

Inhaltsverzeichnis

1. FT4	34
2. Benutzer:OE1VMC	10
3. FSK441	18
4. FST4	
5. FT8	42
6. JT4	50
7. JT65	58
8. JT6M	66
9. ЈТ9	74
10. MSK144	82
11. QRA64	
12. WSPR	98

FT4

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 24. April 2019, 18:02 Uhr (Q uelltext anzeigen)

OE1VMC (Diskussion | Beiträge)
← Zum vorherigen Versionsunterschied

Version vom 29. Januar 2022, 15:27 Uhr (Quelltext anzeigen)

OE1VMC (Diskussion | Beiträge)

K (→Digitale Betriebsarten im Detail: FT4)

Markierung: Visuelle Bearbeitung

Zum nächsten Versionsunterschied →

(24 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)

Zeile 2:
[[Kategorie:Kurzwelle]]
+ ==Digitale Betriebsarten im Detail: FT4=
Joe Taylor K1JT hat im April 2019 eine neue digitale Betriebsart angekündigt: FT4. Diese ist 2.5 mal schneller als FT8.
Die aktuelle Programmversion ist WSJT-X Version 2.5.4 (Stand: 29. Jan. 2022, siehe [https://physics.princetoedu//pulsar/k1jt/wsjtx-doc/wsjtx-mair 2.5.0.html WSJT-X 2.5.0 Benutzerhandbuch].
FT4 ist eine experimentelle digitale Betriebsart, die für Contests entworfen wurde. Wie bei FT8, benutzt sie Durchgänge konstanter Dauer mit strukturierten Nachrichtenformaten für minimale QSOs und starker Vorwärtsfehlerkorrektur. Die Durchgä

ge dauern 6 Sekunden, so dass ein FT4 QSO etwa 2,5 × schneller als ein FT8 QSO gearbeitet werden kann. Dam it ist die Geschwindigkeit etwa vergleichbar mit RTTY im Contestbetrieb.

Dieser Artikel ist noch in Arbeit.

FT4 kann Signale verarbeiten, die etwa 10 dB schwächer sind als erforderlich für RTTY, obwohl weniger Bandbreite benötigt wird.

Einige Infos:

Die Vorwärtsfehlerkorrektur (FEC) in FT4 verwendet einen Paritätsprüfungscode mit niedriger Dichte ([https://de.wikipedia.org/wiki/Low-Density-Parity-Check-Code LDPC]) mit 77 Informationsbits, einer zyklischen 14-Bit-Redundanzprüfung (CRC) und 83 Paritätsbits, die ein 174-Bit-Codewort bilden. Er wird daher als LDPC (174,91)-Code bezeichnet. Das Nachrichtenformat für FT4 ist identisch mit dem für [[FT8]] und ebenfalls mit demselben LDPC (174,91) vor Übertragungsfehlern geschützt.

[http://physics.princeton.edu/pulsar/k1 jt/wsjtx.html WSJT-X]

Die Synchronisation verwendet vier 4×4 [https://en.m.wikipedia.org/wiki/C ostas array Costas-Arrays,] und am Anfang und am Ende jeder Übertragung werden Aufwärts- und Abwärtssymbole eingefügt. Die Modulation ist eine 4-Ton-Frequenzumtastung (4-[[GFSK]]) mit Gaußscher Glättung von Frequenzübergängen. Die Taktrate beträgt 12000/576 = 20.8333 Baud. Jedes übertragene Symbol überträgt zwei Bits, so dass die Gesamtzahl der Kanalsymbole 174/2 + 16 + 2 = 105beträgt. Die Gesamtbandbreite beträgt $4 \times 20,8333 = 83,3$ Hz.

[http://forums.grz.com/index.php?
- threads/new-digital-mode-ft4.655478
Ankündigung auf QRZ.com]

Ein Sendedurchgang beträgt 4,48s verglichen mit 12,64s für FT8.

- Die Modulation basiert auf einer + vierwertigen Frequency-Shift Keying (FSK) mit ungefähr 23,4 Baud.
- + Die vier Frequenzen unterscheiden sich um die Symbolrate.
- Die belegte Bandbreite beträgt 90 Hz.
 + In dieser Bandbreite findet sich 99% der Sendeleistung.

Siehe auch: [[FT8]], [[JT65]], [[JT4]], [[JT9]], [[JT6M]], [[QRA64]], [[MSK144]], [[FSK441]] und [[WSPR]].

Die folgende Tabelle listet die üblichen Frequenzbereiche für FT4 (Stand 2020). Die "Dial Frequency" gibt dabei die Frequenz des (unterdrückten) Trägers an. Dies ist also die angezeigte Frequenz am Funkgerät. Das Funkgerät moduliert das obere Seitenband (USB-Modulation).

+

+ {| class="wikitable"

+ |+Dial Frequency

+ |

+ | style="text-align:right;" |2190m

+ | style="text-align:right;" |???,??? kHz

+ 1-

+ | style="text-align:right;" |630m

| style="text-align:right;"+ |freigegeben in Österreich seit Dez.2020: 474,200 kHz

+ |-

+ | style="text-align:right;" |160m

| style="text-align:right;" |?,??? MHz

```
| style="text-align:right;" |80m
| style="text-align:right;" |3,575 MHz
| style="text-align:right;" |60m
| style="text-align:right:"
|freigegeben in Österreich seit Dez.
 2020: 5,357 MHz
| style="text-align:right;" |40m
| style="text-align:right;" |7,0475 MHz
| style="text-align:right;" |30m
| style="text-align:right;" |10,140 MHz
II-
| style="text-align:right;" |20m
| style="text-align:right;" |14,080 MHz
| style="text-align:right;" |17m
| style="text-align:right;" |18,104 MHz
| style="text-align:right;" |15m
| style="text-align:right;" |21,140 MHz
| style="text-align:right;" |12m
| style="text-align:right;" |24,919 MHz
II-
| style="text-align:right;" |10m
| style="text-align:right;" |28,180 MHz
```

```
+ | style="text-align:right;" |6m
   | style="text-align:right;" |50,318 MHz
  | style="text-align:right;" |4m
   | style="text-align:right;" |??,??? MHz
   | style="text-align:right;" |2m
   | style="text-align:right;" |144,120
   MHz
   144,170 MHz
   | style="text-align:right;" |70cm
   | style="text-align:right;" |432,065
   MHz
   | style="text-align:right;" |23cm
   | style="text-align:right;" |1296,065
   MHz
  | style="text-align:right;" |13cm
   | style="text-align:right;" |2301,065
   MHz
   2304,065 MHz
   2320,065 MHz
   | style="text-align:right;" |6cm
   | style="text-align:right;" |3400,065
   MHz
   | style="text-align:right;" |3cm
```

```
| style="text-align:right;" |?????,???
   MHz
+ |-
+ | style="text-align:right;" |1,25cm
   | style="text-align:right;" |?????,???
   MHz
  |}
   ====Weiterführende Links====
   *[https://ww-digi.com World Wide Digi
   DX Contest ("WW Digi")]
   *Dokumentation des [http://physics.
   princeton.edu/pulsar/k1jt
   /FT4 Protocol.pdf FT4 Protokolls (in
   Englisch)] und der [https://physics.
   princeton.edu/pulsar/k1jt
   /FT4 Protocol de.pdf Übersetzung]
   von [http://www.qrz.com/db/oeleqw
   Enrico OE1EOW1.
   *Software [http://physics.princeton.
   edu/pulsar/k1jt/wsjtx.html WSJT-X]
   *Die damalige Ankündigung einer
   neuen Betriebsart FT4:
   auf [http://forums.grz.com/index.php?
   threads/new-digital-mode-ft4.655478
   ORZ.com1 bzw. [http://www.
   southgatearc.org/news/2019/april
   /new-digital-mode-ft4.htm Southgate].
   *Mit FT4 verwandte Betriebsarten:
   [[FT8]], [[JT65]], [[JT4]], [[JT9]], [[JT6M]],
   [[QRA64]], [[MSK144]], [[FSK441]], [[FST4
   ]] und [[WSPR]].
```

Version vom 29. Januar 2022, 15:27 Uhr

Ausgabe: 02.05.2024

Digitale Betriebsarten im Detail\: FT4

Joe Taylor K1JT hat im April 2019 eine neue digitale Betriebsart angekündigt: FT4. Diese ist 2.5 mal schneller als FT8. Die aktuelle Programmversion ist WSJT-X Version 2.5.4 (Stand: 29. Jan. 2022, siehe WSJT-X 2.5.0 Benutzerhandbuch.

FT4 ist eine experimentelle digitale Betriebsart, die für Contests entworfen wurde. Wie bei FT8, benutzt sie Durchgänge konstanter Dauer mit strukturierten Nachrichtenformaten für minimale QSOs und starker Vorwärtsfehlerkorrektur. Die Durchgänge dauern 6 Sekunden, so dass ein FT4 QSO etwa 2,5 × schneller als ein FT8 QSO gearbeitet werden kann. Damit ist die Geschwindigkeit etwa vergleichbar mit RTTY im Contestbetrieb.

FT4 kann Signale verarbeiten, die etwa 10 dB schwächer sind als erforderlich für RTTY, obwohl weniger Bandbreite benötigt wird.

Die Vorwärtsfehlerkorrektur (FEC) in FT4 verwendet einen Paritätsprüfungscode mit niedriger Dichte (LDPC) mit 77 Informationsbits, einer zyklischen 14-Bit-Redundanzprüfung (CRC) und 83 Paritätsbits, die ein 174-Bit-Codewort bilden. Er wird daher als LDPC (174,91)-Code bezeichnet. Das Nachrichtenformat für FT4 ist identisch mit dem für FT8 und ebenfalls mit demselben LDPC (174,91) vor Übertragungsfehlern geschützt.

Die Synchronisation verwendet vier 4×4 Costas-Arrays, und am Anfang und am Ende jeder Übertragung werden Aufwärts- und Abwärtssymbole eingefügt. Die Modulation ist eine 4-Ton-Frequenzumtastung (4-GFSK) mit Gaußscher Glättung von Frequenzübergängen. Die Taktrate beträgt 12000/576 = 20,8333 Baud. Jedes übertragene Symbol überträgt zwei Bits, so dass die Gesamtzahl der Kanalsymbole 174/2 + 16 + 2 = 105 beträgt. Die Gesamtbandbreite beträgt $4\times20,8333 = 83,3$ Hz.

Ein Sendedurchgang beträgt 4,48s verglichen mit 12,64s für FT8. Die Modulation basiert auf einer vierwertigen Frequency-Shift Keying (FSK) mit ungefähr 23,4 Baud. Die vier Frequenzen unterscheiden sich um die Symbolrate. Die belegte Bandbreite beträgt 90 Hz. In dieser Bandbreite findet sich 99% der Sendeleistung.

Die folgende Tabelle listet die üblichen Frequenzbereiche für FT4 (Stand 2020). Die "Dial Frequency" gibt dabei die Frequenz des (unterdrückten) Trägers an. Dies ist also die angezeigte Frequenz am Funkgerät. Das Funkgerät moduliert das obere Seitenband (USB-Modulation).

Dial Frequency

2190m	???,??? kHz
630m	freigegeben in Österreich seit Dez. 2020: 474,200 kHz
160m	?,??? MHz
80m	3,575 MHz
60m	freigegeben in Österreich seit Dez. 2020: 5,357 MHz
40m	7,0475 MHz
30m	10,140 MHz
20m	14,080 MHz

17m	18,104	MHz
15m	21,140	MHz
12m	24,919	MHz
10m	28,180	MHz
6m	50,318	MHz
4m	??,???	MHz
	144,120	MHz
2m	144,170	MHz
	111,170	
70cm	432,065	MHz
23cm	1296,065	MHz
	2301,065	MHz
13cm	2304,065	MHz
	2320,065	MHz
6cm	3400,065	MHz
3cm	???????	MHz
1,25 cm	???????	MHz

Weiterführende Links

- World Wide Digi DX Contest ("WW Digi")
- Dokumentation des FT4 Protokolls (in Englisch) und der Übersetzung von Enrico OE1EQW.
- Software WSJT-X
- Die damalige Ankündigung einer neuen Betriebsart FT4: auf QRZ.com bzw. Southgate.
- Mit FT4 verwandte Betriebsarten: FT8, JT65, JT4, JT9, JT6M, QRA64, MSK144, FSK441, FST4 und WSPR.

FT4: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 24. April 2019, 18:02 Uhr (Q uelltext anzeigen)

OE1VMC (Diskussion | Beiträge)
← Zum vorherigen Versionsunterschied

Version vom 29. Januar 2022, 15:27 Uhr (Quelltext anzeigen)

OE1VMC (Diskussion | Beiträge)

K (→Digitale Betriebsarten im Detail: FT4)

Markierung: Visuelle Bearbeitung

Zum nächsten Versionsunterschied →

(24 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)

Zeile 2:	
[[Kategorie:Kurzwelle]]	
+ ==Digitale Betriebsarten im Detail: F	T4==
Joe Taylor K1JT hat im April 2019 neue digitale Betriebsart angekündi FT4. Diese ist 2.5 mal schneller a FT8.	gt:
Die aktuelle Programmversion ist WSJT-X Version 2.5.4 (Stand: 29. 2022, siehe [https://physics.princedu//pulsar/k1it/wsjtx-doc/wsjtx-12.5.0.html WSJT-X 2.5.0 Benutzerhandbuch].	Jan. eton.
FT4 ist eine experimentelle digita Betriebsart, die für Contests entworfen wurde. Wie bei FT8, benutzt sie Durchgänge konstant Dauer mit strukturierten Nachrichtenformaten für minimal QSOs und starker Vorwärtsfehlerkorrektur. Die Durch	ter le
	# ==Digitale Betriebsarten im Detail: F Joe Taylor K1JT hat im April 2019 neue digitale Betriebsart angekündi FT4. Diese ist 2.5 mal schneller a FT8. Die aktuelle Programmversion ist WSJT-X Version 2.5.4 (Stand: 29. 2022, siehe [https://physics.princedu//pulsar/k1it/wsitx-doc/wsjtx-12.5.0.html WSJT-X 2.5.0 Benutzerhandbuch]. FT4 ist eine experimentelle digitat Betriebsart, die für Contests entworfen wurde. Wie bei FT8, benutzt sie Durchgänge konstant Dauer mit strukturierten Nachrichtenformaten für minimal OSOs und starker

ge dauern 6 Sekunden, so dass ein FT4 QSO etwa 2,5 × schneller als ein FT8 QSO gearbeitet werden kann. Dam it ist die Geschwindigkeit etwa vergleichbar mit RTTY im Contestbetrieb.

Dieser Artikel ist noch in Arbeit.

FT4 kann Signale verarbeiten, die etwa 10 dB schwächer sind als erforderlich für RTTY, obwohl weniger Bandbreite benötigt wird.

Einige Infos:

Die Vorwärtsfehlerkorrektur (FEC) in FT4 verwendet einen Paritätsprüfungscode mit niedriger Dichte ([https://de.wikipedia.org/wiki/Low-Density-Parity-Check-Code LDPC]) mit 77 Informationsbits, einer zyklischen 14-Bit-Redundanzprüfung (CRC) und 83 Paritätsbits, die ein 174-Bit-Codewort bilden. Er wird daher als LDPC (174,91)-Code bezeichnet. Das Nachrichtenformat für FT4 ist identisch mit dem für [[FT8]] und ebenfalls mit demselben LDPC (174,91) vor Übertragungsfehlern geschützt.

[http://physics.princeton.edu/pulsar/k1 jt/wsjtx.html WSJT-X] Die Synchronisation verwendet vier 4×4 [https://en.m.wikipedia.org/wiki/C ostas array Costas-Arrays,] und am Anfang und am Ende jeder Übertragung werden Aufwärts- und Abwärtssymbole eingefügt. Die Modulation ist eine 4-Ton-Frequenzumtastung (4-[[GFSK]]) mit Gaußscher Glättung von Frequenzübergängen. Die Taktrate beträgt 12000/576 = 20.8333 Baud. Jedes übertragene Symbol überträgt zwei Bits, so dass die Gesamtzahl der Kanalsymbole 174/2 + 16 + 2 = 105beträgt. Die Gesamtbandbreite beträgt $4 \times 20,8333 = 83,3$ Hz.

[http://forums.grz.com/index.php?
- threads/new-digital-mode-ft4.655478
Ankündigung auf QRZ.com]

Ein Sendedurchgang beträgt 4,48s verglichen mit 12,64s für FT8.

- Die Modulation basiert auf einer vierwertigen Frequency-Shift Keying (FSK) mit ungefähr 23,4 Baud.
- Die vier Frequenzen unterscheiden sich um die Symbolrate.
- Die belegte Bandbreite beträgt 90 Hz.
 + In dieser Bandbreite findet sich 99% der Sendeleistung.

Siehe auch: [[FT8]], [[JT65]], [[JT4]], [[JT9]], [[JT6M]], [[QRA64]], [[MSK144]], [[FSK441]] und [[WSPR]].

Die folgende Tabelle listet die üblichen Frequenzbereiche für FT4 (Stand 2020). Die "Dial Frequency" gibt dabei die Frequenz des (unterdrückten) Trägers an. Dies ist also die angezeigte Frequenz am Funkgerät. Das Funkgerät moduliert das obere Seitenband (USB-Modulation).

+

+ {| class="wikitable"

+ |+Dial Frequency

+ 1.

