jahren stark gewachsene
Einsatz diverser Technologien für die
drahtlose Kommunikation und dem daraus
entstandenen "second hand" Angebot an
Industriellen Mikrowellen Komponenten
(ebay, Flohmärkte, etc.) Mikrowellen
Transverter werden heute auch bereits als

Halbleiter und Bauteile für den SHF
Bereich sind in der Zwischenzeit für
Amateure verfügbar und erschwinglich
geworden. Grund dafür ist, der in den
letzten 30 Jahren stark gewachsene
Einsatz diverser Technologien für die
drahtlose Kommunikation und dem daraus
entstandenen "second hand" Angebot an
Industriellen Mikrowellen Komponenten
(ebay, Flohmärkte, etc.) Mikrowellen
Transverter werden heute auch bereits als

Bausätze bzw. als fertige Module/Geräte angeboten. Darüber hinaus gibt es auf Flohmärkten immer wieder die Gelegenheit, günstige Komplettgeräte, Bausätze, Antennen oder auch nur geeignete Bauteile zu erwerben. Bausätze bzw. als fertige Module/Geräte angeboten. Darüber hinaus gibt es auf Flohmärkten immer wieder die Gelegenheit, günstige Komplettgeräte, Bausätze, Antennen oder auch nur geeignete Bauteile zu erwerben.

+

Ab etwa 1990 sind wir in der Lage Transverter Systeme für den oberen SHF bzw. den mm-Bereich (75 bis 250GHz) herzustellen. Dabei wird die Umsetzung des Sende bzw. Empfangssignals durch so genannte "Subharmonic Mischer" bewerkstelligt, die nur aus einer passiven Mikrowellendiode bzw. einem Diodenpaar bestehen. Die mit solcher Anordnung erzielbare HF Ausgangsleistung beträgt allerdings nur einige hundert MicroWatt, die mit solcher Anordnung erzielbare Empfänger System Rauschzahl liegt bei 15 bis 20db. Diese vergleichsweise bescheidenen Leistungsmerkmale werden jedoch durch den auf diesen Frequenzen erzielbaren Antennengewinn teilweise wieder kompensiert. Um Leistungen im mW Bereich zu erzeugen werden auf diesen Frequenzen Varactor Dioden eingesetzt, was die Anwendung auf die Modulationsart CW (Morsecode) beschränkt, oder anders ausgedrückt, diese Betriebsart wieder zu neuem Leben erweckt. Alternativ ist bei Verwendung eines Varactor Vervielfachers auch NBFM (Narrow Band Frequency Modulation) möglich.

Ab etwa 1990 sind wir in der Lage Transverter Systeme für den oberen SHF bzw. den mm-Bereich (75 bis 250GHz) herzustellen. Dabei wird die Umsetzung des Sende bzw. Empfangssignals durch so genannte "Subharmonic Mischer" bewerkstelligt, die nur aus einer passiven Mikrowellendiode bzw. einem Diodenpaar bestehen. Die mit solcher Anordnung erzielbare HF Ausgangsleistung beträgt allerdings nur einige hundert MicroWatt, die mit solcher Anordnung erzielbare Empfänger System Rauschzahl liegt bei 15 bis 20db. Diese vergleichsweise bescheidenen Leistungsmerkmale werden jedoch durch den auf diesen Frequenzen erzielbaren Antennengewinn teilweise wieder kompensiert. Um Leistungen im mW Bereich zu erzeugen werden auf diesen Frequenzen Varactor Dioden eingesetzt, was die Anwendung auf die Modulationsart CW (Morsecode) beschränkt, oder anders ausgedrückt, diese Betriebsart wieder zu neuem Leben erweckt. Alternativ ist bei Verwendung eines Varactor Vervielfachers auch NBFM (Narrow Band Frequency Modulation) möglich.

+

Mikrowellen haben den Vorteil dass der Empfang durch so gut wie keinen Störpegel (man made noise) beeinträchtigt wird und auf Grund der geringen räumlichen Abmessungen der Antennen die Aufstellung und der Betrieb, egal ob Mikrowellen haben den Vorteil dass der Empfang durch so gut wie keinen Störpegel (man made noise) beeinträchtigt wird und auf Grund der geringen räumlichen Abmessungen der Antennen die Aufstellung und der Betrieb, egal ob

für portabel oder Feststationen, viel leichter zu bewerkstelligen ist, als auf KW oder UKW. Mikrowellenantennen weisen Antennengewinne auf, von denen man auf der (langen) Kurzwelle nur träumen kann. PLC (power line communications) und Sonnenflecken Abhängigkeit sind hier kein Thema.

für portabel oder Feststationen, viel leichter zu bewerkstelligen ist, als auf KW oder UKW. Mikrowellenantennen weisen Antennengewinne auf, von denen man auf der (langen) Kurzwelle nur träumen kann. PLC (power line communications) und Sonnenflecken Abhängigkeit sind hier kein Thema.

+

Während das 3cm Band bei den Funkamateuren einen nachhaltigen und durchschlagenden Erfolg erreicht hat, hinkt die Anzahl der auf den mm Wellen experimentierenden Funkamateure etwas hinterher. Ein Grund mag sein, dass der Aufwand zur Herstellung und Betrieb von Transverter und Antennensysteme im oberen Mikrowellen (mm) Frequenzbereich noch immer als zu hoch eingeschätzt wird, was wir mit den Artikeln dieser Interessensgruppe entkräften möchten.

