

Inhaltsverzeichnis

1. FSK441	
2. Hauptseite	

FSK441

Das Inhaltsformat pdf wird vom Inhaltsmodell Wikitext nicht unterstützt.

Zurück zur Seite Hauptseite.

Ausgabe: 27.05.2024

Quelltext der Seite Hauptseite

Sie sind nicht berechtigt, die Seite zu bearbeiten. Gründe:

- Die Aktion, welche Sie beantragt haben, ist auf Benutzer beschränkt, welche einer der Gruppen "Administratoren, Sichter, Prüfer" angehören.
- Die Aktion, welche Sie beantragt haben, ist auf Benutzer beschränkt, welche der Gruppe "editor" angehören.
- Diese Seite wurde geschützt, um Bearbeitungen sowie andere Aktionen zu verhindern.

Sie können den Quelltext dieser Seite betrachten und kopieren.

[[Kategorie: Meteor-Scatter]] [[Kategorie: Digitale Betriebsarten]] ==Meteorscatter FSK441 (WSJT)== Diese Betriebsart gilt als veraltet. Seit WSJT-X Version 1.7.0 gibt es die neue Betriebsart [[MSK144]], welche die bisherige [[FSK441]] ablöst. Die aktuelle Programmversion ist WSJT-X Version 2.5.4 (Stand: 3. Jan. 2023, siehe [https://physics.princeton.edu//pulsar/k1jt/wsjtx-doc/wsjtx-main-2.5.0.html WSJT-X 2.5.0 Benutzerhandbuch]. Eine beta-Test Version WSJT-X Version 2.6.0-rc5 ("release candidate 5") gibt es inzwischen ebenfalls zum Download (Stand: 3. Jan. 2023). Nachdem sich PSK31 auf Kurzwelle als hervorragende Betriebsart durchgesetzt hat, wobei man mit sehr kleinen Leistungen weltweite Funkfernschreibverbindungen durchführen kann, war es nur eine Frage der Zeit, bis man auch auf Ultrakurzwelle (VHF 2-m-Band) ein vergleichbares Verfahren für die sonst übliche Morsetelegrafie gefunden hat. [https://de.m.wikipedia.org/wiki/Joseph Hooton Taylor, Jr. Joe Taylor], [http://www.grz.com/db/K1JT K1JT], ein amerikanischer Wissenschaftler (Nobelpreisträger für Physik) hat Anfang des Jahres 2001 sein Meteorscatterprogramm WSJT [4] vorgestellt, das sich in den USA sehr schnell durchgesetzt hat und sich auch hier in Europa in Windeseile zu verbreiten beginnt. Praktisch hat diese Meteorscatterbetriebsart innerhalb eines Jahres das "High-Speed-CW" fast völlig verdrängt. WSJT ist der Name eines Computerprogramms und steht für "Weak Signal communication by K1JT", also für Funkverbindung für schwache Signale von K1JT. WSJT benötigt keinerlei Hardware, sondern ist ein (kostenloses) Computerprogramm, das mit der Soundkarte arbeitet. Es arbeitet unter Windows 95, 98, ME, XP und 2000. Das Programm sendet Textinformationen in Vierton-Frequenzumtastung (FSK) mit 441 Baud. Diese Übertragungsart wird FSK441 genannt. Jedes zu übertragende Zeichen besteht aus drei von den vier Tönen. Diese drei Töne werden ohne Pause sequentiell (nacheinander) ausgesendet. Die Übertragungsgeschwindigkeit ist 147 Buchstaben pro Sekunde oder 8820 Buchstaben pro Minute. Durch diese hohe Übertragungsgeschwindigkeit eignet es sich hervorragend für Meteorscatter, wobei kurze Ionisationen von zufälligen Meteoriten, so genannte "Pings", zur Reflexion in zirka 100 km Höhe über der Erde ausgenutzt werden. Bei 147 Zeichen pro Sekunde benötigt ein Zeichen etwa sieben Millisekunden. Also drei aufeinander folgende Zeichen benötigen zwanzig Millisekunden. Kurze Pings von einer Zehntel Sekunde (100 Millisekunden) können also bereits Texte mit 15 Zeichen reflektieren. Vergleicht man dies mit den bei Meteorscatter-CW üblichen 2000 Buchstaben pro Minute, liegt man mit FSK441 um einen Faktor vier höher. Statt 15 Zeichen schafft man bei CW nur 3 Zeichen bei einem solchen Ping. Ein weiterer Vorteil gegenüber CW-Meteorscatter ist, dass man keine eigene Rückdekodierung machen muss, denn die Zeichen werden, wie bei RTTY üblich, vom Programm direkt dekodiert. Wegen der Möglichkeit, bei kurzen Pings bereits längere Textpassagen empfangen zu können, hat man die Sende- und Empfangsperioden um den Faktor fünf verringert. Man arbeitet mit 30-Sekunden-Perioden anstatt mit 2,5-Minuten-Perioden bei CW oder 1-Minute-Periode bei SSB. Bei Meteorscatter gibt es wegen der sehr kurzen Informationsinhalte eine bestimmte Prozedur, um für Diplome zählbare komplette Funkverbindungen herzustellen. Für eine "komplettes QSO" gilt, dass in beide Richtungen die beiden Rufzeichen sowie ein Rapport ausgetauscht werden müssen und die Richtigkeit dieser kompletten Information auch funktechnisch bestätigt worden sein muss. Es ist dasselbe wie bei einem CW- oder SSB-Contest. Auch dort ist ein QSO erst komplett, wenn man das Rufzeichen und den Rapport (eventuell noch eine laufende Nummer) auf beiden Seiten (mit "roger") bestätigt hat. Weitere Informationen: [http://en.wikipedia.org/wiki/WSJT (Amateur radio software) WSJT (Wikipedia)], [http://physics.princeton.edu/pulsar/k1jt/wsjt.html WSJT], [http://ac4m.us/jt65.html AC4M Digital Radio Site], [http://physics.princeton.edu/pulsar/k1jt/wsjtx.html WSJT-X] und [http://www.sigidwiki.com/wiki/JT6M Signal Identification Wiki].. Siehe auch: [[Grundlagen Digitale Betriebsarten]], [[MSK144]], [[JT6M]], [[JT65]], [[JT4]], [[JT9]], [[QRA64]], [[FT8]] und [[WSPR]].

Die folgende Vorlage wird auf dieser Seite verwendet:

Vorlage:Box Note (Quelltext anzeigen) (schreibgeschützt)

Zurück zur Seite Hauptseite.