+ | style="text-align:right;" |2190m

+ | style="text-align:right;" |???,??? kHz

+ 1-

+ | style="text-align:right;" |630m

| style="text-align:right;"

+ |freigegeben in Österreich seit Dez. 2020: 474,200 kHz

+ |-

+ | style="text-align:right;" |160m

| style="text-align:right;" |?,??? MHz

```
| style="text-align:right;" |80m
| style="text-align:right;" |3,575 MHz
| style="text-align:right;" |60m
| style="text-align:right:"
|freigegeben in Österreich seit Dez.
 2020: 5,357 MHz
| style="text-align:right;" |40m
| style="text-align:right;" |7,0475 MHz
| style="text-align:right;" |30m
| style="text-align:right;" |10,140 MHz
II-
| style="text-align:right;" |20m
| style="text-align:right;" |14,080 MHz
| style="text-align:right;" |17m
| style="text-align:right;" |18,104 MHz
| style="text-align:right;" |15m
| style="text-align:right;" |21,140 MHz
| style="text-align:right;" |12m
| style="text-align:right;" |24,919 MHz
| style="text-align:right;" |10m
| style="text-align:right;" |28,180 MHz
```

```
+ | style="text-align:right;" |6m
   | style="text-align:right;" |50,318 MHz
  | style="text-align:right;" |4m
   | style="text-align:right;" |??,??? MHz
   | style="text-align:right;" |2m
   | style="text-align:right;" |144,120
   MHz
   144,170 MHz
   | style="text-align:right;" |70cm
   | style="text-align:right;" |432,065
   MHz
   | style="text-align:right;" |23cm
   | style="text-align:right;" |1296,065
   MHz
  | style="text-align:right;" |13cm
   | style="text-align:right;" |2301,065
   MHz
   2304,065 MHz
   2320,065 MHz
   | style="text-align:right;" |6cm
   | style="text-align:right;" |3400,065
   MHz
   | style="text-align:right;" |3cm
```

```
| style="text-align:right;" |?????,???
   MHz
+ |-
+ | style="text-align:right;" |1,25cm
   | style="text-align:right;" |?????,???
   MHz
  |}
   ====Weiterführende Links====
   *[https://ww-digi.com World Wide Digi
   DX Contest ("WW Digi")]
   *Dokumentation des [http://physics.
   princeton.edu/pulsar/k1jt
   /FT4 Protocol.pdf FT4 Protokolls (in
   Englisch)] und der [https://physics.
   princeton.edu/pulsar/k1jt
   /FT4 Protocol de.pdf Übersetzung
   von [http://www.qrz.com/db/oeleqw
   Enrico OE1EOW1.
   *Software [http://physics.princeton.
   edu/pulsar/k1jt/wsjtx.html WSJT-X]
   *Die damalige Ankündigung einer
   neuen Betriebsart FT4:
   auf [http://forums.grz.com/index.php?
   threads/new-digital-mode-ft4.655478
   ORZ.com1 bzw. [http://www.
   southgatearc.org/news/2019/april
   /new-digital-mode-ft4.htm Southgate].
   *Mit FT4 verwandte Betriebsarten:
   [[FT8]], [[JT65]], [[JT4]], [[JT9]], [[JT6M]],
   [[QRA64]], [[MSK144]], [[FSK441]], [[FST4
   ]] und [[WSPR]].
```

Version vom 29. Januar 2022, 15:27 Uhr

Ausgabe: 02.05.2024

Digitale Betriebsarten im Detail\: FT4

Joe Taylor K1JT hat im April 2019 eine neue digitale Betriebsart angekündigt: FT4. Diese ist 2.5 mal schneller als FT8. Die aktuelle Programmversion ist WSJT-X Version 2.5.4 (Stand: 29. Jan. 2022, siehe WSJT-X 2.5.0 Benutzerhandbuch.

FT4 ist eine experimentelle digitale Betriebsart, die für Contests entworfen wurde. Wie bei FT8, benutzt sie Durchgänge konstanter Dauer mit strukturierten Nachrichtenformaten für minimale QSOs und starker Vorwärtsfehlerkorrektur. Die Durchgänge dauern 6 Sekunden, so dass ein FT4 QSO etwa 2,5 × schneller als ein FT8 QSO gearbeitet werden kann. Damit ist die Geschwindigkeit etwa vergleichbar mit RTTY im Contestbetrieb.

FT4 kann Signale verarbeiten, die etwa 10 dB schwächer sind als erforderlich für RTTY, obwohl weniger Bandbreite benötigt wird.

Die Vorwärtsfehlerkorrektur (FEC) in FT4 verwendet einen Paritätsprüfungscode mit niedriger Dichte (LDPC) mit 77 Informationsbits, einer zyklischen 14-Bit-Redundanzprüfung (CRC) und 83 Paritätsbits, die ein 174-Bit-Codewort bilden. Er wird daher als LDPC (174,91)-Code bezeichnet. Das Nachrichtenformat für FT4 ist identisch mit dem für FT8 und ebenfalls mit demselben LDPC (174,91) vor Übertragungsfehlern geschützt.

Die Synchronisation verwendet vier 4×4 Costas-Arrays, und am Anfang und am Ende jeder Übertragung werden Aufwärts- und Abwärtssymbole eingefügt. Die Modulation ist eine 4-Ton-Frequenzumtastung (4-GFSK) mit Gaußscher Glättung von Frequenzübergängen. Die Taktrate beträgt 12000/576 = 20,8333 Baud. Jedes übertragene Symbol überträgt zwei Bits, so dass die Gesamtzahl der Kanalsymbole 174/2 + 16 + 2 = 105 beträgt. Die Gesamtbandbreite beträgt $4\times20,8333 = 83,3$ Hz.

Ein Sendedurchgang beträgt 4,48s verglichen mit 12,64s für FT8. Die Modulation basiert auf einer vierwertigen Frequency-Shift Keying (FSK) mit ungefähr 23,4 Baud. Die vier Frequenzen unterscheiden sich um die Symbolrate. Die belegte Bandbreite beträgt 90 Hz. In dieser Bandbreite findet sich 99% der Sendeleistung.

Die folgende Tabelle listet die üblichen Frequenzbereiche für FT4 (Stand 2020). Die "Dial Frequency" gibt dabei die Frequenz des (unterdrückten) Trägers an. Dies ist also die angezeigte Frequenz am Funkgerät. Das Funkgerät moduliert das obere Seitenband (USB-Modulation).

Dial Frequency

2190m	???,??? kHz
630m	freigegeben in Österreich seit Dez. 2020: 474,200 kHz
160m	?,??? MHz
80m	3,575 MHz
60m	freigegeben in Österreich seit Dez. 2020: 5,357 MHz
40m	7,0475 MHz
30m	10,140 MHz
20m	14,080 MHz

17m	18,104	MHz
15m	21,140	MHz
12m	24,919	MHz
10m	28,180	MHz
6m	50,318	MHz
4m	??,???	MHz
	144,120	MHz
2m	144,170	MHz
70cm	432,065	MHz
23cm	1296,065	MHz
	2301,065	MHz
13cm	2304,065	MHz
	2320,065	MHz
6cm	3400,065	MHz
3cm	?????,???	MHz
1,25 cm	?????,???	MHz

Weiterführende Links

- World Wide Digi DX Contest ("WW Digi")
- Dokumentation des FT4 Protokolls (in Englisch) und der Übersetzung von Enrico OE1EQW.
- Software WSJT-X
- Die damalige Ankündigung einer neuen Betriebsart FT4: auf QRZ.com bzw. Southgate.
- Mit FT4 verwandte Betriebsarten: FT8, JT65, JT4, JT9, JT6M, QRA64, MSK144, FSK441, FST4 und WSPR.

FT4: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 24. April 2019, 18:02 Uhr (Q uelltext anzeigen)

OE1VMC (Diskussion | Beiträge)
← Zum vorherigen Versionsunterschied

Version vom 29. Januar 2022, 15:27 Uhr (Quelltext anzeigen)

OE1VMC (Diskussion | Beiträge)

K (→Digitale Betriebsarten im Detail: FT4)

Markierung: Visuelle Bearbeitung

Zum nächsten Versionsunterschied →

(24 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)

Zeile 2:
[[Kategorie:Kurzwelle]]
+ ==Digitale Betriebsarten im Detail: FT4=
Joe Taylor K1JT hat im April 2019 eine neue digitale Betriebsart angekündigt: FT4. Diese ist 2.5 mal schneller als FT8.
Die aktuelle Programmversion ist WSJT-X Version 2.5.4 (Stand: 29. Jan. 2022, siehe [https://physics.princeto edu//pulsar/k1it/wsjtx-doc/wsjtx-mair 2.5.0.html WSJT-X 2.5.0 Benutzerhandbuch].
FT4 ist eine experimentelle digitale Betriebsart, die für Contests entworfen wurde. Wie bei FT8, benutzt sie Durchgänge konstanter Dauer mit strukturierten Nachrichtenformaten für minimale QSOs und starker Vorwärtsfehlerkorrektur. Die Durchge

ge dauern 6 Sekunden, so dass ein FT4 QSO etwa 2,5 × schneller als ein FT8 QSO gearbeitet werden kann. Dam it ist die Geschwindigkeit etwa vergleichbar mit RTTY im Contestbetrieb.

Dieser Artikel ist noch in Arbeit.

FT4 kann Signale verarbeiten, die etwa 10 dB schwächer sind als erforderlich für RTTY, obwohl weniger Bandbreite benötigt wird.

Einige Infos:

Die Vorwärtsfehlerkorrektur (FEC) in FT4 verwendet einen Paritätsprüfungscode mit niedriger Dichte ([https://de.wikipedia.org/wiki/Low-Density-Parity-Check-Code LDPC]) mit 77 Informationsbits, einer zyklischen 14-Bit-Redundanzprüfung (CRC) und 83 Paritätsbits, die ein 174-Bit-Codewort bilden. Er wird daher als LDPC (174,91)-Code bezeichnet. Das Nachrichtenformat für FT4 ist identisch mit dem für [[FT8]] und ebenfalls mit demselben LDPC (174,91) vor Übertragungsfehlern geschützt.

[http://physics.princeton.edu/pulsar/k1 jt/wsjtx.html WSJT-X]

Die Synchronisation verwendet vier 4×4 [https://en.m.wikipedia.org/wiki/C ostas array Costas-Arrays,] und am Anfang und am Ende jeder Übertragung werden Aufwärts- und Abwärtssymbole eingefügt. Die Modulation ist eine 4-Ton-Frequenzumtastung (4-[[GFSK]]) mit Gaußscher Glättung von Frequenzübergängen. Die Taktrate beträgt 12000/576 = 20.8333 Baud. Jedes übertragene Symbol überträgt zwei Bits, so dass die Gesamtzahl der Kanalsymbole 174/2 + 16 + 2 = 105beträgt. Die Gesamtbandbreite beträgt $4 \times 20,8333 = 83,3$ Hz.

[http://forums.grz.com/index.php? - threads/new-digital-mode-ft4.655478 Ankündigung auf QRZ.com] Ein Sendedurchgang beträgt 4,48s verglichen mit 12,64s für FT8.

- Die Modulation basiert auf einer vierwertigen Frequency-Shift Keying (FSK) mit ungefähr 23,4 Baud.
- + Die vier Frequenzen unterscheiden sich um die Symbolrate.
- Die belegte Bandbreite beträgt 90 Hz.
 + In dieser Bandbreite findet sich 99% der Sendeleistung.

Siehe auch: [[FT8]], [[JT65]], [[JT4]], [[JT9]], [[JT6M]], [[QRA64]], [[MSK144]], [[FSK441]] und [[WSPR]].

Die folgende Tabelle listet die üblichen Frequenzbereiche für FT4 (Stand 2020). Die "Dial Frequency" gibt dabei die Frequenz des (unterdrückten) Trägers an. Dies ist also die angezeigte Frequenz am Funkgerät. Das Funkgerät moduliert das obere Seitenband (USB-Modulation).

+

+ {| class="wikitable"

+ |+Dial Frequency

+ 1-

+ | style="text-align:right;" |2190m

+ | style="text-align:right;" |???,??? kHz

+ 1-

+ | style="text-align:right;" |630m

| style="text-align:right;" + |freigegeben in Österreich seit Dez.

2020: 474,200 kHz

+ |-

+ | style="text-align:right;" |160m

| style="text-align:right;" |?,??? MHz

```
| style="text-align:right;" |80m
| style="text-align:right;" |3,575 MHz
| style="text-align:right;" |60m
| style="text-align:right:"
|freigegeben in Österreich seit Dez.
2020: 5,357 MHz
| style="text-align:right;" |40m
| style="text-align:right;" |7,0475 MHz
| style="text-align:right;" |30m
| style="text-align:right;" |10,140 MHz
II-
| style="text-align:right;" |20m
| style="text-align:right;" |14,080 MHz
| style="text-align:right;" |17m
| style="text-align:right;" |18,104 MHz
| style="text-align:right;" |15m
| style="text-align:right;" |21,140 MHz
| style="text-align:right;" |12m
| style="text-align:right;" |24,919 MHz
| style="text-align:right;" |10m
| style="text-align:right;" |28,180 MHz
```

```
+ | style="text-align:right;" |6m
   | style="text-align:right;" |50,318 MHz
  | style="text-align:right;" |4m
   | style="text-align:right;" |??,??? MHz
   | style="text-align:right;" |2m
   | style="text-align:right;" |144,120
   MHz
   144,170 MHz
   | style="text-align:right;" |70cm
   | style="text-align:right;" |432,065
   MHz
   | style="text-align:right;" |23cm
   | style="text-align:right;" |1296,065
   MHz
  | style="text-align:right;" |13cm
   | style="text-align:right;" |2301,065
   MHz
   2304,065 MHz
   2320,065 MHz
   | style="text-align:right;" |6cm
   | style="text-align:right;" |3400,065
   MHz
   | style="text-align:right;" |3cm
```

```
| style="text-align:right;" |?????,???
   MHz
+ |-
+ | style="text-align:right;" |1,25cm
   | style="text-align:right;" |?????,???
   MHz
  |}
   ====Weiterführende Links====
   *[https://ww-digi.com World Wide Digi
   DX Contest ("WW Digi")]
   *Dokumentation des [http://physics.
   princeton.edu/pulsar/k1jt
   /FT4 Protocol.pdf FT4 Protokolls (in
   Englisch)] und der [https://physics.
   princeton.edu/pulsar/k1jt
   /FT4 Protocol de.pdf Übersetzung
   von [http://www.qrz.com/db/oeleqw
   Enrico OE1EOW1.
   *Software [http://physics.princeton.
   edu/pulsar/k1jt/wsjtx.html WSJT-X]
   *Die damalige Ankündigung einer
   neuen Betriebsart FT4:
   auf [http://forums.grz.com/index.php?
   threads/new-digital-mode-ft4.655478
   ORZ.com1 bzw. [http://www.
   southgatearc.org/news/2019/april
   /new-digital-mode-ft4.htm Southgate].
   *Mit FT4 verwandte Betriebsarten:
   [[FT8]], [[JT65]], [[JT4]], [[JT9]], [[JT6M]],
   [[QRA64]], [[MSK144]], [[FSK441]], [[FST4
   ]] und [[WSPR]].
```

Version vom 29. Januar 2022, 15:27 Uhr

Digitale Betriebsarten im Detail\: FT4

Joe Taylor K1JT hat im April 2019 eine neue digitale Betriebsart angekündigt: FT4. Diese ist 2.5 mal schneller als FT8. Die aktuelle Programmversion ist WSJT-X Version 2.5.4 (Stand: 29. Jan. 2022, siehe WSJT-X 2.5.0 Benutzerhandbuch.

FT4 ist eine experimentelle digitale Betriebsart, die für Contests entworfen wurde. Wie bei FT8, benutzt sie Durchgänge konstanter Dauer mit strukturierten Nachrichtenformaten für minimale QSOs und starker Vorwärtsfehlerkorrektur. Die Durchgänge dauern 6 Sekunden, so dass ein FT4 QSO etwa 2,5 × schneller als ein FT8 QSO gearbeitet werden kann. Damit ist die Geschwindigkeit etwa vergleichbar mit RTTY im Contestbetrieb.

FT4 kann Signale verarbeiten, die etwa 10 dB schwächer sind als erforderlich für RTTY, obwohl weniger Bandbreite benötigt wird.

Die Vorwärtsfehlerkorrektur (FEC) in FT4 verwendet einen Paritätsprüfungscode mit niedriger Dichte (LDPC) mit 77 Informationsbits, einer zyklischen 14-Bit-Redundanzprüfung (CRC) und 83 Paritätsbits, die ein 174-Bit-Codewort bilden. Er wird daher als LDPC (174,91)-Code bezeichnet. Das Nachrichtenformat für FT4 ist identisch mit dem für FT8 und ebenfalls mit demselben LDPC (174,91) vor Übertragungsfehlern geschützt.

Die Synchronisation verwendet vier 4×4 Costas-Arrays, und am Anfang und am Ende jeder Übertragung werden Aufwärts- und Abwärtssymbole eingefügt. Die Modulation ist eine 4-Ton-Frequenzumtastung (4-GFSK) mit Gaußscher Glättung von Frequenzübergängen. Die Taktrate beträgt 12000/576 = 20,8333 Baud. Jedes übertragene Symbol überträgt zwei Bits, so dass die Gesamtzahl der Kanalsymbole 174/2 + 16 + 2 = 105 beträgt. Die Gesamtbandbreite beträgt $4\times20,8333 = 83,3$ Hz.

Ein Sendedurchgang beträgt 4,48s verglichen mit 12,64s für FT8. Die Modulation basiert auf einer vierwertigen Frequency-Shift Keying (FSK) mit ungefähr 23,4 Baud. Die vier Frequenzen unterscheiden sich um die Symbolrate. Die belegte Bandbreite beträgt 90 Hz. In dieser Bandbreite findet sich 99% der Sendeleistung.

Die folgende Tabelle listet die üblichen Frequenzbereiche für FT4 (Stand 2020). Die "Dial Frequency" gibt dabei die Frequenz des (unterdrückten) Trägers an. Dies ist also die angezeigte Frequenz am Funkgerät. Das Funkgerät moduliert das obere Seitenband (USB-Modulation).

Dial Frequency

2190m	???,??? kHz
630m	freigegeben in Österreich seit Dez. 2020: 474,200 kHz
160m	?,??? MHz
80m	3,575 MHz
60m	freigegeben in Österreich seit Dez. 2020: 5,357 MHz
40m	7,0475 MHz
30m	10,140 MHz
20m	14,080 MHz

17m	18,104	MHz
15m	21,140	MHz
12m	24,919	MHz
10m	28,180	MHz
6m	50,318	MHz
4m	??,???	MHz
	144,120	MHz
2m	144,170	MHz
70cm	432,065	MHz
23cm	1296,065	MHz
	2301,065	MHz
13cm	2304,065	MHz
	2320,065	MHz
6cm	3400,065	MHz
3cm	?????,???	MHz
1,25 cm	?????,???	MHz

Weiterführende Links

- World Wide Digi DX Contest ("WW Digi")
- Dokumentation des FT4 Protokolls (in Englisch) und der Übersetzung von Enrico OE1EQW.
- Software WSJT-X
- Die damalige Ankündigung einer neuen Betriebsart FT4: auf QRZ.com bzw. Southgate.
- Mit FT4 verwandte Betriebsarten: FT8, JT65, JT4, JT9, JT6M, QRA64, MSK144, FSK441, FST4 und WSPR.