Während das 3cm Band bei den
Funkamateuren einen nachhaltigen und
durchschlagenden Erfolg erreicht hat,
hinkt die Anzahl der auf den mm Wellen
experimentierenden Funkamateure etwas
hinterher. Ein Grund mag sein, dass der
Aufwand zur Herstellung und Betrieb von
Transverter und Antennensysteme im
oberen Mikrowellen (mm) Frequenzbereich
noch immer als zu hoch eingeschätzt wird,
was wir mit den Artikeln dieser
Interessensgruppe entkräften möchten.

+

Ca. 90% der gesamten, den
Funkamateuren überlassenen und
zugewiesenen Frequenzbändern liegen im
Mikrowellenfrequenzbereich. Dieses
Potential sollte genutzt werden, ein
Frequenzengpass wie auf den langwelligen
Bändern ist hier vorerst nicht zu
befürchten. Egal welche frequenzmäßige
Beschränkung man sich auferlegt, für den
experimentierfreudigen und technisch
ambitionierten Funkamateur sind
Mikrowellen das ideale Betätigungsfeld um
Geräte und Einrichtungen noch selbst
herzustellen und auszuprobieren.

Ca. 90% der gesamten, den
Funkamateuren überlassenen und
zugewiesenen Frequenzbändern liegen im
Mikrowellenfrequenzbereich. Dieses
Potential sollte genutzt werden, ein
Frequenzengpass wie auf den langwelligen
Bändern ist hier vorerst nicht zu
befürchten. Egal welche frequenzmäßige
Beschränkung man sich auferlegt, für den
experimentierfreudigen und technisch
ambitionierten Funkamateur sind
Mikrowellen das ideale Betätigungsfeld um
Geräte und Einrichtungen noch selbst
herzustellen und auszuprobieren.

Und, "last, but not least" man braucht keinen PC. Zum Einstieg in die Mikrowelle empfiehlt sich das 3cm Band, hier findet man die größte Beteiligung und viel versprechende

Ausbreitungsbedingungen, was absoluten Spaß und Erfolg garantiert.

Und, "last, but not least" man braucht keinen PC. Zum Einstieg in die Mikrowelle empfiehlt sich das 3cm Band, hier findet man die größte Beteiligung und viel versprechende

Ausbreitungsbedingungen, was absoluten Spaß und Erfolg garantiert.

"",The early Days"

Die Industrie hatte es schon lange mit den Mikrowellen. Radaranwendungen, Militärische Anwendungen, Richtfunkverbindungen und Raumfahrt waren die klassischen Treiber dieser Technologie, Bereits in den 30er lahren war die SHF Technik industriell beherrschbar wenn auch die Auswahl an Bauteilen damals eine andere war. Die in den militärischen Anwendungen gewonnenen Erkenntnisse kamen den neuen zivilen Anwendungen zu gute und führten zur Entwicklung und Einsatz von modernen Bauteilen, Produkte, Anlagen und Anwendungen.

'''• "the early days..."'''

Im Gegensatz zur Industrie haben sich die Funkamateure im deutschsprachigen Raum nur sehr zögerlich der Mikrowellentechnik zugewandt. Grund war die damals (nicht ganz unberechtigte) Meinung dass die Herstellung von Anlagen und Geräte für den SHF Bereich. äußerst kompliziert und kostenintensiv sei. Eine weitere Begründung findet sich in der Annahme, dass die Reichweite von Funkverbindungen bei steigenden Frequenzen immer

geringer werden würde (man verglich dabei die Kurzwelle mit dem 2m Band) und der Funkbetrieb auf Frequenzen oberhalb von 500MHz, keine nennenswerten Distanzen (DX) erlaubt.

Bei näherer mathematischer
Betrachtung zeigte es sich allerdings,
dass Funkverbindungen auch über
größere Entfernungen unter "Line of
Sight" (LOS / optischer Sicht)
Bedingungen selbst mit extrem
kleiner HF Ausgangsleitungen und
moderatem Antennengewinn möglich
sind. In Folge wurde festgestellt
dass, unter Tropo und Scatter
Bedingungen Reichweiten, weit über
den Optischen Horizont hinaus,
erzielt werden können.

Die in der POLA-PLEXER bzw. in der **GUNNPLEXER Zeit erzielten** Weitenrekorde waren daher in erster Linie von den geographischen Gegebenheiten (Standorte) abhängig und da hatten in Europa die Alpenländ er den Vorteil, über einige mehr als hundert(e) Kilometer lange hindernisfreie Funkfelder zu verfügen. Diese Umstände trieben die Mikrowellenfunkamateure in die Berge, zur Planung der Funkverbindungen wurden wie auch in der kommerziellen Richtfunktechnik üblich. Geländeschnitte zwischen den gewählt en Standorten angefertigt. Diese Methode wird auch weiterhin zur Erziel ung von Weitenrekorde im mm Bereich (ab 47GHz aufwärts) eingesetzt.