FT4: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 24. April 2019, 18:02 Uhr (Q uelltext anzeigen)

OE1VMC (Diskussion | Beiträge)
← Zum vorherigen Versionsunterschied

Version vom 29. Januar 2022, 15:27 Uhr (Quelltext anzeigen)

OE1VMC (Diskussion | Beiträge)

K (→Digitale Betriebsarten im Detail: FT4)

Markierung: Visuelle Bearbeitung

Zum nächsten Versionsunterschied →

(24 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)

Zeile 2:	Zeile 2:		
[[Kategorie:Kurzwelle]]	[[Kategorie:Kurzwelle]]		
== Digitale Betriebsarten im Detail: FT4 ==	==Digitale Betriebsarten im Detail: FT4==		
FT4 ist eine ganz neue digitale Betriebsart (beta release April 2019) für den Contestbetrieb mit ähnlicher QSO Dauer wie RTTY.	Joe Taylor K1JT hat im April 2019 eine neue digitale Betriebsart angekündigt: FT4. Diese ist 2.5 mal schneller als FT8.		
	Die aktuelle Programmversion ist WSJT-X Version 2.5.4 (Stand: 29. Jan. 2022, siehe [https://physics.princeton. edu//pulsar/k1jt/wsjtx-doc/wsjtx-main-2.5.0.html WSJT-X 2.5.0 Benutzerhandbuch].		
Die aktuelle Programmversion ist WSJT-X Version 2.1.0 Release Candidate (Stand: 23. April 2019)	FT4 ist eine experimentelle digitale Betriebsart, die für Contests entworfen wurde. Wie bei FT8, benutzt sie Durchgänge konstanter Dauer mit strukturierten Nachrichtenformaten für minimale QSOs und starker Vorwärtsfehlerkorrektur. Die Durchgän		

ge dauern 6 Sekunden, so dass ein FT4 QSO etwa 2,5 × schneller als ein FT8 QSO gearbeitet werden kann. Dam it ist die Geschwindigkeit etwa vergleichbar mit RTTY im Contestbetrieb.

Dieser Artikel ist noch in Arbeit.

FT4 kann Signale verarbeiten, die etwa 10 dB schwächer sind als erforderlich für RTTY, obwohl weniger Bandbreite benötigt wird.

Einige Infos:

Die Vorwärtsfehlerkorrektur (FEC) in FT4 verwendet einen Paritätsprüfungscode mit niedriger Dichte ([https://de.wikipedia.org/wiki/Low-Density-Parity-Check-Code LDPC]) mit 77 Informationsbits, einer zyklischen 14-Bit-Redundanzprüfung (CRC) und 83 Paritätsbits, die ein 174-Bit-Codewort bilden. Er wird daher als LDPC (174,91)-Code bezeichnet. Das Nachrichtenformat für FT4 ist identisch mit dem für [[FT8]] und ebenfalls mit demselben LDPC (174,91) vor Übertragungsfehlern geschützt.

[http://physics.princeton.edu/pulsar/k1 jt/wsjtx.html WSJT-X] Die Synchronisation verwendet vier 4×4 [https://en.m.wikipedia.org/wiki/C ostas array Costas-Arrays,] und am Anfang und am Ende jeder Übertragung werden Aufwärts- und Abwärtssymbole eingefügt. Die Modulation ist eine 4-Ton-Frequenzumtastung (4-[[GFSK]]) mit Gaußscher Glättung von Frequenzübergängen. Die Taktrate beträgt 12000/576 = 20.8333 Baud. Jedes übertragene Symbol überträgt zwei Bits, so dass die Gesamtzahl der Kanalsymbole 174/2 + 16 + 2 = 105beträgt. Die Gesamtbandbreite beträgt $4 \times 20,8333 = 83,3$ Hz.

[http://forums.grz.com/index.php? - threads/new-digital-mode-ft4.655478 Ankündigung auf QRZ.com] Ein Sendedurchgang beträgt 4,48s verglichen mit 12,64s für FT8.

- Die Modulation basiert auf einer vierwertigen Frequency-Shift Keying (FSK) mit ungefähr 23,4 Baud.
- + Die vier Frequenzen unterscheiden sich um die Symbolrate.
- Die belegte Bandbreite beträgt 90 Hz.
 + In dieser Bandbreite findet sich 99% der Sendeleistung.

Siehe auch: [[FT8]], [[JT65]], [[JT4]], [[JT9]], [[JT6M]], [[QRA64]], [[MSK144]], [[FSK441]] und [[WSPR]].

Die folgende Tabelle listet die üblichen Frequenzbereiche für FT4 (Stand 2020). Die "Dial Frequency" gibt dabei die Frequenz des (unterdrückten) Trägers an. Dies ist also die angezeigte Frequenz am Funkgerät. Das Funkgerät moduliert das obere Seitenband (USB-Modulation).

+

+ {| class="wikitable"

+ |+Dial Frequency

+ 1-

+ | style="text-align:right;" |2190m

+ | style="text-align:right;" |???,??? kHz

+ 1-

+ | style="text-align:right;" |630m

| style="text-align:right;" + |freigegeben in Österreich seit Dez.

2020: 474,200 kHz

+ |-

+ | style="text-align:right;" |160m

| style="text-align:right;" |?,??? MHz

```
| style="text-align:right;" |80m
| style="text-align:right;" |3,575 MHz
| style="text-align:right;" |60m
| style="text-align:right:"
|freigegeben in Österreich seit Dez.
 2020: 5,357 MHz
| style="text-align:right;" |40m
| style="text-align:right;" |7,0475 MHz
| style="text-align:right;" |30m
| style="text-align:right;" |10,140 MHz
II-
| style="text-align:right;" |20m
| style="text-align:right;" |14,080 MHz
| style="text-align:right;" |17m
| style="text-align:right;" |18,104 MHz
| style="text-align:right;" |15m
| style="text-align:right;" |21,140 MHz
| style="text-align:right;" |12m
| style="text-align:right;" |24,919 MHz
| style="text-align:right;" |10m
| style="text-align:right;" |28,180 MHz
```

```
+ | style="text-align:right;" |6m
   | style="text-align:right;" |50,318 MHz
  | style="text-align:right;" |4m
   | style="text-align:right;" |??,??? MHz
   | style="text-align:right;" |2m
   | style="text-align:right;" |144,120
   MHz
   144,170 MHz
   | style="text-align:right;" |70cm
   | style="text-align:right;" |432,065
   MHz
   | style="text-align:right;" |23cm
   | style="text-align:right;" |1296,065
   MHz
  | style="text-align:right;" |13cm
   | style="text-align:right;" |2301,065
   MHz
   2304,065 MHz
   2320,065 MHz
   | style="text-align:right;" |6cm
   | style="text-align:right;" |3400,065
   MHz
   | style="text-align:right;" |3cm
```

```
| style="text-align:right;" |?????,???
   MHz
+ |-
+ | style="text-align:right;" |1,25cm
   | style="text-align:right;" |?????,???
   MHz
  |}
   ====Weiterführende Links====
   *[https://ww-digi.com World Wide Digi
   DX Contest ("WW Digi")]
   *Dokumentation des [http://physics.
   princeton.edu/pulsar/k1jt
   /FT4 Protocol.pdf FT4 Protokolls (in
   Englisch)] und der [https://physics.
   princeton.edu/pulsar/k1jt
   /FT4 Protocol de.pdf Übersetzung
   von [http://www.qrz.com/db/oeleqw
   Enrico OE1EOW1.
   *Software [http://physics.princeton.
   edu/pulsar/k1jt/wsjtx.html WSJT-X]
   *Die damalige Ankündigung einer
   neuen Betriebsart FT4:
   auf [http://forums.grz.com/index.php?
   threads/new-digital-mode-ft4.655478
   ORZ.com1 bzw. [http://www.
   southgatearc.org/news/2019/april
   /new-digital-mode-ft4.htm Southgate].
   *Mit FT4 verwandte Betriebsarten:
   [[FT8]], [[JT65]], [[JT4]], [[JT9]], [[JT6M]],
   [[QRA64]], [[MSK144]], [[FSK441]], [[FST4
   ]] und [[WSPR]].
```

Version vom 29. Januar 2022, 15:27 Uhr

Digitale Betriebsarten im Detail\: FT4

Joe Taylor K1JT hat im April 2019 eine neue digitale Betriebsart angekündigt: FT4. Diese ist 2.5 mal schneller als FT8. Die aktuelle Programmversion ist WSJT-X Version 2.5.4 (Stand: 29. Jan. 2022, siehe WSJT-X 2.5.0 Benutzerhandbuch.

FT4 ist eine experimentelle digitale Betriebsart, die für Contests entworfen wurde. Wie bei FT8, benutzt sie Durchgänge konstanter Dauer mit strukturierten Nachrichtenformaten für minimale QSOs und starker Vorwärtsfehlerkorrektur. Die Durchgänge dauern 6 Sekunden, so dass ein FT4 QSO etwa 2,5 × schneller als ein FT8 QSO gearbeitet werden kann. Damit ist die Geschwindigkeit etwa vergleichbar mit RTTY im Contestbetrieb.

FT4 kann Signale verarbeiten, die etwa 10 dB schwächer sind als erforderlich für RTTY, obwohl weniger Bandbreite benötigt wird.

Die Vorwärtsfehlerkorrektur (FEC) in FT4 verwendet einen Paritätsprüfungscode mit niedriger Dichte (LDPC) mit 77 Informationsbits, einer zyklischen 14-Bit-Redundanzprüfung (CRC) und 83 Paritätsbits, die ein 174-Bit-Codewort bilden. Er wird daher als LDPC (174,91)-Code bezeichnet. Das Nachrichtenformat für FT4 ist identisch mit dem für FT8 und ebenfalls mit demselben LDPC (174,91) vor Übertragungsfehlern geschützt.

Die Synchronisation verwendet vier 4×4 Costas-Arrays, und am Anfang und am Ende jeder Übertragung werden Aufwärts- und Abwärtssymbole eingefügt. Die Modulation ist eine 4-Ton-Frequenzumtastung (4-GFSK) mit Gaußscher Glättung von Frequenzübergängen. Die Taktrate beträgt 12000/576 = 20,8333 Baud. Jedes übertragene Symbol überträgt zwei Bits, so dass die Gesamtzahl der Kanalsymbole 174/2 + 16 + 2 = 105 beträgt. Die Gesamtbandbreite beträgt $4\times20,8333 = 83,3$ Hz.

Ein Sendedurchgang beträgt 4,48s verglichen mit 12,64s für FT8. Die Modulation basiert auf einer vierwertigen Frequency-Shift Keying (FSK) mit ungefähr 23,4 Baud. Die vier Frequenzen unterscheiden sich um die Symbolrate. Die belegte Bandbreite beträgt 90 Hz. In dieser Bandbreite findet sich 99% der Sendeleistung.

Die folgende Tabelle listet die üblichen Frequenzbereiche für FT4 (Stand 2020). Die "Dial Frequency" gibt dabei die Frequenz des (unterdrückten) Trägers an. Dies ist also die angezeigte Frequenz am Funkgerät. Das Funkgerät moduliert das obere Seitenband (USB-Modulation).

Dial Frequency

2190m	???,??? kHz
630m	freigegeben in Österreich seit Dez. 2020: 474,200 kHz
160m	?,??? MHz
80m	3,575 MHz
60m	freigegeben in Österreich seit Dez. 2020: 5,357 MHz
40m	7,0475 MHz
30m	10,140 MHz
20m	14,080 MHz

17m	18,104	MHz
15m	21,140	MHz
12m	24,919	MHz
10m	28,180	MHz
6m	50,318	MHz
4m	??,???	MHz
2m	144,120	MHz
	144,170	MHz
70cm	432,065	MHz
23cm	1296,065	MHz
13cm	2301,065	MHz
	2304,065	MHz
	2320,065	MHz
6cm	3400,065	MHz
3cm	?????,???	MHz
1,25 cm	?????,???	MHz

Weiterführende Links

- World Wide Digi DX Contest ("WW Digi")
- Dokumentation des FT4 Protokolls (in Englisch) und der Übersetzung von Enrico OE1EQW.
- Software WSJT-X
- Die damalige Ankündigung einer neuen Betriebsart FT4: auf QRZ.com bzw. Southgate.
- Mit FT4 verwandte Betriebsarten: FT8, JT65, JT4, JT9, JT6M, QRA64, MSK144, FSK441, FST4 und WSPR.

FT4: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 24. April 2019, 18:02 Uhr (Q uelltext anzeigen)

OE1VMC (Diskussion | Beiträge)
← Zum vorherigen Versionsunterschied

Version vom 29. Januar 2022, 15:27 Uhr (Quelltext anzeigen)

OE1VMC (Diskussion | Beiträge)

K (→Digitale Betriebsarten im Detail: FT4)

Markierung: Visuelle Bearbeitung

Zum nächsten Versionsunterschied →

(24 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)

Ze	Zeile 2:		
	[[Kategorie:Kurzwelle]]		
+	==Digitale Betriebsarten im Detail: FT4==		
+	Joe Taylor K1JT hat im April 2019 eine neue digitale Betriebsart angekündigt: FT4. Diese ist 2.5 mal schneller als FT8.		
+	Die aktuelle Programmversion ist WSJT-X Version 2.5.4 (Stand: 29. Jan. 2022, siehe [https://physics.princeton.edu//pulsar/k1jt/wsjtx-doc/wsjtx-main-2.5.0.html WSJT-X 2.5.0 Benutzerhandbuch].		
	FT4 ist eine experimentelle digitale Betriebsart, die für Contests entworfen wurde. Wie bei FT8, benutzt sie Durchgänge konstanter Dauer mit strukturierten Nachrichtenformaten für minimale QSOs und starker Vorwärtsfehlerkorrektur. Die Durchgän		
	+		

ge dauern 6 Sekunden, so dass ein FT4 QSO etwa 2,5 × schneller als ein FT8 QSO gearbeitet werden kann. Dam it ist die Geschwindigkeit etwa vergleichbar mit RTTY im Contestbetrieb.

Dieser Artikel ist noch in Arbeit.

FT4 kann Signale verarbeiten, die etwa 10 dB schwächer sind als erforderlich für RTTY, obwohl weniger Bandbreite benötigt wird.

Einige Infos:

Die Vorwärtsfehlerkorrektur (FEC) in FT4 verwendet einen Paritätsprüfungscode mit niedriger Dichte ([https://de.wikipedia.org/wiki/Low-Density-Parity-Check-Code LDPC]) mit 77 Informationsbits, einer zyklischen 14-Bit-Redundanzprüfung (CRC) und 83 Paritätsbits, die ein 174-Bit-Codewort bilden. Er wird daher als LDPC (174,91)-Code bezeichnet. Das Nachrichtenformat für FT4 ist identisch mit dem für [[FT8]] und ebenfalls mit demselben LDPC (174,91) vor Übertragungsfehlern geschützt.

[http://physics.princeton.edu/pulsar/k1 jt/wsjtx.html WSJT-X] Die Synchronisation verwendet vier 4×4 [https://en.m.wikipedia.org/wiki/C ostas array Costas-Arrays,] und am Anfang und am Ende jeder Übertragung werden Aufwärts- und Abwärtssymbole eingefügt. Die Modulation ist eine 4-Ton-Frequenzumtastung (4-[[GFSK]]) mit Gaußscher Glättung von Frequenzübergängen. Die Taktrate beträgt 12000/576 = 20.8333 Baud. Jedes übertragene Symbol überträgt zwei Bits, so dass die Gesamtzahl der Kanalsymbole 174/2 + 16 + 2 = 105beträgt. Die Gesamtbandbreite beträgt $4 \times 20,8333 = 83,3$ Hz.

[http://forums.grz.com/index.php? - threads/new-digital-mode-ft4.655478 Ankündigung auf QRZ.com] Ein Sendedurchgang beträgt 4,48s verglichen mit 12,64s für FT8.

- Die Modulation basiert auf einer
 vierwertigen Frequency-Shift Keying
 (FSK) mit ungefähr 23,4 Baud.
- + Die vier Frequenzen unterscheiden sich um die Symbolrate.
- Die belegte Bandbreite beträgt 90 Hz.
 + In dieser Bandbreite findet sich 99% der Sendeleistung.

Siehe auch: [[FT8]], [[JT65]], [[JT4]], [[JT9]], [[JT6M]], [[QRA64]], [[MSK144]], [[FSK441]] und [[WSPR]].

Die folgende Tabelle listet die üblichen Frequenzbereiche für FT4 (Stand 2020). Die "Dial Frequency" gibt dabei die Frequenz des (unterdrückten) Trägers an. Dies ist also die angezeigte Frequenz am Funkgerät. Das Funkgerät moduliert das obere Seitenband (USB-Modulation).

+

+ {| class="wikitable"

+ |+Dial Frequency

+ 1.