Die Industrie hatte es schon lange mit den Mikrowellen. Radaranwendungen, Militärische Anwendungen, Richtfunkverbindungen und Raumfahrt waren die klassischen Treiber dieser Technologie. Bereits in den 30er lahren war die SHF Technik industriell beherrschbar wenn auch die Auswahl an Bauteilen damals eine andere war. Die in den militärischen Anwendungen gewonnenen Erkenntnisse kamen den neuen zivilen Anwendungen zu gute und führten zur Entwicklung und Einsatz vo n modernen Bauteilen, Produkte, Anlagen und Anwendungen.

 "", Das Reflexklystron ", die ers te Gerätegeneration für 10GHz (3cm Band)"

Im Gegensatz zur Industrie haben sich die Funkamateure im deutschsprachigen Raum nur sehr zögerlich der Mikrowellentechnik zugewandt. Grund war die damals (nicht ganz unberechtigte) Meinung dass die Herstellung von Anlagen und Geräte für den SHF Bereich, äußerst kompliziert und kostenintensiv sei. Eine weitere Begründung findet sich in der Annahme, dass die Reichweite von Funkverbindungen bei steigenden Frequenzen immer geringer werden würde (man verglich dabei die Kurzwelle mit dem 2m Band) und der Funkbetrieb auf Frequenzen oberhalb von 500MHz, keine nennenswerten Distanzen (DX) erlaubt.

Aus diesen Anfängen und Frühzeit der Amateur Mikrowellentechnik finden wir heute nur mehr wenige Applikationen und Berichte aus dem Angloamerikanischen Raum, Als Frequenzbestimmendes Element diente ein auf der passenden Frequenz abgestimmter Hohlraumresonator. Bevorzugt verwendet wurde das Reflexklystron vom Typ 723A/B, dass ursprünglich für den Frequenzbereich von 9,5GHz entwickelt und von den Funkamateuren für den Betrieb im 3cm Amateurfunkband für einen Frequenzbereich von 10,0 bis 10,5 **GHz modifiziert wurde. Die erzielbare** HF Ausgangsleistung lag im Bereich von einigen mW.

Das Klystron wurde 1937 an der Stanford University in Kalifornien von den Brüdern Varian und W. Webster entwickelt. Das Reflexklystron ist eine Laufzeitröhre, Elektronen die von Bei näherer mathematischer Betrachtung zeigte es sich allerdings, dass Funkverbindungen auch über größere Entfernungen unter "Line of Sight" (LOS / optischer Sicht)

einer Glühkathode ausgesendet und vo n der Anode beschleunigt werden, dur chlaufen die Resonatorkammer und erzeugen ein elektro-magnetisches Feld. Nach einer gewissen Laufzeit werden sie vom negativen elektrischen Potential des Reflektors zur Umkehr gezwungen und durchlaufen den Hohlraumresonator in umgekehrter Richtung. Es entsteht eine Oszillatorschwingung und ein Teil der so gewonnenen Energie wird ausgekoppelt. Der Wirkungsgrad eines Reflexklystrons ist gering. Durch Änderung der Reflektorsspannung (Repeller) kann eine Frequenzmodulation erzielt werden.

Bedingungen selbst mit extrem kleiner HF Ausgangsleitungen und mo deratem Antennengewinn möglich sind. In Folge wurde festgestellt dass, unter Tropo und Scatter Bedingungen Reichweiten, weit über den Optischen Horizont hinaus, erzielt werden können.

Siehe Bilder: X-Band Klystron
WR90 mit Abschwächer, X-Band
Klystron WR90 mit
Frequenzabstimmung, Reflexklystron

Ein Reflexklystron benötigt verschiedene Betriebsspannungen, z.B. . eine Anodenspannung von +300VDC. eine Reflektorspannung von -200VDC und eine Gleichspannung für die direkt e Heizung der Kathode. Um diese Spannungen für den portablen Betrieb aus einem 12V Akkumulator zu erzeugen mussten entweder mechanische DC/DC Wandler oder rotierende Maschinenumformer eingesetzt werden, was einen einfachen portablen Funkbetrieb auf einem Auswärtsstandort (z.B. Berggipfel) nicht unbedingt förderlich war. Trotz dieser schwierigen Rahmenbedingungen war dieses Gerätekonzept bis zum Anfang der 70er Jahre die für Funkamateure einzige Möglichkeit um auf 3cm QRV zu sein.

Ausgabe: 15.05.2024

Die in der POLA-PLEXER bzw. in der **GUNNPLEXER Zeit erzielten** Weitenrekorde waren daher in erster Linie von den geographischen Gegebenheiten (Lage der Standorte) abhängig und da hatten in Europa die A Ipenländer den Vorteil, über einige mehr als hundert(e) Kilometer lange hindernisfreie Funkfelder zu verfügen. Diese Umstände trieben die Mikrowellenfunkamateure in die Berge Zur Planung solcher Funkverbindungen wurden wie auch in der kommerziellen Richtfunktechnik üblich, Geländeschnitte zwischen den gewählten Standorten angefertigt.