+ | style="text-align:right;" |2190m

+ | style="text-align:right;" |???,??? kHz

+ 1-

+ | style="text-align:right;" |630m

| style="text-align:right;"

+ |freigegeben in Österreich seit Dez. 2020: 474,200 kHz

+ |-

+ | style="text-align:right;" |160m

| style="text-align:right;" |?,??? MHz

```
| style="text-align:right;" |80m
| style="text-align:right;" |3,575 MHz
| style="text-align:right;" |60m
| style="text-align:right:"
|freigegeben in Österreich seit Dez.
 2020: 5,357 MHz
| style="text-align:right;" |40m
| style="text-align:right;" |7,0475 MHz
| style="text-align:right;" |30m
| style="text-align:right;" |10,140 MHz
II-
| style="text-align:right;" |20m
| style="text-align:right;" |14,080 MHz
| style="text-align:right;" |17m
| style="text-align:right;" |18,104 MHz
| style="text-align:right;" |15m
| style="text-align:right;" |21,140 MHz
| style="text-align:right;" |12m
| style="text-align:right;" |24,919 MHz
| style="text-align:right;" |10m
| style="text-align:right;" |28,180 MHz
```

```
+ | style="text-align:right;" |6m
   | style="text-align:right;" |50,318 MHz
  | style="text-align:right;" |4m
   | style="text-align:right;" |??,??? MHz
   | style="text-align:right;" |2m
   | style="text-align:right;" |144,120
   MHz
   144,170 MHz
   | style="text-align:right;" |70cm
   | style="text-align:right;" |432,065
   MHz
   | style="text-align:right;" |23cm
   | style="text-align:right;" |1296,065
   MHz
  | style="text-align:right;" |13cm
   | style="text-align:right;" |2301,065
   MHz
   2304,065 MHz
   2320,065 MHz
   | style="text-align:right;" |6cm
   | style="text-align:right;" |3400,065
   MHz
   | style="text-align:right;" |3cm
```

```
| style="text-align:right;" |?????,???
   MHz
+ |-
+ | style="text-align:right;" |1,25cm
   | style="text-align:right;" |?????,???
   MHz
  |}
   ====Weiterführende Links====
   *[https://ww-digi.com World Wide Digi
   DX Contest ("WW Digi")]
   *Dokumentation des [http://physics.
   princeton.edu/pulsar/k1jt
   /FT4 Protocol.pdf FT4 Protokolls (in
   Englisch)] und der [https://physics.
   princeton.edu/pulsar/k1jt
   /FT4 Protocol de.pdf Übersetzung
   von [http://www.qrz.com/db/oeleqw
   Enrico OE1EOW1.
   *Software [http://physics.princeton.
   edu/pulsar/k1jt/wsjtx.html WSJT-X]
   *Die damalige Ankündigung einer
   neuen Betriebsart FT4:
   auf [http://forums.grz.com/index.php?
   threads/new-digital-mode-ft4.655478
   ORZ.com1 bzw. [http://www.
   southgatearc.org/news/2019/april
   /new-digital-mode-ft4.htm Southgate].
   *Mit FT4 verwandte Betriebsarten:
   [[FT8]], [[JT65]], [[JT4]], [[JT9]], [[JT6M]],
   [[QRA64]], [[MSK144]], [[FSK441]], [[FST4
   ]] und [[WSPR]].
```

Version vom 29. Januar 2022, 15:27 Uhr

Digitale Betriebsarten im Detail\: FT4

Joe Taylor K1JT hat im April 2019 eine neue digitale Betriebsart angekündigt: FT4. Diese ist 2.5 mal schneller als FT8. Die aktuelle Programmversion ist WSJT-X Version 2.5.4 (Stand: 29. Jan. 2022, siehe WSJT-X 2.5.0 Benutzerhandbuch.

FT4 ist eine experimentelle digitale Betriebsart, die für Contests entworfen wurde. Wie bei FT8, benutzt sie Durchgänge konstanter Dauer mit strukturierten Nachrichtenformaten für minimale QSOs und starker Vorwärtsfehlerkorrektur. Die Durchgänge dauern 6 Sekunden, so dass ein FT4 QSO etwa 2,5 × schneller als ein FT8 QSO gearbeitet werden kann. Damit ist die Geschwindigkeit etwa vergleichbar mit RTTY im Contestbetrieb.

FT4 kann Signale verarbeiten, die etwa 10 dB schwächer sind als erforderlich für RTTY, obwohl weniger Bandbreite benötigt wird.

Die Vorwärtsfehlerkorrektur (FEC) in FT4 verwendet einen Paritätsprüfungscode mit niedriger Dichte (LDPC) mit 77 Informationsbits, einer zyklischen 14-Bit-Redundanzprüfung (CRC) und 83 Paritätsbits, die ein 174-Bit-Codewort bilden. Er wird daher als LDPC (174,91)-Code bezeichnet. Das Nachrichtenformat für FT4 ist identisch mit dem für FT8 und ebenfalls mit demselben LDPC (174,91) vor Übertragungsfehlern geschützt.

Die Synchronisation verwendet vier 4×4 Costas-Arrays, und am Anfang und am Ende jeder Übertragung werden Aufwärts- und Abwärtssymbole eingefügt. Die Modulation ist eine 4-Ton-Frequenzumtastung (4-GFSK) mit Gaußscher Glättung von Frequenzübergängen. Die Taktrate beträgt 12000/576 = 20,8333 Baud. Jedes übertragene Symbol überträgt zwei Bits, so dass die Gesamtzahl der Kanalsymbole 174/2 + 16 + 2 = 105 beträgt. Die Gesamtbandbreite beträgt $4\times20,8333 = 83,3$ Hz.

Ein Sendedurchgang beträgt 4,48s verglichen mit 12,64s für FT8. Die Modulation basiert auf einer vierwertigen Frequency-Shift Keying (FSK) mit ungefähr 23,4 Baud. Die vier Frequenzen unterscheiden sich um die Symbolrate. Die belegte Bandbreite beträgt 90 Hz. In dieser Bandbreite findet sich 99% der Sendeleistung.

Die folgende Tabelle listet die üblichen Frequenzbereiche für FT4 (Stand 2020). Die "Dial Frequency" gibt dabei die Frequenz des (unterdrückten) Trägers an. Dies ist also die angezeigte Frequenz am Funkgerät. Das Funkgerät moduliert das obere Seitenband (USB-Modulation).

Dial Frequency

2190m	???,??? kHz
630m	freigegeben in Österreich seit Dez. 2020: 474,200 kHz
160m	?,??? MHz
80m	3,575 MHz
60m	freigegeben in Österreich seit Dez. 2020: 5,357 MHz
40m	7,0475 MHz
30m	10,140 MHz
20m	14,080 MHz

17m	18,104	MHz
15m	21,140	MHz
12m	24,919	MHz
10m	28,180	MHz
6m	50,318	MHz
4m	??,???	MHz
	144,120	MHz
2m	144,170	MHz
70cm	432,065	MHz
23cm	1296,065	MHz
	2301,065	MHz
13cm	2304,065	MHz
	2320,065	MHz
6cm	3400,065	MHz
3cm	?????,???	MHz
1,25 cm	?????,???	MHz

Weiterführende Links

- World Wide Digi DX Contest ("WW Digi")
- Dokumentation des FT4 Protokolls (in Englisch) und der Übersetzung von Enrico OE1EQW.
- Software WSJT-X
- Die damalige Ankündigung einer neuen Betriebsart FT4: auf QRZ.com bzw. Southgate.
- Mit FT4 verwandte Betriebsarten: FT8, JT65, JT4, JT9, JT6M, QRA64, MSK144, FSK441, FST4 und WSPR.

FT4: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 24. April 2019, 18:02 Uhr (Q uelltext anzeigen)

OE1VMC (Diskussion | Beiträge)
← Zum vorherigen Versionsunterschied

Version vom 29. Januar 2022, 15:27 Uhr (Quelltext anzeigen)

OE1VMC (Diskussion | Beiträge)

K (→Digitale Betriebsarten im Detail: FT4)

Markierung: Visuelle Bearbeitung

Zum nächsten Versionsunterschied →

(24 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)

Zeile 2:
[[Kategorie:Kurzwelle]]
+ ==Digitale Betriebsarten im Detail: FT4=
Joe Taylor K1JT hat im April 2019 eine neue digitale Betriebsart angekündigt: FT4. Diese ist 2.5 mal schneller als FT8.
Die aktuelle Programmversion ist WSJT-X Version 2.5.4 (Stand: 29. Jan. 2022, siehe [https://physics.princetoedu//pulsar/k1it/wsjtx-doc/wsjtx-mair 2.5.0.html WSJT-X 2.5.0 Benutzerhandbuch].
FT4 ist eine experimentelle digitale Betriebsart, die für Contests entworfen wurde. Wie bei FT8, benutzt sie Durchgänge konstanter Dauer mit strukturierten Nachrichtenformaten für minimale QSOs und starker Vorwärtsfehlerkorrektur. Die Durchgä

ge dauern 6 Sekunden, so dass ein FT4 QSO etwa 2,5 × schneller als ein FT8 QSO gearbeitet werden kann. Dam it ist die Geschwindigkeit etwa vergleichbar mit RTTY im Contestbetrieb.

Dieser Artikel ist noch in Arbeit.

FT4 kann Signale verarbeiten, die etwa 10 dB schwächer sind als erforderlich für RTTY, obwohl weniger Bandbreite benötigt wird.

Einige Infos:

Die Vorwärtsfehlerkorrektur (FEC) in FT4 verwendet einen Paritätsprüfungscode mit niedriger Dichte ([https://de.wikipedia.org/wiki/Low-Density-Parity-Check-Code LDPC]) mit 77 Informationsbits, einer zyklischen 14-Bit-Redundanzprüfung (CRC) und 83 Paritätsbits, die ein 174-Bit-Codewort bilden. Er wird daher als LDPC (174,91)-Code bezeichnet. Das Nachrichtenformat für FT4 ist identisch mit dem für [[FT8]] und ebenfalls mit demselben LDPC (174,91) vor Übertragungsfehlern geschützt.

[http://physics.princeton.edu/pulsar/k1 jt/wsjtx.html WSJT-X]

Die Synchronisation verwendet vier 4×4 [https://en.m.wikipedia.org/wiki/C ostas array Costas-Arrays,] und am Anfang und am Ende jeder Übertragung werden Aufwärts- und Abwärtssymbole eingefügt. Die Modulation ist eine 4-Ton-Frequenzumtastung (4-[[GFSK]]) mit Gaußscher Glättung von Frequenzübergängen. Die Taktrate beträgt 12000/576 = 20.8333 Baud. Jedes übertragene Symbol überträgt zwei Bits, so dass die Gesamtzahl der Kanalsymbole 174/2 + 16 + 2 = 105beträgt. Die Gesamtbandbreite beträgt $4 \times 20,8333 = 83,3$ Hz.

[http://forums.grz.com/index.php?
threads/new-digital-mode-ft4.655478
Ankündigung auf QRZ.com]

Ein Sendedurchgang beträgt 4,48s verglichen mit 12,64s für FT8.

- Die Modulation basiert auf einer vierwertigen Frequency-Shift Keying (FSK) mit ungefähr 23,4 Baud.
- + Die vier Frequenzen unterscheiden sich um die Symbolrate.
- Die belegte Bandbreite beträgt 90 Hz.
 + In dieser Bandbreite findet sich 99% der Sendeleistung.

Siehe auch: [[FT8]], [[JT65]], [[JT4]], [[JT9]], [[JT6M]], [[QRA64]], [[MSK144]], [[FSK441]] und [[WSPR]].

Die folgende Tabelle listet die üblichen Frequenzbereiche für FT4 (Stand 2020). Die "Dial Frequency" gibt dabei die Frequenz des (unterdrückten) Trägers an. Dies ist also die angezeigte Frequenz am Funkgerät. Das Funkgerät moduliert das obere Seitenband (USB-Modulation).

+

+ {| class="wikitable"

+ |+Dial Frequency

+ 1-

+ | style="text-align:right;" |2190m

| style="text-align:right;" |???,??? kHz

+ 1-

+ | style="text-align:right;" |630m

| style="text-align:right;" + |freigegeben in Österreich seit Dez.

2020: 474,200 kHz

+ |-

+ | style="text-align:right;" |160m

| style="text-align:right;" |?,??? MHz

```
| style="text-align:right;" |80m
| style="text-align:right;" |3,575 MHz
| style="text-align:right;" |60m
| style="text-align:right:"
|freigegeben in Österreich seit Dez.
 2020: 5,357 MHz
| style="text-align:right;" |40m
| style="text-align:right;" |7,0475 MHz
| style="text-align:right;" |30m
| style="text-align:right;" |10,140 MHz
II-
| style="text-align:right;" |20m
| style="text-align:right;" |14,080 MHz
| style="text-align:right;" |17m
| style="text-align:right;" |18,104 MHz
| style="text-align:right;" |15m
| style="text-align:right;" |21,140 MHz
| style="text-align:right;" |12m
| style="text-align:right;" |24,919 MHz
| style="text-align:right;" |10m
| style="text-align:right;" |28,180 MHz
```

```
+ | style="text-align:right;" |6m
   | style="text-align:right;" |50,318 MHz
  | style="text-align:right;" |4m
   | style="text-align:right;" |??,??? MHz
   | style="text-align:right;" |2m
   | style="text-align:right;" |144,120
   MHz
   144,170 MHz
   | style="text-align:right;" |70cm
   | style="text-align:right;" |432,065
   MHz
   | style="text-align:right;" |23cm
   | style="text-align:right;" |1296,065
   MHz
  | style="text-align:right;" |13cm
   | style="text-align:right;" |2301,065
   MHz
   2304,065 MHz
   2320,065 MHz
   | style="text-align:right;" |6cm
   | style="text-align:right;" |3400,065
   MHz
   | style="text-align:right;" |3cm
```

```
| style="text-align:right;" |?????,???
   MHz
+ |-
+ | style="text-align:right;" |1,25cm
   | style="text-align:right;" |?????,???
   MHz
  |}
   ====Weiterführende Links====
   *[https://ww-digi.com World Wide Digi
   DX Contest ("WW Digi")]
   *Dokumentation des [http://physics.
   princeton.edu/pulsar/k1jt
   /FT4 Protocol.pdf FT4 Protokolls (in
   Englisch)] und der [https://physics.
   princeton.edu/pulsar/k1jt
   /FT4 Protocol de.pdf Übersetzung]
   von [http://www.qrz.com/db/oeleqw
   Enrico OE1EOW1.
   *Software [http://physics.princeton.
   edu/pulsar/k1jt/wsjtx.html WSJT-X]
   *Die damalige Ankündigung einer
   neuen Betriebsart FT4:
   auf [http://forums.grz.com/index.php?
   threads/new-digital-mode-ft4.655478
   ORZ.com1 bzw. [http://www.
   southgatearc.org/news/2019/april
   /new-digital-mode-ft4.htm Southgate].
   *Mit FT4 verwandte Betriebsarten:
   [[FT8]], [[JT65]], [[JT4]], [[JT9]], [[JT6M]],
   [[QRA64]], [[MSK144]], [[FSK441]], [[FST4
   ]] und [[WSPR]].
```

Version vom 29. Januar 2022, 15:27 Uhr

Digitale Betriebsarten im Detail\: FT4

Joe Taylor K1JT hat im April 2019 eine neue digitale Betriebsart angekündigt: FT4. Diese ist 2.5 mal schneller als FT8. Die aktuelle Programmversion ist WSJT-X Version 2.5.4 (Stand: 29. Jan. 2022, siehe WSJT-X 2.5.0 Benutzerhandbuch.

FT4 ist eine experimentelle digitale Betriebsart, die für Contests entworfen wurde. Wie bei FT8, benutzt sie Durchgänge konstanter Dauer mit strukturierten Nachrichtenformaten für minimale QSOs und starker Vorwärtsfehlerkorrektur. Die Durchgänge dauern 6 Sekunden, so dass ein FT4 QSO etwa 2,5 × schneller als ein FT8 QSO gearbeitet werden kann. Damit ist die Geschwindigkeit etwa vergleichbar mit RTTY im Contestbetrieb.

FT4 kann Signale verarbeiten, die etwa 10 dB schwächer sind als erforderlich für RTTY, obwohl weniger Bandbreite benötigt wird.

Die Vorwärtsfehlerkorrektur (FEC) in FT4 verwendet einen Paritätsprüfungscode mit niedriger Dichte (LDPC) mit 77 Informationsbits, einer zyklischen 14-Bit-Redundanzprüfung (CRC) und 83 Paritätsbits, die ein 174-Bit-Codewort bilden. Er wird daher als LDPC (174,91)-Code bezeichnet. Das Nachrichtenformat für FT4 ist identisch mit dem für FT8 und ebenfalls mit demselben LDPC (174,91) vor Übertragungsfehlern geschützt.

Die Synchronisation verwendet vier 4×4 Costas-Arrays, und am Anfang und am Ende jeder Übertragung werden Aufwärts- und Abwärtssymbole eingefügt. Die Modulation ist eine 4-Ton-Frequenzumtastung (4-GFSK) mit Gaußscher Glättung von Frequenzübergängen. Die Taktrate beträgt 12000/576 = 20,8333 Baud. Jedes übertragene Symbol überträgt zwei Bits, so dass die Gesamtzahl der Kanalsymbole 174/2 + 16 + 2 = 105 beträgt. Die Gesamtbandbreite beträgt $4\times20,8333 = 83,3$ Hz.

Ein Sendedurchgang beträgt 4,48s verglichen mit 12,64s für FT8. Die Modulation basiert auf einer vierwertigen Frequency-Shift Keying (FSK) mit ungefähr 23,4 Baud. Die vier Frequenzen unterscheiden sich um die Symbolrate. Die belegte Bandbreite beträgt 90 Hz. In dieser Bandbreite findet sich 99% der Sendeleistung.

Die folgende Tabelle listet die üblichen Frequenzbereiche für FT4 (Stand 2020). Die "Dial Frequency" gibt dabei die Frequenz des (unterdrückten) Trägers an. Dies ist also die angezeigte Frequenz am Funkgerät. Das Funkgerät moduliert das obere Seitenband (USB-Modulation).

Dial Frequency

2190m	???,??? kHz
630m	freigegeben in Österreich seit Dez. 2020: 474,200 kHz
160m	?,??? MHz
80m	3,575 MHz
60m	freigegeben in Österreich seit Dez. 2020: 5,357 MHz
40m	7,0475 MHz
30m	10,140 MHz
20m	14,080 MHz

17m	18,104	MHz
15m	21,140	MHz
12m	24,919	MHz
10m	28,180	MHz
6m	50,318	MHz
4m	??,???	MHz
	144,120	MHz
2m	144,170	MHz
70cm	432,065	MHz
23cm	1296,065	MHz
	2301,065	MHz
13cm	2304,065	MHz
	2320,065	MHz
6cm	3400,065	MHz
3cm	?????,???	MHz
1,25 cm	?????,???	MHz

Weiterführende Links

- World Wide Digi DX Contest ("WW Digi")
- Dokumentation des FT4 Protokolls (in Englisch) und der Übersetzung von Enrico OE1EQW.
- Software WSJT-X
- Die damalige Ankündigung einer neuen Betriebsart FT4: auf QRZ.com bzw. Southgate.
- Mit FT4 verwandte Betriebsarten: FT8, JT65, JT4, JT9, JT6M, QRA64, MSK144, FSK441, FST4 und WSPR.