_

Das Herzstück dieser frühen 3cm Anlagen war wie schon erwähnt das Reflexklystron, das mechanisch /elektrisch auf eine Frequenz innerhalb des 3cm Bandes abgestimmt wurde. Der Sender wurde über den Repeller frequenzmoduliert, der FM Frequenzhub lag dabei in der G rößenordnung von einigen 100KHz. Die Energie des Senders wurde in einen Dosenstrahler (beer can) eingekoppelt, der als Strahler im **Brennpunkt einer Parabolantenne** montiert wurde. Für den Empfangszwe ig wurde im Dosenstrahler eine Germanium Mikrowellendiode als Mischer um 90° zur **Polarisationsrichtung des Senders** versetzt, eingebaut.

Durch diesen Polarisationsversatz gelangte nur ein geringer Pegel des Sendesignals an die Mischdiode und diente damit als Oszillatorsignal für den Empfang. Dieser Aufbau wurde als POLA-PLEXER bekannt, die Idee des POLA-PLEXER kam aus der Designer Küche des SBMS. Der mechanische Aufwand war relativ groß, für den Energietransport wurden aus Messing oder Kupfer gefertigte Hohlleiter vom Typ WR90 (Innenmaß 0.9x0.4 inch. bzw. 23x13mm) eingesetzt, was dem 3cm Band in frühen Jahren die Bezeichnung "Installateurband" (plumbing) einbrachte. Die Hohlleiter werden mittels Flansche verschraubt die an den Enden aufgelötet werden. Der Vergleich mit der Verlegung von Wasserleitungsrohren ist dabei nicht ganz von der Hand zu weisen.

Die Funkverbindungen wurden im Dupl ex Verfahren abgewickelt. Dabei senden die beiden Stationen auf zwei unterschiedlichen, um die ZF versetzte Frequenz. Station A sendet z.B. auf 10.300MHz. Station B sendet a uf 10.400 MHz, beide Stationen verwenden einen Teil des eigenen Sendesignals als Oszillatorsignal für d en Empfänger und eine ZF von 100 MHz. Jede Station kann daher Nutzsignale empfangen die im Abstand von +/- 100MHz von der eigenen Sendefreguenz liegen. Beding ung ist, dass beide Stationen die gleiche ZF verwenden.

Diese Methode wird auch weiterhin zur Erzielung von Weitenrekorde im m m Bereich (ab 47GHz aufwärts) angewendet. Seit ca. 1990 wächst die Zahl an Stationen die vom Home QTH Schmalband Betrieb (CW, SSB, FM) auf den Mikrowellenbändern durchführen. Ein hindernisfreier Standort ist dabei von Vorteil, trotzdem wurden bereits Verbindungen über Regenscatter bzw. Tropobedingungen auch aus nicht optimalen Standorten getätigt.

Station A empfängt B auf dem oberen Seitenband und Station B empfängt A auf dem unteren Seitenband. Das funktioniert deshalb, da die Anlagen ohne Empfänger Eingangsfilter betrieben wurden und daher auch auf der Spiegelfreguenz empfangen konnte. Allerdings verschlechterte sich damit die Empfängerrauschzahl von 15 bis 20db um weitere 3db. Eine zusätzliche Bedingung für das exakte Einstellen der Polarisation. Bedingt durch die 90° Entkopplung zwischen TX und RX im POLA-PLEXER musste zu Beginn des OSO's festgelegt werden wer von den beiden Stationen horizontal bzw. vertikal polarisiert sendet. Dementsprechend wurde der Dosenstrahler in die richtige Position gebracht. Station A sendet H und Empfängt V, Station B sendet V und empfängt H. (genial einfach)

+ Text von OE4WOG

"", Das GUNN Element , die
 zweite Gerätegeneration für 10GHz
 (3cm Band)"

Das GUNN Element ist ein Halbleiter mit nur zwei Anschlüssen und ähnelt im mechanischen Aufbau einer Diode, da die Anschlüsse des Elements als Anode und Kathode bezeichnet werden spricht man oft fälschlicherweise von einer GUNN Diode. Das GUNN Element trägt den Namen seines Entdeckers, John B. Gunn. (1963)

[[Das Reflexklystron]] < br />

Der Aufbau des GUNN Elements besteht aus hintereinander geschalteten unterschiedlich dotierten Materialen, wie Galliumnitrid bzw. Indiumphosphid. Diese Materialien stellen eine Elektronenfalle dar. es entsteht eine Art negativer Widerstand, die Elektronen werden gestaut und wandern in Schüben durch das Element. Mit GUNN Elemente können Frequenzen von 2 bis 150 GHz erzeugt und Ausgangsleistungen bis ca. 200mW erreicht werden. Der Wirkungsgrad (DC Eingangsleistung zu HF Ausgangsleistung) ist dabei durchaus akzeptabel. Wird das **Element in einem Resonator** betrieben, bestimmt dieser die Arbeitsfrequenz.

[[GUNN-Plexer]]

+

Bild Gunn Oszillator

Gegenüber dem Klystron hatte das GUNN Element den Vorteil, ein sehr kleines aber doch leistungsfähiges Bauteil zu sein, das mit weit [[Einleitung Mikrowelle|zurück zu Einleitung Mikrowelle]]
br />

[[Kategorie:Mikrowelle]]

qeringerem StromversorgungsAufwand betrieben werden konnte,
am Markt verfügbar und
erschwinglich war. Mit dem GUNN
Element begann das "Goldene
Zeitalter für das 3cm Band", denn die
Anzahl an kleinen und Anfangs
ausschließlich für den portablen
Einsatz konzipierten 3cm GUNN
Transceivern stieg sehr rasch.