FT4: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 24. April 2019, 18:02 Uhr (Q uelltext anzeigen)

OE1VMC (Diskussion | Beiträge)
← Zum vorherigen Versionsunterschied

Version vom 29. Januar 2022, 15:27 Uhr (Quelltext anzeigen)

OE1VMC (Diskussion | Beiträge)

K (→Digitale Betriebsarten im Detail: FT4)

Markierung: Visuelle Bearbeitung

Zum nächsten Versionsunterschied →

(24 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)

Zeile 2:
[[Kategorie:Kurzwelle]]
+ ==Digitale Betriebsarten im Detail: FT4=
Joe Taylor K1JT hat im April 2019 eine neue digitale Betriebsart angekündigt: FT4. Diese ist 2.5 mal schneller als FT8.
Die aktuelle Programmversion ist WSJT-X Version 2.5.4 (Stand: 29. Jan. 2022, siehe [https://physics.princetoedu//pulsar/k1it/wsjtx-doc/wsjtx-mair 2.5.0.html WSJT-X 2.5.0 Benutzerhandbuch].
FT4 ist eine experimentelle digitale Betriebsart, die für Contests entworfen wurde. Wie bei FT8, benutzt sie Durchgänge konstanter Dauer mit strukturierten Nachrichtenformaten für minimale QSOs und starker Vorwärtsfehlerkorrektur. Die Durchgä

ge dauern 6 Sekunden, so dass ein FT4 QSO etwa 2,5 × schneller als ein FT8 QSO gearbeitet werden kann. Dam it ist die Geschwindigkeit etwa vergleichbar mit RTTY im Contestbetrieb.

Dieser Artikel ist noch in Arbeit.

FT4 kann Signale verarbeiten, die etwa 10 dB schwächer sind als erforderlich für RTTY, obwohl weniger Bandbreite benötigt wird.

Einige Infos:

Die Vorwärtsfehlerkorrektur (FEC) in FT4 verwendet einen Paritätsprüfungscode mit niedriger Dichte ([https://de.wikipedia.org/wiki/Low-Density-Parity-Check-Code LDPC]) mit 77 Informationsbits, einer zyklischen 14-Bit-Redundanzprüfung (CRC) und 83 Paritätsbits, die ein 174-Bit-Codewort bilden. Er wird daher als LDPC (174,91)-Code bezeichnet. Das Nachrichtenformat für FT4 ist identisch mit dem für [[FT8]] und ebenfalls mit demselben LDPC (174,91) vor Übertragungsfehlern geschützt.

[http://physics.princeton.edu/pulsar/k1 jt/wsjtx.html WSJT-X]

Die Synchronisation verwendet vier 4×4 [https://en.m.wikipedia.org/wiki/C ostas array Costas-Arrays,] und am Anfang und am Ende jeder Übertragung werden Aufwärts- und Abwärtssymbole eingefügt. Die Modulation ist eine 4-Ton-Frequenzumtastung (4-[[GFSK]]) mit Gaußscher Glättung von Frequenzübergängen. Die Taktrate beträgt 12000/576 = 20.8333 Baud. Jedes übertragene Symbol überträgt zwei Bits, so dass die Gesamtzahl der Kanalsymbole 174/2 + 16 + 2 = 105beträgt. Die Gesamtbandbreite beträgt $4 \times 20,8333 = 83,3$ Hz.

[http://forums.grz.com/index.php?
- threads/new-digital-mode-ft4.655478
Ankündigung auf QRZ.com]

Ein Sendedurchgang beträgt 4,48s verglichen mit 12,64s für FT8.

- Die Modulation basiert auf einer
 vierwertigen Frequency-Shift Keying
 (FSK) mit ungefähr 23,4 Baud.
- + Die vier Frequenzen unterscheiden sich um die Symbolrate.
- Die belegte Bandbreite beträgt 90 Hz.
 + In dieser Bandbreite findet sich 99% der Sendeleistung.

Siehe auch: [[FT8]], [[JT65]], [[JT4]], [[JT9]], [[JT6M]], [[QRA64]], [[MSK144]], [[FSK441]] und [[WSPR]].

Die folgende Tabelle listet die üblichen Frequenzbereiche für FT4 (Stand 2020). Die "Dial Frequency" gibt dabei die Frequenz des (unterdrückten) Trägers an. Dies ist also die angezeigte Frequenz am Funkgerät. Das Funkgerät moduliert das obere Seitenband (USB-Modulation).

+

+ {| class="wikitable"

+ |+Dial Frequency

+ | |-

+ | style="text-align:right;" |2190m

+ | style="text-align:right;" |???,??? kHz

+ |-

+ | style="text-align:right;" |630m

| style="text-align:right;"+ |freigegeben in Österreich seit Dez.2020: 474,200 kHz

+ I-

+ | style="text-align:right;" |160m

| style="text-align:right;" |?,??? MHz

```
| style="text-align:right;" |80m
| style="text-align:right;" |3,575 MHz
| style="text-align:right;" |60m
| style="text-align:right:"
|freigegeben in Österreich seit Dez.
 2020: 5,357 MHz
| style="text-align:right;" |40m
| style="text-align:right;" |7,0475 MHz
| style="text-align:right;" |30m
| style="text-align:right;" |10,140 MHz
II-
| style="text-align:right;" |20m
| style="text-align:right;" |14,080 MHz
| style="text-align:right;" |17m
| style="text-align:right;" |18,104 MHz
| style="text-align:right;" |15m
| style="text-align:right;" |21,140 MHz
| style="text-align:right;" |12m
| style="text-align:right;" |24,919 MHz
| style="text-align:right;" |10m
| style="text-align:right;" |28,180 MHz
```

```
+ | style="text-align:right;" |6m
   | style="text-align:right;" |50,318 MHz
  | style="text-align:right;" |4m
   | style="text-align:right;" |??,??? MHz
   | style="text-align:right;" |2m
   | style="text-align:right;" |144,120
   MHz
   144,170 MHz
   | style="text-align:right;" |70cm
   | style="text-align:right;" |432,065
   MHz
   | style="text-align:right;" |23cm
   | style="text-align:right;" |1296,065
   MHz
  | style="text-align:right;" |13cm
   | style="text-align:right;" |2301,065
   MHz
   2304,065 MHz
   2320,065 MHz
   | style="text-align:right;" |6cm
   | style="text-align:right;" |3400,065
   MHz
   | style="text-align:right;" |3cm
```

```
| style="text-align:right;" |?????,???
   MHz
+ |-
+ | style="text-align:right;" |1,25cm
   | style="text-align:right;" |?????,???
   MHz
  |}
   ====Weiterführende Links====
   *[https://ww-digi.com World Wide Digi
   DX Contest ("WW Digi")]
   *Dokumentation des [http://physics.
   princeton.edu/pulsar/k1jt
   /FT4 Protocol.pdf FT4 Protokolls (in
   Englisch)] und der [https://physics.
   princeton.edu/pulsar/k1jt
   /FT4 Protocol de.pdf Übersetzung
   von [http://www.qrz.com/db/oeleqw
   Enrico OE1EOW1.
   *Software [http://physics.princeton.
   edu/pulsar/k1jt/wsjtx.html WSJT-X]
   *Die damalige Ankündigung einer
   neuen Betriebsart FT4:
   auf [http://forums.grz.com/index.php?
   threads/new-digital-mode-ft4.655478
   ORZ.com1 bzw. [http://www.
   southgatearc.org/news/2019/april
   /new-digital-mode-ft4.htm Southgate].
   *Mit FT4 verwandte Betriebsarten:
   [[FT8]], [[JT65]], [[JT4]], [[JT9]], [[JT6M]],
   [[QRA64]], [[MSK144]], [[FSK441]], [[FST4
   ]] und [[WSPR]].
```

Version vom 29. Januar 2022, 15:27 Uhr

Digitale Betriebsarten im Detail\: FT4

Joe Taylor K1JT hat im April 2019 eine neue digitale Betriebsart angekündigt: FT4. Diese ist 2.5 mal schneller als FT8. Die aktuelle Programmversion ist WSJT-X Version 2.5.4 (Stand: 29. Jan. 2022, siehe WSJT-X 2.5.0 Benutzerhandbuch.

FT4 ist eine experimentelle digitale Betriebsart, die für Contests entworfen wurde. Wie bei FT8, benutzt sie Durchgänge konstanter Dauer mit strukturierten Nachrichtenformaten für minimale QSOs und starker Vorwärtsfehlerkorrektur. Die Durchgänge dauern 6 Sekunden, so dass ein FT4 QSO etwa 2,5 × schneller als ein FT8 QSO gearbeitet werden kann. Damit ist die Geschwindigkeit etwa vergleichbar mit RTTY im Contestbetrieb.

FT4 kann Signale verarbeiten, die etwa 10 dB schwächer sind als erforderlich für RTTY, obwohl weniger Bandbreite benötigt wird.

Die Vorwärtsfehlerkorrektur (FEC) in FT4 verwendet einen Paritätsprüfungscode mit niedriger Dichte (LDPC) mit 77 Informationsbits, einer zyklischen 14-Bit-Redundanzprüfung (CRC) und 83 Paritätsbits, die ein 174-Bit-Codewort bilden. Er wird daher als LDPC (174,91)-Code bezeichnet. Das Nachrichtenformat für FT4 ist identisch mit dem für FT8 und ebenfalls mit demselben LDPC (174,91) vor Übertragungsfehlern geschützt.

Die Synchronisation verwendet vier 4×4 Costas-Arrays, und am Anfang und am Ende jeder Übertragung werden Aufwärts- und Abwärtssymbole eingefügt. Die Modulation ist eine 4-Ton-Frequenzumtastung (4-GFSK) mit Gaußscher Glättung von Frequenzübergängen. Die Taktrate beträgt 12000/576 = 20,8333 Baud. Jedes übertragene Symbol überträgt zwei Bits, so dass die Gesamtzahl der Kanalsymbole 174/2 + 16 + 2 = 105 beträgt. Die Gesamtbandbreite beträgt $4\times20,8333 = 83,3$ Hz.

Ein Sendedurchgang beträgt 4,48s verglichen mit 12,64s für FT8. Die Modulation basiert auf einer vierwertigen Frequency-Shift Keying (FSK) mit ungefähr 23,4 Baud. Die vier Frequenzen unterscheiden sich um die Symbolrate. Die belegte Bandbreite beträgt 90 Hz. In dieser Bandbreite findet sich 99% der Sendeleistung.

Die folgende Tabelle listet die üblichen Frequenzbereiche für FT4 (Stand 2020). Die "Dial Frequency" gibt dabei die Frequenz des (unterdrückten) Trägers an. Dies ist also die angezeigte Frequenz am Funkgerät. Das Funkgerät moduliert das obere Seitenband (USB-Modulation).

Dial Frequency

2190m	???,??? kHz
630m	freigegeben in Österreich seit Dez. 2020: 474,200 kHz
160m	?,??? MHz
80m	3,575 MHz
60m	freigegeben in Österreich seit Dez. 2020: 5,357 MHz
40m	7,0475 MHz
30m	10,140 MHz
20m	14,080 MHz

17m	18,104 M	1Hz
15m	21,140 M	1Hz
12m	24,919 M	1Hz
10m	28,180 M	1Hz
6m	50,318 M	1Hz
4m	??,??? M	1Hz
	144,120 M	1Hz
2m	144,170 M	1Hz
70cm	432,065 M	1Hz
23cm	1296,065 M	1Hz
	2301,065 M	1Hz
13cm	2304,065 M	1Hz
	2320,065 M	1Hz
6cm	3400,065 M	1Hz
3cm	?????,??? M	1Hz
1,25 cm	?????,??? M	1Hz

Weiterführende Links

- World Wide Digi DX Contest ("WW Digi")
- Dokumentation des FT4 Protokolls (in Englisch) und der Übersetzung von Enrico OE1EQW.
- Software WSJT-X
- Die damalige Ankündigung einer neuen Betriebsart FT4: auf QRZ.com bzw. Southgate.
- Mit FT4 verwandte Betriebsarten: FT8, JT65, JT4, JT9, JT6M, QRA64, MSK144, FSK441, FST4 und WSPR.

FT4: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 24. April 2019, 18:02 Uhr (Q uelltext anzeigen)

OE1VMC (Diskussion | Beiträge)
← Zum vorherigen Versionsunterschied

Version vom 29. Januar 2022, 15:27 Uhr (Quelltext anzeigen)

OE1VMC (Diskussion | Beiträge)

K (→Digitale Betriebsarten im Detail: FT4)

Markierung: Visuelle Bearbeitung

Zum nächsten Versionsunterschied →

(24 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)

Zeile 2:
[[Kategorie:Kurzwelle]]
+ ==Digitale Betriebsarten im Detail: FT4=
Joe Taylor K1JT hat im April 2019 eine neue digitale Betriebsart angekündigt: FT4. Diese ist 2.5 mal schneller als FT8.
Die aktuelle Programmversion ist WSJT-X Version 2.5.4 (Stand: 29. Jan. 2022, siehe [https://physics.princetoredu//pulsar/k1it/wsjtx-doc/wsjtx-mair 2.5.0.html WSJT-X 2.5.0 Benutzerhandbuch].
FT4 ist eine experimentelle digitale Betriebsart, die für Contests entworfen wurde. Wie bei FT8, benutzt sie Durchgänge konstanter Dauer mit strukturierten Nachrichtenformaten für minimale QSOs und starker Vorwärtsfehlerkorrektur. Die Durchgä

ge dauern 6 Sekunden, so dass ein FT4 QSO etwa 2,5 × schneller als ein FT8 QSO gearbeitet werden kann. Dam it ist die Geschwindigkeit etwa vergleichbar mit RTTY im Contestbetrieb.

Dieser Artikel ist noch in Arbeit.

FT4 kann Signale verarbeiten, die etwa 10 dB schwächer sind als erforderlich für RTTY, obwohl weniger Bandbreite benötigt wird.

Einige Infos:

Die Vorwärtsfehlerkorrektur (FEC) in FT4 verwendet einen Paritätsprüfungscode mit niedriger Dichte ([https://de.wikipedia.org/wiki/Low-Density-Parity-Check-Code LDPC]) mit 77 Informationsbits, einer zyklischen 14-Bit-Redundanzprüfung (CRC) und 83 Paritätsbits, die ein 174-Bit-Codewort bilden. Er wird daher als LDPC (174,91)-Code bezeichnet. Das Nachrichtenformat für FT4 ist identisch mit dem für [[FT8]] und ebenfalls mit demselben LDPC (174,91) vor Übertragungsfehlern geschützt.

[http://physics.princeton.edu/pulsar/k1 jt/wsjtx.html WSJT-X]

Die Synchronisation verwendet vier 4×4 [https://en.m.wikipedia.org/wiki/C ostas array Costas-Arrays,] und am Anfang und am Ende jeder Übertragung werden Aufwärts- und Abwärtssymbole eingefügt. Die Modulation ist eine 4-Ton-Frequenzumtastung (4-[[GFSK]]) mit Gaußscher Glättung von Frequenzübergängen. Die Taktrate beträgt 12000/576 = 20.8333 Baud. Jedes übertragene Symbol überträgt zwei Bits, so dass die Gesamtzahl der Kanalsymbole 174/2 + 16 + 2 = 105beträgt. Die Gesamtbandbreite beträgt $4 \times 20,8333 = 83,3$ Hz.

[http://forums.grz.com/index.php? - threads/new-digital-mode-ft4.655478 Ankündigung auf QRZ.com] Ein Sendedurchgang beträgt 4,48s verglichen mit 12,64s für FT8.

- Die Modulation basiert auf einer vierwertigen Frequency-Shift Keying (FSK) mit ungefähr 23,4 Baud.
- + Die vier Frequenzen unterscheiden sich um die Symbolrate.
- Die belegte Bandbreite beträgt 90 Hz.
 + In dieser Bandbreite findet sich 99% der Sendeleistung.

Siehe auch: [[FT8]], [[JT65]], [[JT4]], [[JT9]], [[JT6M]], [[QRA64]], [[MSK144]], [[FSK441]] und [[WSPR]].

Die folgende Tabelle listet die üblichen Frequenzbereiche für FT4 (Stand 2020). Die "Dial Frequency" gibt dabei die Frequenz des (unterdrückten) Trägers an. Dies ist also die angezeigte Frequenz am Funkgerät. Das Funkgerät moduliert das obere Seitenband (USB-Modulation).

+

+ {| class="wikitable"

+ |+Dial Frequency

+ |-

+ | style="text-align:right;" |2190m

+ | style="text-align:right;" |???,??? kHz

+ 1-

+ | style="text-align:right;" |630m

| style="text-align:right;"+ |freigegeben in Österreich seit Dez.2020: 474,200 kHz

+ |-

+ | style="text-align:right;" |160m

| style="text-align:right;" |?,??? MHz

```
| style="text-align:right;" |80m
| style="text-align:right;" |3,575 MHz
| style="text-align:right;" |60m
| style="text-align:right:"
|freigegeben in Österreich seit Dez.
2020: 5,357 MHz
| style="text-align:right;" |40m
| style="text-align:right;" |7,0475 MHz
| style="text-align:right;" |30m
| style="text-align:right;" |10,140 MHz
II-
| style="text-align:right;" |20m
| style="text-align:right;" |14,080 MHz
| style="text-align:right;" |17m
| style="text-align:right;" |18,104 MHz
| style="text-align:right;" |15m
| style="text-align:right;" |21,140 MHz
| style="text-align:right;" |12m
| style="text-align:right;" |24,919 MHz
| style="text-align:right;" |10m
| style="text-align:right;" |28,180 MHz
```

```
+ | style="text-align:right;" |6m
   | style="text-align:right;" |50,318 MHz
  | style="text-align:right;" |4m
   | style="text-align:right;" |??,??? MHz
   | style="text-align:right;" |2m
   | style="text-align:right;" |144,120
   MHz
   144,170 MHz
   | style="text-align:right;" |70cm
   | style="text-align:right;" |432,065
   MHz
   | style="text-align:right;" |23cm
   | style="text-align:right;" |1296,065
   MHz
  | style="text-align:right;" |13cm
   | style="text-align:right;" |2301,065
   MHz
   2304,065 MHz
   2320,065 MHz
   | style="text-align:right;" |6cm
   | style="text-align:right;" |3400,065
   MHz
   | style="text-align:right;" |3cm
```

```
| style="text-align:right;" |?????,???
   MHz
+ |-
+ | style="text-align:right;" |1,25cm
   | style="text-align:right;" |?????,???
   MHz
  |}
   ====Weiterführende Links====
   *[https://ww-digi.com World Wide Digi
   DX Contest ("WW Digi")]
   *Dokumentation des [http://physics.
   princeton.edu/pulsar/k1jt
   /FT4 Protocol.pdf FT4 Protokolls (in
   Englisch)] und der [https://physics.
   princeton.edu/pulsar/k1jt
   /FT4 Protocol de.pdf Übersetzung
   von [http://www.qrz.com/db/oeleqw
   Enrico OE1EOW1.
   *Software [http://physics.princeton.
   edu/pulsar/k1jt/wsjtx.html WSJT-X]
   *Die damalige Ankündigung einer
   neuen Betriebsart FT4:
   auf [http://forums.grz.com/index.php?
   threads/new-digital-mode-ft4.655478
   ORZ.com1 bzw. [http://www.
   southgatearc.org/news/2019/april
   /new-digital-mode-ft4.htm Southgate].
   *Mit FT4 verwandte Betriebsarten:
   [[FT8]], [[JT65]], [[JT4]], [[JT9]], [[JT6M]],
   [[QRA64]], [[MSK144]], [[FSK441]], [[FST4
   ]] und [[WSPR]].
```

Version vom 29. Januar 2022, 15:27 Uhr

Digitale Betriebsarten im Detail\: FT4

Joe Taylor K1JT hat im April 2019 eine neue digitale Betriebsart angekündigt: FT4. Diese ist 2.5 mal schneller als FT8. Die aktuelle Programmversion ist WSJT-X Version 2.5.4 (Stand: 29. Jan. 2022, siehe WSJT-X 2.5.0 Benutzerhandbuch.

FT4 ist eine experimentelle digitale Betriebsart, die für Contests entworfen wurde. Wie bei FT8, benutzt sie Durchgänge konstanter Dauer mit strukturierten Nachrichtenformaten für minimale QSOs und starker Vorwärtsfehlerkorrektur. Die Durchgänge dauern 6 Sekunden, so dass ein FT4 QSO etwa 2,5 × schneller als ein FT8 QSO gearbeitet werden kann. Damit ist die Geschwindigkeit etwa vergleichbar mit RTTY im Contestbetrieb.

FT4 kann Signale verarbeiten, die etwa 10 dB schwächer sind als erforderlich für RTTY, obwohl weniger Bandbreite benötigt wird.

Die Vorwärtsfehlerkorrektur (FEC) in FT4 verwendet einen Paritätsprüfungscode mit niedriger Dichte (LDPC) mit 77 Informationsbits, einer zyklischen 14-Bit-Redundanzprüfung (CRC) und 83 Paritätsbits, die ein 174-Bit-Codewort bilden. Er wird daher als LDPC (174,91)-Code bezeichnet. Das Nachrichtenformat für FT4 ist identisch mit dem für FT8 und ebenfalls mit demselben LDPC (174,91) vor Übertragungsfehlern geschützt.

Die Synchronisation verwendet vier 4×4 Costas-Arrays, und am Anfang und am Ende jeder Übertragung werden Aufwärts- und Abwärtssymbole eingefügt. Die Modulation ist eine 4-Ton-Frequenzumtastung (4-GFSK) mit Gaußscher Glättung von Frequenzübergängen. Die Taktrate beträgt 12000/576 = 20,8333 Baud. Jedes übertragene Symbol überträgt zwei Bits, so dass die Gesamtzahl der Kanalsymbole 174/2 + 16 + 2 = 105 beträgt. Die Gesamtbandbreite beträgt $4\times20,8333 = 83,3$ Hz.

Ein Sendedurchgang beträgt 4,48s verglichen mit 12,64s für FT8. Die Modulation basiert auf einer vierwertigen Frequency-Shift Keying (FSK) mit ungefähr 23,4 Baud. Die vier Frequenzen unterscheiden sich um die Symbolrate. Die belegte Bandbreite beträgt 90 Hz. In dieser Bandbreite findet sich 99% der Sendeleistung.

Die folgende Tabelle listet die üblichen Frequenzbereiche für FT4 (Stand 2020). Die "Dial Frequency" gibt dabei die Frequenz des (unterdrückten) Trägers an. Dies ist also die angezeigte Frequenz am Funkgerät. Das Funkgerät moduliert das obere Seitenband (USB-Modulation).

Dial Frequency

2190m	???,??? kHz
630m	freigegeben in Österreich seit Dez. 2020: 474,200 kHz
160m	?,??? MHz
80m	3,575 MHz
60m	freigegeben in Österreich seit Dez. 2020: 5,357 MHz
40m	7,0475 MHz
30m	10,140 MHz
20m	14,080 MHz

18,104	MHz
21,140	MHz
24,919	MHz
28,180	MHz
50,318	MHz
??,???	MHz
144,120	MHz
144,170	MHz
432,065	MHz
1296,065	MHz
2301,065	MHz
2304,065	MHz
2320,065	MHz
3400,065	MHz
?????,???	MHz
?????,???	MHz
	21,140 24,919 28,180 50,318 ??,??? 144,120 144,170 432,065 1296,065 2301,065 2304,065 2320,065 3400,065 ?????,???

Weiterführende Links

- World Wide Digi DX Contest ("WW Digi")
- Dokumentation des FT4 Protokolls (in Englisch) und der Übersetzung von Enrico OE1EQW.
- Software WSJT-X
- Die damalige Ankündigung einer neuen Betriebsart FT4: auf QRZ.com bzw. Southgate.
- Mit FT4 verwandte Betriebsarten: FT8, JT65, JT4, JT9, JT6M, QRA64, MSK144, FSK441, FST4 und WSPR.

FT4: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 24. April 2019, 18:02 Uhr (Q uelltext anzeigen)

OE1VMC (Diskussion | Beiträge)
← Zum vorherigen Versionsunterschied

Version vom 29. Januar 2022, 15:27 Uhr (Quelltext anzeigen)

OE1VMC (Diskussion | Beiträge)

K (→Digitale Betriebsarten im Detail: FT4)

Markierung: Visuelle Bearbeitung

Zum nächsten Versionsunterschied →

(24 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)

Zeile 2:
[[Kategorie:Kurzwelle]]
+ ==Digitale Betriebsarten im Detail: FT4=
Joe Taylor K1JT hat im April 2019 eine neue digitale Betriebsart angekündigt: FT4. Diese ist 2.5 mal schneller als FT8.
Die aktuelle Programmversion ist WSJT-X Version 2.5.4 (Stand: 29. Jan. 2022, siehe [https://physics.princetoredu//pulsar/k1it/wsjtx-doc/wsjtx-mair 2.5.0.html WSJT-X 2.5.0 Benutzerhandbuch].
FT4 ist eine experimentelle digitale Betriebsart, die für Contests entworfen wurde. Wie bei FT8, benutzt sie Durchgänge konstanter Dauer mit strukturierten Nachrichtenformaten für minimale QSOs und starker Vorwärtsfehlerkorrektur. Die Durchgä

ge dauern 6 Sekunden, so dass ein FT4 QSO etwa 2,5 × schneller als ein FT8 QSO gearbeitet werden kann. Dam it ist die Geschwindigkeit etwa vergleichbar mit RTTY im Contestbetrieb.

Dieser Artikel ist noch in Arbeit.

FT4 kann Signale verarbeiten, die etwa 10 dB schwächer sind als erforderlich für RTTY, obwohl weniger Bandbreite benötigt wird.

Einige Infos:

Die Vorwärtsfehlerkorrektur (FEC) in FT4 verwendet einen Paritätsprüfungscode mit niedriger Dichte ([https://de.wikipedia.org/wiki/Low-Density-Parity-Check-Code LDPC]) mit 77 Informationsbits, einer zyklischen 14-Bit-Redundanzprüfung (CRC) und 83 Paritätsbits, die ein 174-Bit-Codewort bilden. Er wird daher als LDPC (174,91)-Code bezeichnet. Das Nachrichtenformat für FT4 ist identisch mit dem für [[FT8]] und ebenfalls mit demselben LDPC (174,91) vor Übertragungsfehlern geschützt.

[http://physics.princeton.edu/pulsar/k1 jt/wsjtx.html WSJT-X]

Die Synchronisation verwendet vier 4×4 [https://en.m.wikipedia.org/wiki/C ostas array Costas-Arrays,] und am Anfang und am Ende jeder Übertragung werden Aufwärts- und Abwärtssymbole eingefügt. Die Modulation ist eine 4-Ton-Frequenzumtastung (4-[[GFSK]]) mit Gaußscher Glättung von Frequenzübergängen. Die Taktrate beträgt 12000/576 = 20.8333 Baud. Jedes übertragene Symbol überträgt zwei Bits, so dass die Gesamtzahl der Kanalsymbole 174/2 + 16 + 2 = 105beträgt. Die Gesamtbandbreite beträgt $4 \times 20,8333 = 83,3$ Hz.

[http://forums.grz.com/index.php?
- threads/new-digital-mode-ft4.655478
Ankündigung auf QRZ.com]

Ein Sendedurchgang beträgt 4,48s verglichen mit 12,64s für FT8.

- Die Modulation basiert auf einer vierwertigen Frequency-Shift Keying (FSK) mit ungefähr 23,4 Baud.
- + Die vier Frequenzen unterscheiden sich um die Symbolrate.
- Die belegte Bandbreite beträgt 90 Hz.
 + In dieser Bandbreite findet sich 99% der Sendeleistung.

Siehe auch: [[FT8]], [[JT65]], [[JT4]], [[JT9]], [[JT6M]], [[QRA64]], [[MSK144]], [[FSK441]] und [[WSPR]].

Die folgende Tabelle listet die üblichen Frequenzbereiche für FT4 (Stand 2020). Die "Dial Frequency" gibt dabei die Frequenz des (unterdrückten) Trägers an. Dies ist also die angezeigte Frequenz am Funkgerät. Das Funkgerät moduliert das obere Seitenband (USB-Modulation).

+

+ {| class="wikitable"

+ |+Dial Frequency

+ |-

+ | style="text-align:right;" |2190m

+ | style="text-align:right;" |???,??? kHz

+ 1-

+ | style="text-align:right;" |630m

| style="text-align:right;" + |freigegeben in Österreich seit Dez.

2020: 474,200 kHz

+ |-

+ | style="text-align:right;" |160m

| style="text-align:right;" |?,??? MHz

```
| style="text-align:right;" |80m
| style="text-align:right;" |3,575 MHz
| style="text-align:right;" |60m
| style="text-align:right:"
|freigegeben in Österreich seit Dez.
 2020: 5,357 MHz
| style="text-align:right;" |40m
| style="text-align:right;" |7,0475 MHz
| style="text-align:right;" |30m
| style="text-align:right;" |10,140 MHz
II-
| style="text-align:right;" |20m
| style="text-align:right;" |14,080 MHz
| style="text-align:right;" |17m
| style="text-align:right;" |18,104 MHz
| style="text-align:right;" |15m
| style="text-align:right;" |21,140 MHz
| style="text-align:right;" |12m
| style="text-align:right;" |24,919 MHz
| style="text-align:right;" |10m
| style="text-align:right;" |28,180 MHz
```

```
+ | style="text-align:right;" |6m
   | style="text-align:right;" |50,318 MHz
  | style="text-align:right;" |4m
   | style="text-align:right;" |??,??? MHz
   | style="text-align:right;" |2m
   | style="text-align:right;" |144,120
   MHz
   144,170 MHz
   | style="text-align:right;" |70cm
   | style="text-align:right;" |432,065
   MHz
   | style="text-align:right;" |23cm
   | style="text-align:right;" |1296,065
   MHz
  | style="text-align:right;" |13cm
   | style="text-align:right;" |2301,065
   MHz
   2304,065 MHz
   2320,065 MHz
   | style="text-align:right;" |6cm
   | style="text-align:right;" |3400,065
   MHz
   | style="text-align:right;" |3cm
```

```
| style="text-align:right;" |?????,???
   MHz
+ |-
+ | style="text-align:right;" |1,25cm
   | style="text-align:right;" |?????,???
   MHz
  |}
   ====Weiterführende Links====
   *[https://ww-digi.com World Wide Digi
   DX Contest ("WW Digi")]
   *Dokumentation des [http://physics.
   princeton.edu/pulsar/k1jt
   /FT4 Protocol.pdf FT4 Protokolls (in
   Englisch)] und der [https://physics.
   princeton.edu/pulsar/k1jt
   /FT4 Protocol de.pdf Übersetzung
   von [http://www.qrz.com/db/oeleqw
   Enrico OE1EOW1.
   *Software [http://physics.princeton.
   edu/pulsar/k1jt/wsjtx.html WSJT-X]
   *Die damalige Ankündigung einer
   neuen Betriebsart FT4:
   auf [http://forums.grz.com/index.php?
   threads/new-digital-mode-ft4.655478
   ORZ.com1 bzw. [http://www.
   southgatearc.org/news/2019/april
   /new-digital-mode-ft4.htm Southgate].
   *Mit FT4 verwandte Betriebsarten:
   [[FT8]], [[JT65]], [[JT4]], [[JT9]], [[JT6M]],
   [[QRA64]], [[MSK144]], [[FSK441]], [[FST4
   ]] und [[WSPR]].
```

Version vom 29. Januar 2022, 15:27 Uhr

Digitale Betriebsarten im Detail\: FT4

Joe Taylor K1JT hat im April 2019 eine neue digitale Betriebsart angekündigt: FT4. Diese ist 2.5 mal schneller als FT8. Die aktuelle Programmversion ist WSJT-X Version 2.5.4 (Stand: 29. Jan. 2022, siehe WSJT-X 2.5.0 Benutzerhandbuch.

FT4 ist eine experimentelle digitale Betriebsart, die für Contests entworfen wurde. Wie bei FT8, benutzt sie Durchgänge konstanter Dauer mit strukturierten Nachrichtenformaten für minimale QSOs und starker Vorwärtsfehlerkorrektur. Die Durchgänge dauern 6 Sekunden, so dass ein FT4 QSO etwa 2,5 × schneller als ein FT8 QSO gearbeitet werden kann. Damit ist die Geschwindigkeit etwa vergleichbar mit RTTY im Contestbetrieb.

FT4 kann Signale verarbeiten, die etwa 10 dB schwächer sind als erforderlich für RTTY, obwohl weniger Bandbreite benötigt wird.

Die Vorwärtsfehlerkorrektur (FEC) in FT4 verwendet einen Paritätsprüfungscode mit niedriger Dichte (LDPC) mit 77 Informationsbits, einer zyklischen 14-Bit-Redundanzprüfung (CRC) und 83 Paritätsbits, die ein 174-Bit-Codewort bilden. Er wird daher als LDPC (174,91)-Code bezeichnet. Das Nachrichtenformat für FT4 ist identisch mit dem für FT8 und ebenfalls mit demselben LDPC (174,91) vor Übertragungsfehlern geschützt.

Die Synchronisation verwendet vier 4×4 Costas-Arrays, und am Anfang und am Ende jeder Übertragung werden Aufwärts- und Abwärtssymbole eingefügt. Die Modulation ist eine 4-Ton-Frequenzumtastung (4-GFSK) mit Gaußscher Glättung von Frequenzübergängen. Die Taktrate beträgt 12000/576 = 20,8333 Baud. Jedes übertragene Symbol überträgt zwei Bits, so dass die Gesamtzahl der Kanalsymbole 174/2 + 16 + 2 = 105 beträgt. Die Gesamtbandbreite beträgt $4\times20,8333 = 83,3$ Hz.

Ein Sendedurchgang beträgt 4,48s verglichen mit 12,64s für FT8. Die Modulation basiert auf einer vierwertigen Frequency-Shift Keying (FSK) mit ungefähr 23,4 Baud. Die vier Frequenzen unterscheiden sich um die Symbolrate. Die belegte Bandbreite beträgt 90 Hz. In dieser Bandbreite findet sich 99% der Sendeleistung.

Die folgende Tabelle listet die üblichen Frequenzbereiche für FT4 (Stand 2020). Die "Dial Frequency" gibt dabei die Frequenz des (unterdrückten) Trägers an. Dies ist also die angezeigte Frequenz am Funkgerät. Das Funkgerät moduliert das obere Seitenband (USB-Modulation).

Dial Frequency

2190m	???,??? kHz
630m	freigegeben in Österreich seit Dez. 2020: 474,200 kHz
160m	?,??? MHz
80m	3,575 MHz
60m	freigegeben in Österreich seit Dez. 2020: 5,357 MHz
40m	7,0475 MHz
30m	10,140 MHz
20m	14,080 MHz

17m	18,104	MHz
15m	21,140	MHz
12m	24,919	MHz
10m	28,180	MHz
6m	50,318	MHz
4m	??,???	MHz
	144,120	MHz
2m	144,170	MHz
70cm	432,065	MHz
23cm	1296,065	MHz
	2301,065	MHz
13cm	2304,065	MHz
	2320,065	MHz
6cm	3400,065	MHz
3cm	?????,???	MHz
1,25 cm	?????,???	MHz

- World Wide Digi DX Contest ("WW Digi")
- Dokumentation des FT4 Protokolls (in Englisch) und der Übersetzung von Enrico OE1EQW.
- Software WSJT-X
- Die damalige Ankündigung einer neuen Betriebsart FT4: auf QRZ.com bzw. Southgate.
- Mit FT4 verwandte Betriebsarten: FT8, JT65, JT4, JT9, JT6M, QRA64, MSK144, FSK441, FST4 und WSPR.