Aktuelle Version vom 23. Juni 2015, 14:06 Uhr

• " Die USA "

Datei:w7lhlqst.jpg
Die ersten bekannt gewordenen Mikrowellen Anwendungen im Amateurfunk
stammen aus dem Jahr 1946 und kommen aus den USA. Zu dieser Zeit war in
Europa und in anderen Teilen der Welt die Ausübung des Amateurfunks noch stark eingeschränkt
wenn nicht komplett untersagt. Erst ab Beginn der 50er Jahre wurden diese Restriktionen
aufgehoben und die Funkamateure in Europa konnten wieder offiziell ihr Hobby ausüben.

Im Jahre 1927 wurden die ersten Richtlinien durch die im Jahr 1865 gegründete International Telegraph Union (I.T.U) zur Vergabe und Zuteilung von Radiofrequenzen, für die im raschen Wachstum begriffene drahtlose Kommunikationstechnik, erstellt. Bis zum heutigen Zeitpunkt ist es Aufgabe der I.T.U, technische Standards zu definieren und die Radiofrequenzen für die Dienste wie: Land/Mobil, Schifffahrt, Flugfunk, Rundfunk und Amateurfunk, etc., international zu koordinieren. In der 1947 abgehaltenen I.T.U Konferenz in Atlantic City wurde der Grundstein für die zum Teil noch heute gültigen Bandpläne (u.a. auch für den Amateurfunk) gelegt. In der I.T.U werden die Belange der Funkamateure durch die IARU (International Amateur Radio Union) vertreten. Durch das Bemühen der IARU konnten auch Frequenzbänder oberhalb von 1.000MHz für den Amateurfunk "erworben" werden. Seit 1948 ist der Sitz der I.T.U. in Genf (Schweiz).

Bedingt durch den zeitlichen Vorsprung war es daher nicht verwunderlich dass die ersten Veröffentlichungen, Gerätebeschreibungen und Berichte über Amateurfunkaktivität im Mikrowellenfrequenzbereich, hauptsächlich aus den USA kamen. Die für die Übertragung der Mikrowellensignale verwendeten Geräte wurden vollständig im Eigenbau ("home made") hergestellt, wobei die HF bestimmenden Bauteile großteils aus den "Surplus" Beständen der Industrie und des Militärs kam. Als Modulation wurde Breitband Frequenzmodulation (WBFM) eingesetzt.

Das erste bekannt gewordene QSO auf dem 3cm Band (10GHz) wurde zwischen W2RJM und W2JN im Jahr 1946 über eine Entfernung von 3,22Km durchgeführt. Im Jahr 1947 stand der "Weltrekord" im 3cm Band, gehalten von W6IFE/3 und W4HPJ/3, immerhin schon bei 12,31km. Das Callsign

von W6IFE, Donovan Thompson, ein Mikrowellen Pionier der ersten Stunde, wurde später das Klubrufzeichen der "San Bernhardino Microwave Society" (SBMS). Die SBMS ist die weltweit älteste Amateurfunk Mikrowellen Interessensgruppe und wird bis heute als eigenständiger Verein geführt. 1960 wurde der Weltrekord im 3cm Band von W7JIP/7 und W7LHL/7 auf (für diese Zeit sensationelle) 427km erweitert.

das Bild links zeigt die Kopie des in der QST veröffentlichten Photos aus dem Jahr 1960

• " in Europa "

In Europa waren es die Funkamateure aus den UK die sich schon früh der Verwendung und dem Einsatz von Mikrowellen zuwandten. Bereits 1943 wurde eine Reihe technischer Artikel über "Communication on centimetre waves" im "RSGB Bulletin" veröffentlicht. 1947 erschien ein aus 54 Seiten bestehendes Buch mit dem Titel " Microwave Technique". Zu dieser Zeit beschäftigten sich in den UK nur wenige Funkamateure mit Frequenzen oberhalb des 70cm Bandes. 1950 gelang es G3APY und G8UZ, den Weltrekord im 3cm Band auf eine Entfernung von 12 Meilen (ca. 20Km) anzuheben. Nur einen Monat später wurde dieser Rekord durch G3APY und G3ENS/p auf eine Streckendistanz von 27 Meilen (ca. 43Km) verbessert. In Folge wechselten die 3cm Weltrekorde einige Male zwischen USA und UK.

Ein wesentlicher Beitrag am Erfolg der Mikrowellenaktivität in Europa erfolgte durch die Veröffentlichungen der Artikel und Beiträge von D.S. Evans (G3RPE) und G.R. Jessop (G6JP) im VHF-UHF Manual, das von der RSGB publiziert wurde. In diesem Handbuch wurden die Grundlagen der Mikrowellentechnik als auch die klassischen Mikrowellen Bauteile wie Hohlleiter, Antennen, Messmittel, Klystrons und Gunn Oszillatoren erstmals und detailliert beschrieben. Das VHF-UHF Manual war in den 60er und 70er Jahren die Grundlage für den Eigenbau von Mikrowellen Geräten und ermöglichte vielen Funkamateuren den Einstieg in die Thematik der Mikrowellen.