FT4: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 24. April 2019, 18:02 Uhr (Q uelltext anzeigen)

OE1VMC (Diskussion | Beiträge)
← Zum vorherigen Versionsunterschied

Version vom 29. Januar 2022, 15:27 Uhr (Quelltext anzeigen)

OE1VMC (Diskussion | Beiträge)

K (→Digitale Betriebsarten im Detail: FT4)

Markierung: Visuelle Bearbeitung

Zum nächsten Versionsunterschied →

(24 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)

Zeile 2:
[[Kategorie:Kurzwelle]]
+ ==Digitale Betriebsarten im Detail: FT4=
Joe Taylor K1JT hat im April 2019 eine neue digitale Betriebsart angekündigt: FT4. Diese ist 2.5 mal schneller als FT8.
Die aktuelle Programmversion ist WSJT-X Version 2.5.4 (Stand: 29. Jan. 2022, siehe [https://physics.princetoredu//pulsar/k1it/wsjtx-doc/wsjtx-mair 2.5.0.html WSJT-X 2.5.0 Benutzerhandbuch].
FT4 ist eine experimentelle digitale Betriebsart, die für Contests entworfen wurde. Wie bei FT8, benutzt sie Durchgänge konstanter Dauer mit strukturierten Nachrichtenformaten für minimale QSOs und starker Vorwärtsfehlerkorrektur. Die Durchgä

ge dauern 6 Sekunden, so dass ein FT4 QSO etwa 2,5 × schneller als ein FT8 QSO gearbeitet werden kann. Dam it ist die Geschwindigkeit etwa vergleichbar mit RTTY im Contestbetrieb.

Dieser Artikel ist noch in Arbeit.

FT4 kann Signale verarbeiten, die etwa 10 dB schwächer sind als erforderlich für RTTY, obwohl weniger Bandbreite benötigt wird.

Einige Infos:

Die Vorwärtsfehlerkorrektur (FEC) in FT4 verwendet einen Paritätsprüfungscode mit niedriger Dichte ([https://de.wikipedia.org/wiki/Low-Density-Parity-Check-Code LDPC]) mit 77 Informationsbits, einer zyklischen 14-Bit-Redundanzprüfung (CRC) und 83 Paritätsbits, die ein 174-Bit-Codewort bilden. Er wird daher als LDPC (174,91)-Code bezeichnet. Das Nachrichtenformat für FT4 ist identisch mit dem für [[FT8]] und ebenfalls mit demselben LDPC (174,91) vor Übertragungsfehlern geschützt.

[http://physics.princeton.edu/pulsar/k1 jt/wsjtx.html WSJT-X] Die Synchronisation verwendet vier 4×4 [https://en.m.wikipedia.org/wiki/C ostas array Costas-Arrays,] und am Anfang und am Ende jeder Übertragung werden Aufwärts- und Abwärtssymbole eingefügt. Die Modulation ist eine 4-Ton-Frequenzumtastung (4-[[GFSK]]) mit Gaußscher Glättung von Frequenzübergängen. Die Taktrate beträgt 12000/576 = 20.8333 Baud. Jedes übertragene Symbol überträgt zwei Bits, so dass die Gesamtzahl der Kanalsymbole 174/2 + 16 + 2 = 105beträgt. Die Gesamtbandbreite beträgt $4 \times 20,8333 = 83,3$ Hz.

[http://forums.grz.com/index.php?
- threads/new-digital-mode-ft4.655478
Ankündigung auf QRZ.com]

Ein Sendedurchgang beträgt 4,48s verglichen mit 12,64s für FT8.

- Die Modulation basiert auf einer vierwertigen Frequency-Shift Keying (FSK) mit ungefähr 23,4 Baud.
- + Die vier Frequenzen unterscheiden sich um die Symbolrate.
- Die belegte Bandbreite beträgt 90 Hz.
 + In dieser Bandbreite findet sich 99% der Sendeleistung.

Siehe auch: [[FT8]], [[JT65]], [[JT4]], [[JT9]], [[JT6M]], [[QRA64]], [[MSK144]], [[FSK441]] und [[WSPR]].

Die folgende Tabelle listet die üblichen Frequenzbereiche für FT4 (Stand 2020). Die "Dial Frequency" gibt dabei die Frequenz des (unterdrückten) Trägers an. Dies ist also die angezeigte Frequenz am Funkgerät. Das Funkgerät moduliert das obere Seitenband (USB-Modulation).

+

+ {| class="wikitable"

+ |+Dial Frequency

+ 1.

+ | style="text-align:right;" |2190m

+ | style="text-align:right;" |???,??? kHz

+ 1-

+ | style="text-align:right;" |630m

| style="text-align:right;" + |freigegeben in Österreich seit Dez.

2020: 474,200 kHz

+ |-

+ | style="text-align:right;" |160m

| style="text-align:right;" |?,??? MHz

```
| style="text-align:right;" |80m
| style="text-align:right;" |3,575 MHz
| style="text-align:right;" |60m
| style="text-align:right:"
|freigegeben in Österreich seit Dez.
 2020: 5,357 MHz
| style="text-align:right;" |40m
| style="text-align:right;" |7,0475 MHz
| style="text-align:right;" |30m
| style="text-align:right;" |10,140 MHz
II-
| style="text-align:right;" |20m
| style="text-align:right;" |14,080 MHz
| style="text-align:right;" |17m
| style="text-align:right;" |18,104 MHz
| style="text-align:right;" |15m
| style="text-align:right;" |21,140 MHz
| style="text-align:right;" |12m
| style="text-align:right;" |24,919 MHz
| style="text-align:right;" |10m
| style="text-align:right;" |28,180 MHz
```

```
+ | style="text-align:right;" |6m
   | style="text-align:right;" |50,318 MHz
  | style="text-align:right;" |4m
   | style="text-align:right;" |??,??? MHz
   | style="text-align:right;" |2m
   | style="text-align:right;" |144,120
   MHz
   144,170 MHz
   | style="text-align:right;" |70cm
   | style="text-align:right;" |432,065
   MHz
   | style="text-align:right;" |23cm
   | style="text-align:right;" |1296,065
   MHz
  | style="text-align:right;" |13cm
   | style="text-align:right;" |2301,065
   MHz
   2304,065 MHz
   2320,065 MHz
   | style="text-align:right;" |6cm
   | style="text-align:right;" |3400,065
   MHz
   | style="text-align:right;" |3cm
```

```
| style="text-align:right;" |?????,???
   MHz
+ |-
+ | style="text-align:right;" |1,25cm
   | style="text-align:right;" |?????,???
   MHz
  |}
   ====Weiterführende Links====
   *[https://ww-digi.com World Wide Digi
   DX Contest ("WW Digi")]
   *Dokumentation des [http://physics.
   princeton.edu/pulsar/k1jt
   /FT4 Protocol.pdf FT4 Protokolls (in
   Englisch)] und der [https://physics.
   princeton.edu/pulsar/k1jt
   /FT4 Protocol de.pdf Übersetzung
   von [http://www.qrz.com/db/oeleqw
   Enrico OE1EOW1.
   *Software [http://physics.princeton.
   edu/pulsar/k1jt/wsjtx.html WSJT-X]
   *Die damalige Ankündigung einer
   neuen Betriebsart FT4:
   auf [http://forums.grz.com/index.php?
   threads/new-digital-mode-ft4.655478
   ORZ.com1 bzw. [http://www.
   southgatearc.org/news/2019/april
   /new-digital-mode-ft4.htm Southgate].
   *Mit FT4 verwandte Betriebsarten:
   [[FT8]], [[JT65]], [[JT4]], [[JT9]], [[JT6M]],
   [[QRA64]], [[MSK144]], [[FSK441]], [[FST4
   ]] und [[WSPR]].
```

Version vom 29. Januar 2022, 15:27 Uhr

Digitale Betriebsarten im Detail\: FT4

Joe Taylor K1JT hat im April 2019 eine neue digitale Betriebsart angekündigt: FT4. Diese ist 2.5 mal schneller als FT8. Die aktuelle Programmversion ist WSJT-X Version 2.5.4 (Stand: 29. Jan. 2022, siehe WSJT-X 2.5.0 Benutzerhandbuch.

FT4 ist eine experimentelle digitale Betriebsart, die für Contests entworfen wurde. Wie bei FT8, benutzt sie Durchgänge konstanter Dauer mit strukturierten Nachrichtenformaten für minimale QSOs und starker Vorwärtsfehlerkorrektur. Die Durchgänge dauern 6 Sekunden, so dass ein FT4 QSO etwa 2,5 × schneller als ein FT8 QSO gearbeitet werden kann. Damit ist die Geschwindigkeit etwa vergleichbar mit RTTY im Contestbetrieb.

FT4 kann Signale verarbeiten, die etwa 10 dB schwächer sind als erforderlich für RTTY, obwohl weniger Bandbreite benötigt wird.

Die Vorwärtsfehlerkorrektur (FEC) in FT4 verwendet einen Paritätsprüfungscode mit niedriger Dichte (LDPC) mit 77 Informationsbits, einer zyklischen 14-Bit-Redundanzprüfung (CRC) und 83 Paritätsbits, die ein 174-Bit-Codewort bilden. Er wird daher als LDPC (174,91)-Code bezeichnet. Das Nachrichtenformat für FT4 ist identisch mit dem für FT8 und ebenfalls mit demselben LDPC (174,91) vor Übertragungsfehlern geschützt.

Die Synchronisation verwendet vier 4×4 Costas-Arrays, und am Anfang und am Ende jeder Übertragung werden Aufwärts- und Abwärtssymbole eingefügt. Die Modulation ist eine 4-Ton-Frequenzumtastung (4-GFSK) mit Gaußscher Glättung von Frequenzübergängen. Die Taktrate beträgt 12000/576 = 20,8333 Baud. Jedes übertragene Symbol überträgt zwei Bits, so dass die Gesamtzahl der Kanalsymbole 174/2 + 16 + 2 = 105 beträgt. Die Gesamtbandbreite beträgt $4\times20,8333 = 83,3$ Hz.

Ein Sendedurchgang beträgt 4,48s verglichen mit 12,64s für FT8. Die Modulation basiert auf einer vierwertigen Frequency-Shift Keying (FSK) mit ungefähr 23,4 Baud. Die vier Frequenzen unterscheiden sich um die Symbolrate. Die belegte Bandbreite beträgt 90 Hz. In dieser Bandbreite findet sich 99% der Sendeleistung.

Die folgende Tabelle listet die üblichen Frequenzbereiche für FT4 (Stand 2020). Die "Dial Frequency" gibt dabei die Frequenz des (unterdrückten) Trägers an. Dies ist also die angezeigte Frequenz am Funkgerät. Das Funkgerät moduliert das obere Seitenband (USB-Modulation).

Dial Frequency

2190m	???,??? kHz
630m	freigegeben in Österreich seit Dez. 2020: 474,200 kHz
160m	?,??? MHz
80m	3,575 MHz
60m	freigegeben in Österreich seit Dez. 2020: 5,357 MHz
40m	7,0475 MHz
30m	10,140 MHz
20m	14,080 MHz

17m	18,104	MHz
15m	21,140	MHz
12m	24,919	MHz
10m	28,180	MHz
6m	50,318	MHz
4m	??,???	MHz
	144,120	MHz
2m	144,170	MHz
70cm	432,065	MHz
23cm	1296,065	MHz
	2301,065	MHz
13cm	2304,065	MHz
	2320,065	MHz
6cm	3400,065	MHz
3cm	?????,???	MHz
1,25 cm	?????,???	MHz

- World Wide Digi DX Contest ("WW Digi")
- Dokumentation des FT4 Protokolls (in Englisch) und der Übersetzung von Enrico OE1EQW.
- Software WSJT-X
- Die damalige Ankündigung einer neuen Betriebsart FT4: auf QRZ.com bzw. Southgate.
- Mit FT4 verwandte Betriebsarten: FT8, JT65, JT4, JT9, JT6M, QRA64, MSK144, FSK441, FST4 und WSPR.

FT4: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 24. April 2019, 18:02 Uhr (Q uelltext anzeigen)

OE1VMC (Diskussion | Beiträge)
← Zum vorherigen Versionsunterschied

Version vom 29. Januar 2022, 15:27 Uhr (Quelltext anzeigen)

OE1VMC (Diskussion | Beiträge)

K (→Digitale Betriebsarten im Detail: FT4)

Markierung: Visuelle Bearbeitung

Zum nächsten Versionsunterschied →

(24 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)

Zeile 2:	Zeile 2:	
[[Kategorie:Kurzwelle]]	[[Kategorie:Kurzwelle]]	
== Digitale Betriebsarten im Detail: FT4 ==	==Digitale Betriebsarten im Detail: FT4==	
FT4 ist eine ganz neue digitale Betriebsart (beta release April 2019) für den Contestbetrieb mit ähnlicher QSO Dauer wie RTTY.	Joe Taylor K1JT hat im April 2019 eine neue digitale Betriebsart angekündigt: FT4. Diese ist 2.5 mal schneller als FT8.	
	Die aktuelle Programmversion ist WSJT-X Version 2.5.4 (Stand: 29. Jan. 2022, siehe [https://physics.princeton.edu//pulsar/k1jt/wsjtx-doc/wsjtx-main-2.5.0.html WSJT-X 2.5.0 Benutzerhandbuch].	
Die aktuelle Programmversion ist WSJT-X Version 2.1.0 Release Candidate (Stand: 23. April 2019)	FT4 ist eine experimentelle digitale Betriebsart, die für Contests entworfen wurde. Wie bei FT8, benutzt sie Durchgänge konstanter Dauer mit strukturierten Nachrichtenformaten für minimale QSOs und starker Vorwärtsfehlerkorrektur. Die Durchgän	

ge dauern 6 Sekunden, so dass ein FT4 QSO etwa 2,5 × schneller als ein FT8 QSO gearbeitet werden kann. Dam it ist die Geschwindigkeit etwa vergleichbar mit RTTY im Contestbetrieb.

Dieser Artikel ist noch in Arbeit.

FT4 kann Signale verarbeiten, die etwa 10 dB schwächer sind als erforderlich für RTTY, obwohl weniger Bandbreite benötigt wird.

Einige Infos:

Die Vorwärtsfehlerkorrektur (FEC) in FT4 verwendet einen Paritätsprüfungscode mit niedriger Dichte ([https://de.wikipedia.org/wiki/Low-Density-Parity-Check-Code LDPC]) mit 77 Informationsbits, einer zyklischen 14-Bit-Redundanzprüfung (CRC) und 83 Paritätsbits, die ein 174-Bit-Codewort bilden. Er wird daher als LDPC (174,91)-Code bezeichnet. Das Nachrichtenformat für FT4 ist identisch mit dem für [[FT8]] und ebenfalls mit demselben LDPC (174,91) vor Übertragungsfehlern geschützt.

[http://physics.princeton.edu/pulsar/k1 jt/wsjtx.html WSJT-X] Die Synchronisation verwendet vier 4×4 [https://en.m.wikipedia.org/wiki/C ostas array Costas-Arrays,] und am Anfang und am Ende jeder Übertragung werden Aufwärts- und Abwärtssymbole eingefügt. Die Modulation ist eine 4-Ton-Frequenzumtastung (4-[[GFSK]]) mit Gaußscher Glättung von Frequenzübergängen. Die Taktrate beträgt 12000/576 = 20.8333 Baud. Jedes übertragene Symbol überträgt zwei Bits, so dass die Gesamtzahl der Kanalsymbole 174/2 + 16 + 2 = 105beträgt. Die Gesamtbandbreite beträgt $4 \times 20,8333 = 83,3$ Hz.

[http://forums.grz.com/index.php? - threads/new-digital-mode-ft4.655478 Ankündigung auf QRZ.com] Ein Sendedurchgang beträgt 4,48s verglichen mit 12,64s für FT8.

- Die Modulation basiert auf einer
 vierwertigen Frequency-Shift Keying
 (FSK) mit ungefähr 23,4 Baud.
- + Die vier Frequenzen unterscheiden sich um die Symbolrate.
- Die belegte Bandbreite beträgt 90 Hz.
 + In dieser Bandbreite findet sich 99% der Sendeleistung.

Siehe auch: [[FT8]], [[JT65]], [[JT4]], [[JT9]], [[JT6M]], [[QRA64]], [[MSK144]], [[FSK441]] und [[WSPR]].

Die folgende Tabelle listet die üblichen Frequenzbereiche für FT4 (Stand 2020). Die "Dial Frequency" gibt dabei die Frequenz des (unterdrückten) Trägers an. Dies ist also die angezeigte Frequenz am Funkgerät. Das Funkgerät moduliert das obere Seitenband (USB-Modulation).

+

+ {| class="wikitable"

+ |+Dial Frequency

+ | |-

+ | style="text-align:right;" |2190m

+ | style="text-align:right;" |???,??? kHz

+ 1-

+ | style="text-align:right;" |630m

| style="text-align:right;" + |freigegeben in Österreich seit Dez.

2020: 474,200 kHz

+ |-

+ | style="text-align:right;" |160m

| style="text-align:right;" |?,??? MHz

```
| style="text-align:right;" |80m
| style="text-align:right;" |3,575 MHz
| style="text-align:right;" |60m
| style="text-align:right:"
|freigegeben in Österreich seit Dez.
 2020: 5,357 MHz
| style="text-align:right;" |40m
| style="text-align:right;" |7,0475 MHz
| style="text-align:right;" |30m
| style="text-align:right;" |10,140 MHz
II-
| style="text-align:right;" |20m
| style="text-align:right;" |14,080 MHz
| style="text-align:right;" |17m
| style="text-align:right;" |18,104 MHz
| style="text-align:right;" |15m
| style="text-align:right;" |21,140 MHz
| style="text-align:right;" |12m
| style="text-align:right;" |24,919 MHz
| style="text-align:right;" |10m
| style="text-align:right;" |28,180 MHz
```

```
+ | style="text-align:right;" |6m
   | style="text-align:right;" |50,318 MHz
  | style="text-align:right;" |4m
   | style="text-align:right;" |??,??? MHz
   | style="text-align:right;" |2m
   | style="text-align:right;" |144,120
   MHz
   144,170 MHz
   | style="text-align:right;" |70cm
   | style="text-align:right;" |432,065
   MHz
   | style="text-align:right;" |23cm
   | style="text-align:right;" |1296,065
   MHz
  | style="text-align:right;" |13cm
   | style="text-align:right;" |2301,065
   MHz
   2304,065 MHz
   2320,065 MHz
   | style="text-align:right;" |6cm
   | style="text-align:right;" |3400,065
   MHz
   | style="text-align:right;" |3cm
```

```
| style="text-align:right;" |?????,???
   MHz
+ |-
+ | style="text-align:right;" |1,25cm
   | style="text-align:right;" |?????,???
   MHz
  |}
   ====Weiterführende Links====
   *[https://ww-digi.com World Wide Digi
   DX Contest ("WW Digi")]
   *Dokumentation des [http://physics.
   princeton.edu/pulsar/k1jt
   /FT4 Protocol.pdf FT4 Protokolls (in
   Englisch)] und der [https://physics.
   princeton.edu/pulsar/k1jt
   /FT4 Protocol de.pdf Übersetzung
   von [http://www.qrz.com/db/oeleqw
   Enrico OE1EOW1.
   *Software [http://physics.princeton.
   edu/pulsar/k1jt/wsjtx.html WSJT-X]
   *Die damalige Ankündigung einer
   neuen Betriebsart FT4:
   auf [http://forums.grz.com/index.php?
   threads/new-digital-mode-ft4.655478
   ORZ.com1 bzw. [http://www.
   southgatearc.org/news/2019/april
   /new-digital-mode-ft4.htm Southgate].
   *Mit FT4 verwandte Betriebsarten:
   [[FT8]], [[JT65]], [[JT4]], [[JT9]], [[JT6M]],
   [[QRA64]], [[MSK144]], [[FSK441]], [[FST4
   ]] und [[WSPR]].
```

Version vom 29. Januar 2022, 15:27 Uhr

Digitale Betriebsarten im Detail\: FT4

Joe Taylor K1JT hat im April 2019 eine neue digitale Betriebsart angekündigt: FT4. Diese ist 2.5 mal schneller als FT8. Die aktuelle Programmversion ist WSJT-X Version 2.5.4 (Stand: 29. Jan. 2022, siehe WSJT-X 2.5.0 Benutzerhandbuch.