Zu Beginn der 70er Jahre wurden in Österreich die ersten Experimente im 3cm Band durch OM Richard Vondra, OE1RVW durchgeführt. OE1RVW baute verschiedene 3cm GUNN-WBFM Transceiver und mechanische Absorptions-Frequenzmesser. Seine Selbstbauprojekte und Berichte über die ersten 3cm Funkverbindungen (QSO`s) zwischen OE1RVW und OE1ABW wurden in der DUBUS und erstmals 1975 in der August Ausgabe der QSP veröffentlicht.

" Die System Generationen "

Ausgabe: 15.05.2024 Dieses Dokument wurde erzeugt mit BlueSpice

Die Geschichte der Mikrowellenaktivität im Amateurfunk lässt sich am besten in zeitliche Abschnitte einteilen und entspricht der in jener Zeit machbaren und finanziell tragbaren Technologie.

1946 bis 1972: Breitband FM modulierte Systeme mit Klystrons

1972 bis 1982: Breitband FM modulierte Systeme mit Gunn Elemente und passiven Halbleitern

ab 1980: Schmalband (SSB/CW/FM modulierbare) Transverter Systeme unter Verwendung aktiver Halbleiterschaltungen (GaAs-Halbleiter, MMIC`s, etc.)

Bei den Geräten der ersten beiden Generationen wurde die Endfrequenz direkt und freischwingend erzeugt. Als Modulation wurde "Wide Band" FM Modulation (WBFM) mit sehr großen Frequenzhüben verwendet. Die Empfänger Eingangsstufe (front end) bestand üblicherweise aus einer Mikrowellen Germaniumdiode vom Typ 1N23(x). Die ZF Bandbreite des Empfangsteils war breitbandig um einerseits die großen Hübe zu verarbeiten und um andererseits den Problemen der Systembedingten Frequenzunstabilität einigermaßen entgegenzuwirken.

Kennzeichnend für die beiden ersten Generationen waren folgende Leistungsmerkmale:

- Geringe Ausgangsleistung
- Geringe Empfängerempfindlichkeit
- Geringe Frequenzstabilität
- Hoher mechanischer und elektrischer Aufwand (Klystron)
- Komplizierte Handhabung im portablen Betrieb (Klystron)

Anfang der 70er Jahre begann man weltweit auf dem 3cm Band mit GUNN Elemente zu experimentieren. Diese ersetzten sehr rasch das sperrige Klystron als HF Generator. Die Modulationsart WBFM und der um die ZF Frequenz versetzte Duplex Betrieb wurde weiterhin beibehalten. Diese Betriebsart wurde auch als "Durchblasemischer" Verfahren bekannt. Zur Besonderheit dieser Betriebsart gehörte, dass ein Funkverkehr nur dann durchgeführt werden konnte wenn beide Stationen die gleiche Zwischenfrequenz (ZF) verwendeten, was nach anfänglichen Variationen (man verwendete auch UKW-FM Autoradios als ZF Module) letztendlich zur Normung der ZF-Frequenz von 30MHz führte.

Etwa 1975 kamen X-Band Radar Module (ursprünglich als Bewegungsmelder konzipiert) unter der Bezeichnung GUNNPLEXER, zu finanziell erschwinglichen Bedingungen auf den Markt. Die Hersteller waren: Microwave Associates mit dem Typ MA 87127 und AEI Semiconductors mit dem

Typ DA-8525/DA-8001 (unter den Entwicklern waren sicher einige Amateure). Diese GUNNPLEXER wurden damals als Set, zusammen mit einer rechteckigen 17db Hornantenne, zum Stückpreis von ca. 50 Euro angeboten. Der Einsatz solcher GUNNPLEXER für den Bau von 3cm WBFM Amateurfunk Transceivern wurde in vielen Fachzeitschriften beschrieben und war für lange Zeit Stand der Amateurfunktechnik im 3cm Band. Geräte die GUNN Elemente verwendeten waren nachbausicher, handlich und zu wesentlich günstigeren Bedingungen herstellbar.

Die Geräte der dritten Generation bestehen aus Transverter Systeme und sind damit für Schmalbandbetrieb (CW/SSB/NBFM) wie auch für den Breitbandbetrieb (TV, Daten, etc.) gleichermaßen geeignet. Für den Schmalbandbetrieb wird üblicherweise ein 2m oder 70cm Allmode Portable Transceiver zur Aufbereitung der Modulationssignale bzw. als Empfänger-Nachsetzer verwendet.

Der Sende/Empfangs Nachsetzer dient somit nur als ZF Stufe (Basisband) für den eigentlichen Mikrowellen Sende-Empfangsmischer (Transverter) der auf der endgültigen Endfrequenz arbeitet. Die Modulation/Demodulationseigenschaften und die Selektivität werden durch den Nachsetzer bestimmt. Die Aufgabe des Mikrowellen Transverter ist die lineare Umsetzung der ZF Signale auf die Endfrequenz (TX Pfad) und umgekehrt (RX Pfad) wobei die Ausgangsleistung und die Empfangsempfindlichkeit der gesamten Anlage nur von den HF Eigenschaften des Transverters selbst abhängig sind.

Die Transvertertechnik ist nicht neu und wird auch oft zur Erzeugung von VHF und UHF Frequenzen eingesetzt, als Nachsetzer dienen dabei Kurzwellen Sende-Empfangsgeräte (KW Transceivern). Grund dafür ist, dass einige KW Geräte mehr Features und bessere HF-Eigenschaften (z.B. bei ZF-Bandbreite/Selektivität/Oszillatorrauschen) aufweisen als so manches VHF/UHF Allmode Funkgerät.

Diese (Transverter) Konfiguration ist bei Kontest-Stationen und auch bei EME Operatoren sehr beliebt. Während Transverter schon früher für den Betrieb auf 70cm, 23cm oder 13cm eingesetzt wurden, musste man im Mikrowellenbereich auf die Entwicklung und die Verfügbarkeit von geeigneten und kostengünstigen Bauteilen warten. Transverter für Frequenzen von VHF bis zu 47 /76GHz, werden heute in Halbleitertechnik realisiert und üblicherweise mit 12VDC betrieben, was den Einsatz für den "portablen" Betrieb wesentlich erleichtert.

Transvertersysteme haben folgende Eigenschaften:

- Hohe Ausgangsleistung durch aktive Endstufen (Ausgangsleistung frequenzabhängig)
- Geringe Empfangs-System Rauschzahl durch aktive rauscharme LNA's
- Hohe Frequenzstabilität durch Quarzsteuerung bzw. Einsatz von OCXO's
- Geringer mechanischer Aufwand
- Hervorragende Eignung für den portablen Betrieb

Ausgabe: 15.05.2024

Mit dem heutigen Stand der Transverter Technik ist es dem Funkamateur möglich, z.B. auf 3cm die gleichen Performance wie die eines üblichen KW/VHF/UHF Amateurfunkgerätes zu erreichen, bzw. dieses in einigen Parameter sogar zu übertreffen.

Günstig für die Entwicklung der Mikrowellen Amateurfunk Aktivität, erwies sich die (fast) weltweite Zuteilung des 3cm Frequenzbandes (X-Band) von 10,0 bis 10,5GHz. Damit wurde der Grundstock für eine genügend große kritische Masse an potentiellen Teilnehmern gelegt. (die für OE gültigen Frequenz Bandpläne findet man auf der Wiki Seite: Was sind Mikrowellen?) bzw. die regional gültigen Bandpläne, im "VHF Managers Handbook" der IARU Region 1.

Glücklicherweise besitzt das 3cm Band eine relativ günstige Ausbreitungscharakteristik, da die Frequenzen im Bereich um die 10GHz durch Atmosphärische Dämpfungen weniger betroffen sind. Das X Band wird auch das Weltraumband genannt, die Funkfrequenzen die für die Radiokommunikation in den Weltraum zugeteilt sind, liegen bei 8GHz. Ein weiterer Treiber fand sich in der Verfügbarkeit von "Surplus" Material, wie z.B. Hohlleiter, Klystrons, GUNN Module, Parabolantennen, etc., die aus Restbeständen der zivilen und militärischen Radaranwendungen im 9GHz Bereich gewonnen werden konnten und von den Funkamateuren für den Einsatz auf 10GHz "reanimiert" wurden.

Halbleiter und Bauteile für den SHF Bereich sind in der Zwischenzeit für Amateure verfügbar und erschwinglich geworden. Grund dafür ist, der in den letzten 30 Jahren stark gewachsene Einsatz diverser Technologien für die drahtlose Kommunikation und dem daraus entstandenen "second hand" Angebot an Industriellen Mikrowellen Komponenten (ebay, Flohmärkte, etc.) Mikrowellen Transverter werden heute auch bereits als Bausätze bzw. als fertige Module/Geräte angeboten. Darüber hinaus gibt es auf Flohmärkten immer wieder die Gelegenheit, günstige Komplettgeräte, Bausätze, Antennen oder auch nur geeignete Bauteile zu erwerben.

Ab etwa 1990 sind wir in der Lage Transverter Systeme für den oberen SHF bzw. den mm-Bereich (75 bis 250GHz) herzustellen. Dabei wird die Umsetzung des Sende bzw. Empfangssignals durch so genannte "Subharmonic Mischer" bewerkstelligt, die nur aus einer passiven Mikrowellendiode bzw. einem Diodenpaar bestehen. Die mit solcher Anordnung erzielbare HF Ausgangsleistung beträgt allerdings nur einige hundert MicroWatt, die mit solcher Anordnung erzielbare Empfänger System Rauschzahl liegt bei 15 bis 20db. Diese vergleichsweise bescheidenen Leistungsmerkmale werden jedoch durch den auf diesen Frequenzen erzielbaren Antennengewinn teilweise wieder kompensiert. Um Leistungen im mW Bereich zu erzeugen werden auf diesen Frequenzen Varactor Dioden eingesetzt, was die Anwendung auf die Modulationsart CW (Morsecode) beschränkt, oder anders ausgedrückt, diese Betriebsart wieder zu neuem Leben erweckt. Alternativ ist bei Verwendung eines Varactor Vervielfachers auch NBFM (Narrow Band Frequency Modulation) möglich.

Mikrowellen haben den Vorteil dass der Empfang durch so gut wie keinen Störpegel (man made noise) beeinträchtigt wird und auf Grund der geringen räumlichen Abmessungen der Antennen die Aufstellung und der Betrieb, egal ob für portabel oder Feststationen, viel leichter zu bewerkstelligen ist, als auf KW oder UKW. Mikrowellenantennen weisen Antennengewinne auf, von denen man auf der (langen) Kurzwelle nur träumen kann. PLC (power line communications) und Sonnenflecken Abhängigkeit sind hier kein Thema.

Während das 3cm Band bei den Funkamateuren einen nachhaltigen und durchschlagenden Erfolg erreicht hat, hinkt die Anzahl der auf den mm Wellen experimentierenden Funkamateure etwas hinterher. Ein Grund mag sein, dass der Aufwand zur Herstellung und Betrieb von Transverter und Antennensysteme im oberen Mikrowellen (mm) Frequenzbereich noch immer als zu hoch eingeschätzt wird, was wir mit den Artikeln dieser Interessensgruppe entkräften möchten.

Ca. 90% der gesamten, den Funkamateuren überlassenen und zugewiesenen Frequenzbändern liegen im Mikrowellenfrequenzbereich. Dieses Potential sollte genutzt werden, ein Frequenzengpass wie auf den langwelligen Bändern ist hier vorerst nicht zu befürchten. Egal welche frequenzmäßige Beschränkung man sich auferlegt, für den experimentierfreudigen und technisch ambitionierten Funkamateur sind Mikrowellen das ideale Betätigungsfeld um Geräte und Einrichtungen noch selbst herzustellen und auszuprobieren.

Und, "last, but not least" man braucht keinen PC. Zum Einstieg in die Mikrowelle empfiehlt sich das 3cm Band, hier findet man die größte Beteiligung und viel versprechende Ausbreitungsbedingungen, was absoluten Spaß und Erfolg garantiert.

"the early days…"

Die Industrie hatte es schon lange mit den Mikrowellen. Radaranwendungen, Militärische Anwendungen, Richtfunkverbindungen und Raumfahrt waren die klassischen Treiber dieser Technologie. Bereits in den 30er Jahren war die SHF Technik industriell beherrschbar wenn auch die Auswahl an Bauteilen damals eine andere war. Die in den militärischen Anwendungen gewonnenen Erkenntnisse kamen den neuen zivilen Anwendungen zu gute und führten zur Entwicklung und Einsatz von modernen Bauteilen, Produkte, Anlagen und Anwendungen.

Im Gegensatz zur Industrie haben sich die Funkamateure im deutschsprachigen Raum nur sehr zögerlich der Mikrowellentechnik zugewandt. Grund war die damals (nicht ganz unberechtigte) Meinung dass die Herstellung von Anlagen und Geräte für den SHF Bereich, äußerst kompliziert und kostenintensiv sei. Eine weitere Begründung findet sich in der Annahme, dass die Reichweite von Funkverbindungen bei steigenden Frequenzen immer geringer werden würde (man verglich dabei die Kurzwelle mit dem 2m Band) und der Funkbetrieb auf Frequenzen oberhalb von 500MHz, keine nennenswerten Distanzen (DX) erlaubt.

Bei näherer mathematischer Betrachtung zeigte es sich allerdings, dass Funkverbindungen auch über größere Entfernungen unter "Line of Sight" (LOS / optischer Sicht) Bedingungen selbst mit extrem kleiner HF Ausgangsleitungen und moderatem Antennengewinn möglich sind. In Folge wurde festgestellt dass, unter Tropo und Scatter Bedingungen Reichweiten, weit über den Optischen Horizont hinaus, erzielt werden können.

Die in der POLA-PLEXER bzw. in der GUNNPLEXER Zeit erzielten Weitenrekorde waren daher in erster Linie von den geographischen Gegebenheiten (Lage der Standorte) abhängig und da hatten in Europa die Alpenländer den Vorteil, über einige mehr als hundert(e) Kilometer lange hindernisfreie Funkfelder zu verfügen. Diese Umstände trieben die Mikrowellenfunkamateure in die Berge. Zur Planung solcher Funkverbindungen wurden wie auch in der kommerziellen Richtfunktechnik üblich, Geländeschnitte zwischen den gewählten Standorten angefertigt.

Diese Methode wird auch weiterhin zur Erzielung von Weitenrekorde im mm Bereich (ab 47GHz aufwärts) angewendet. Seit ca. 1990 wächst die Zahl an Stationen die vom Home QTH Schmalband Betrieb (CW, SSB, FM) auf den Mikrowellenbändern durchführen. Ein hindernisfreier Standort ist dabei von Vorteil, trotzdem wurden bereits Verbindungen über Regenscatter bzw. Tropobedingungen auch aus nicht optimalen Standorten getätigt.

Text von OE4WOG

Das Reflexklystron

GUNN-Plexer

zurück zu Einleitung Mikrowelle