FT4 ist eine experimentelle digitale Betriebsart, die für Contests entworfen wurde. Wie bei FT8, benutzt sie Durchgänge konstanter Dauer mit strukturierten Nachrichtenformaten für minimale QSOs und starker Vorwärtsfehlerkorrektur. Die Durchgänge dauern 6 Sekunden, so dass ein FT4 QSO etwa 2,5 × schneller als ein FT8 QSO gearbeitet werden kann. Damit ist die Geschwindigkeit etwa vergleichbar mit RTTY im Contestbetrieb.

FT4 kann Signale verarbeiten, die etwa 10 dB schwächer sind als erforderlich für RTTY, obwohl weniger Bandbreite benötigt wird.

Die Vorwärtsfehlerkorrektur (FEC) in FT4 verwendet einen Paritätsprüfungscode mit niedriger Dichte (LDPC) mit 77 Informationsbits, einer zyklischen 14-Bit-Redundanzprüfung (CRC) und 83 Paritätsbits, die ein 174-Bit-Codewort bilden. Er wird daher als LDPC (174,91)-Code bezeichnet. Das Nachrichtenformat für FT4 ist identisch mit dem für FT8 und ebenfalls mit demselben LDPC (174,91) vor Übertragungsfehlern geschützt.

Die Synchronisation verwendet vier 4×4 Costas-Arrays, und am Anfang und am Ende jeder Übertragung werden Aufwärts- und Abwärtssymbole eingefügt. Die Modulation ist eine 4-Ton-Frequenzumtastung (4-GFSK) mit Gaußscher Glättung von Frequenzübergängen. Die Taktrate beträgt 12000/576 = 20,8333 Baud. Jedes übertragene Symbol überträgt zwei Bits, so dass die Gesamtzahl der Kanalsymbole 174/2 + 16 + 2 = 105 beträgt. Die Gesamtbandbreite beträgt $4\times20,8333 = 83,3$ Hz.

Ein Sendedurchgang beträgt 4,48s verglichen mit 12,64s für FT8. Die Modulation basiert auf einer vierwertigen Frequency-Shift Keying (FSK) mit ungefähr 23,4 Baud. Die vier Frequenzen unterscheiden sich um die Symbolrate. Die belegte Bandbreite beträgt 90 Hz. In dieser Bandbreite findet sich 99% der Sendeleistung.

Die folgende Tabelle listet die üblichen Frequenzbereiche für FT4 (Stand 2020). Die "Dial Frequency" gibt dabei die Frequenz des (unterdrückten) Trägers an. Dies ist also die angezeigte Frequenz am Funkgerät. Das Funkgerät moduliert das obere Seitenband (USB-Modulation).

Dial Frequency

2190m	???,??? kHz
630m	freigegeben in Österreich seit Dez. 2020: 474,200 kHz
160m	?,??? MHz
80m	3,575 MHz
60m	freigegeben in Österreich seit Dez. 2020: 5,357 MHz
40m	7,0475 MHz
30m	10,140 MHz
20m	14,080 MHz

18,104	MHz
21,140	MHz
24,919	MHz
28,180	MHz
50,318	MHz
??,???	MHz
144,120	MHz
144,170	MHz
432,065	MHz
1296,065	MHz
2301,065	MHz
2304,065	MHz
2320,065	MHz
3400,065	MHz
?????,???	MHz
?????,???	MHz
	21,140 24,919 28,180 50,318 ??,??? 144,120 144,170 432,065 1296,065 2301,065 2304,065 2320,065 3400,065 ?????,???

- World Wide Digi DX Contest ("WW Digi")
- Dokumentation des FT4 Protokolls (in Englisch) und der Übersetzung von Enrico OE1EQW.
- Software WSJT-X
- Die damalige Ankündigung einer neuen Betriebsart FT4: auf QRZ.com bzw. Southgate.
- Mit FT4 verwandte Betriebsarten: FT8, JT65, JT4, JT9, JT6M, QRA64, MSK144, FSK441, FST4 und WSPR.

FT4: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 24. April 2019, 18:02 Uhr (Q uelltext anzeigen)

OE1VMC (Diskussion | Beiträge)
← Zum vorherigen Versionsunterschied

Version vom 29. Januar 2022, 15:27 Uhr (Quelltext anzeigen)

OE1VMC (Diskussion | Beiträge)

K (→Digitale Betriebsarten im Detail: FT4)

Markierung: Visuelle Bearbeitung

Zum nächsten Versionsunterschied →

(24 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)

Zeile 2:
[[Kategorie:Kurzwelle]]
+ ==Digitale Betriebsarten im Detail: FT4=
Joe Taylor K1JT hat im April 2019 eine neue digitale Betriebsart angekündigt: FT4. Diese ist 2.5 mal schneller als FT8.
Die aktuelle Programmversion ist WSJT-X Version 2.5.4 (Stand: 29. Jan. 2022, siehe [https://physics.princetoredu//pulsar/k1it/wsjtx-doc/wsjtx-mair 2.5.0.html WSJT-X 2.5.0 Benutzerhandbuch].
FT4 ist eine experimentelle digitale Betriebsart, die für Contests entworfen wurde. Wie bei FT8, benutzt sie Durchgänge konstanter Dauer mit strukturierten Nachrichtenformaten für minimale QSOs und starker Vorwärtsfehlerkorrektur. Die Durchgä

ge dauern 6 Sekunden, so dass ein FT4 QSO etwa 2,5 × schneller als ein FT8 QSO gearbeitet werden kann. Dam it ist die Geschwindigkeit etwa vergleichbar mit RTTY im Contestbetrieb.

Dieser Artikel ist noch in Arbeit.

FT4 kann Signale verarbeiten, die etwa 10 dB schwächer sind als erforderlich für RTTY, obwohl weniger Bandbreite benötigt wird.

Einige Infos:

Die Vorwärtsfehlerkorrektur (FEC) in FT4 verwendet einen Paritätsprüfungscode mit niedriger Dichte ([https://de.wikipedia.org/wiki/Low-Density-Parity-Check-Code LDPC]) mit 77 Informationsbits, einer zyklischen 14-Bit-Redundanzprüfung (CRC) und 83 Paritätsbits, die ein 174-Bit-Codewort bilden. Er wird daher als LDPC (174,91)-Code bezeichnet. Das Nachrichtenformat für FT4 ist identisch mit dem für [[FT8]] und ebenfalls mit demselben LDPC (174,91) vor Übertragungsfehlern geschützt.

[http://physics.princeton.edu/pulsar/k1 jt/wsjtx.html WSJT-X] Die Synchronisation verwendet vier 4×4 [https://en.m.wikipedia.org/wiki/C ostas array Costas-Arrays,] und am Anfang und am Ende jeder Übertragung werden Aufwärts- und Abwärtssymbole eingefügt. Die Modulation ist eine 4-Ton-Frequenzumtastung (4-[[GFSK]]) mit Gaußscher Glättung von Frequenzübergängen. Die Taktrate beträgt 12000/576 = 20.8333 Baud. Jedes übertragene Symbol überträgt zwei Bits, so dass die Gesamtzahl der Kanalsymbole 174/2 + 16 + 2 = 105beträgt. Die Gesamtbandbreite beträgt $4 \times 20,8333 = 83,3$ Hz.

[http://forums.grz.com/index.php?
- threads/new-digital-mode-ft4.655478
Ankündigung auf QRZ.com]

Ein Sendedurchgang beträgt 4,48s verglichen mit 12,64s für FT8.

- Die Modulation basiert auf einer vierwertigen Frequency-Shift Keying (FSK) mit ungefähr 23,4 Baud.
- Die vier Frequenzen unterscheiden sich um die Symbolrate.
- Die belegte Bandbreite beträgt 90 Hz.
 + In dieser Bandbreite findet sich 99% der Sendeleistung.

Siehe auch: [[FT8]], [[JT65]], [[JT4]], [[JT9]], [[JT6M]], [[QRA64]], [[MSK144]], [[FSK441]] und [[WSPR]].

Die folgende Tabelle listet die üblichen Frequenzbereiche für FT4 (Stand 2020). Die "Dial Frequency" gibt dabei die Frequenz des (unterdrückten) Trägers an. Dies ist also die angezeigte Frequenz am Funkgerät. Das Funkgerät moduliert das obere Seitenband (USB-Modulation).

+

+ {| class="wikitable"

+ |+Dial Frequency

+ 1.

+ | style="text-align:right;" |2190m

+ | style="text-align:right;" |???,??? kHz

+ 1-

+ | style="text-align:right;" |630m

| style="text-align:right;" + |freigegeben in Österreich seit Dez.

2020: 474,200 kHz

+ |-

+ | style="text-align:right;" |160m

+ | style="text-align:right;" |?,??? MHz

```
| style="text-align:right;" |80m
| style="text-align:right;" |3,575 MHz
| style="text-align:right;" |60m
| style="text-align:right:"
|freigegeben in Österreich seit Dez.
 2020: 5,357 MHz
| style="text-align:right;" |40m
| style="text-align:right;" |7,0475 MHz
| style="text-align:right;" |30m
| style="text-align:right;" |10,140 MHz
II-
| style="text-align:right;" |20m
| style="text-align:right;" |14,080 MHz
| style="text-align:right;" |17m
| style="text-align:right;" |18,104 MHz
| style="text-align:right;" |15m
| style="text-align:right;" |21,140 MHz
| style="text-align:right;" |12m
| style="text-align:right;" |24,919 MHz
| style="text-align:right;" |10m
| style="text-align:right;" |28,180 MHz
```

```
+ | style="text-align:right;" |6m
   | style="text-align:right;" |50,318 MHz
  | style="text-align:right;" |4m
   | style="text-align:right;" |??,??? MHz
   | style="text-align:right;" |2m
   | style="text-align:right;" |144,120
   MHz
   144,170 MHz
   | style="text-align:right;" |70cm
   | style="text-align:right;" |432,065
   MHz
   | style="text-align:right;" |23cm
   | style="text-align:right;" |1296,065
   MHz
  | style="text-align:right;" |13cm
   | style="text-align:right;" |2301,065
   MHz
   2304,065 MHz
   2320,065 MHz
   | style="text-align:right;" |6cm
   | style="text-align:right;" |3400,065
   MHz
   | style="text-align:right;" |3cm
```

```
| style="text-align:right;" |?????,???
   MHz
+ |-
+ | style="text-align:right;" |1,25cm
   | style="text-align:right;" |?????,???
   MHz
  |}
   ====Weiterführende Links====
   *[https://ww-digi.com World Wide Digi
   DX Contest ("WW Digi")]
   *Dokumentation des [http://physics.
   princeton.edu/pulsar/k1jt
   /FT4 Protocol.pdf FT4 Protokolls (in
   Englisch)] und der [https://physics.
   princeton.edu/pulsar/k1jt
   /FT4 Protocol de.pdf Übersetzung
   von [http://www.qrz.com/db/oeleqw
   Enrico OE1EOW1.
   *Software [http://physics.princeton.
   edu/pulsar/k1jt/wsjtx.html WSJT-X]
   *Die damalige Ankündigung einer
   neuen Betriebsart FT4:
   auf [http://forums.grz.com/index.php?
   threads/new-digital-mode-ft4.655478
   ORZ.com1 bzw. [http://www.
   southgatearc.org/news/2019/april
   /new-digital-mode-ft4.htm Southgate].
   *Mit FT4 verwandte Betriebsarten:
   [[FT8]], [[JT65]], [[JT4]], [[JT9]], [[JT6M]],
   [[QRA64]], [[MSK144]], [[FSK441]], [[FST4
   ]] und [[WSPR]].
```

Version vom 29. Januar 2022, 15:27 Uhr

Digitale Betriebsarten im Detail\: FT4

Joe Taylor K1JT hat im April 2019 eine neue digitale Betriebsart angekündigt: FT4. Diese ist 2.5 mal schneller als FT8. Die aktuelle Programmversion ist WSJT-X Version 2.5.4 (Stand: 29. Jan. 2022, siehe WSJT-X 2.5.0 Benutzerhandbuch.

FT4 ist eine experimentelle digitale Betriebsart, die für Contests entworfen wurde. Wie bei FT8, benutzt sie Durchgänge konstanter Dauer mit strukturierten Nachrichtenformaten für minimale QSOs und starker Vorwärtsfehlerkorrektur. Die Durchgänge dauern 6 Sekunden, so dass ein FT4 QSO etwa 2,5 × schneller als ein FT8 QSO gearbeitet werden kann. Damit ist die Geschwindigkeit etwa vergleichbar mit RTTY im Contestbetrieb.

FT4 kann Signale verarbeiten, die etwa 10 dB schwächer sind als erforderlich für RTTY, obwohl weniger Bandbreite benötigt wird.

Die Vorwärtsfehlerkorrektur (FEC) in FT4 verwendet einen Paritätsprüfungscode mit niedriger Dichte (LDPC) mit 77 Informationsbits, einer zyklischen 14-Bit-Redundanzprüfung (CRC) und 83 Paritätsbits, die ein 174-Bit-Codewort bilden. Er wird daher als LDPC (174,91)-Code bezeichnet. Das Nachrichtenformat für FT4 ist identisch mit dem für FT8 und ebenfalls mit demselben LDPC (174,91) vor Übertragungsfehlern geschützt.

Die Synchronisation verwendet vier 4×4 Costas-Arrays, und am Anfang und am Ende jeder Übertragung werden Aufwärts- und Abwärtssymbole eingefügt. Die Modulation ist eine 4-Ton-Frequenzumtastung (4-GFSK) mit Gaußscher Glättung von Frequenzübergängen. Die Taktrate beträgt 12000/576 = 20,8333 Baud. Jedes übertragene Symbol überträgt zwei Bits, so dass die Gesamtzahl der Kanalsymbole 174/2 + 16 + 2 = 105 beträgt. Die Gesamtbandbreite beträgt $4\times20,8333 = 83,3$ Hz.

Ein Sendedurchgang beträgt 4,48s verglichen mit 12,64s für FT8. Die Modulation basiert auf einer vierwertigen Frequency-Shift Keying (FSK) mit ungefähr 23,4 Baud. Die vier Frequenzen unterscheiden sich um die Symbolrate. Die belegte Bandbreite beträgt 90 Hz. In dieser Bandbreite findet sich 99% der Sendeleistung.

Die folgende Tabelle listet die üblichen Frequenzbereiche für FT4 (Stand 2020). Die "Dial Frequency" gibt dabei die Frequenz des (unterdrückten) Trägers an. Dies ist also die angezeigte Frequenz am Funkgerät. Das Funkgerät moduliert das obere Seitenband (USB-Modulation).

Dial Frequency

2190m	???,??? kHz
630m	freigegeben in Österreich seit Dez. 2020: 474,200 kHz
160m	?,??? MHz
80m	3,575 MHz
60m	freigegeben in Österreich seit Dez. 2020: 5,357 MHz
40m	7,0475 MHz
30m	10,140 MHz
20m	14,080 MHz

18,104	MHz
21,140	MHz
24,919	MHz
28,180	MHz
50,318	MHz
??,???	MHz
144,120	MHz
144,170	MHz
432,065	MHz
1296,065	MHz
2301,065	MHz
2304,065	MHz
2320,065	MHz
3400,065	MHz
?????,???	MHz
?????,???	MHz
	21,140 24,919 28,180 50,318 ??,??? 144,120 144,170 432,065 1296,065 2301,065 2304,065 2320,065 3400,065 ?????,???

- World Wide Digi DX Contest ("WW Digi")
- Dokumentation des FT4 Protokolls (in Englisch) und der Übersetzung von Enrico OE1EQW.
- Software WSJT-X
- Die damalige Ankündigung einer neuen Betriebsart FT4: auf QRZ.com bzw. Southgate.
- Mit FT4 verwandte Betriebsarten: FT8, JT65, JT4, JT9, JT6M, QRA64, MSK144, FSK441, FST4 und WSPR.

FT4: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 24. April 2019, 18:02 Uhr (Q uelltext anzeigen)

OE1VMC (Diskussion | Beiträge)
← Zum vorherigen Versionsunterschied

Version vom 29. Januar 2022, 15:27 Uhr (Quelltext anzeigen)

OE1VMC (Diskussion | Beiträge)

K (→Digitale Betriebsarten im Detail: FT4)

Markierung: Visuelle Bearbeitung

Zum nächsten Versionsunterschied →

(24 dazwischenliegende Versionen von 2 Benutzern werden nicht angezeigt)

Zeile 2:	Zeile 2:	
[[Kategorie:Kurzwelle]]	[[Kategorie:Kurzwelle]]	
== Digitale Betriebsarten im Detail: FT4 ==	+ ==Digitale Betriebsarten im Detail: FT4==	
FT4 ist eine ganz neue digitale Betriebsart (beta release April 2019) für den Contestbetrieb mit ähnlicher QSO Dauer wie RTTY.	Joe Taylor K1JT hat im April 2019 eine neue digitale Betriebsart angekündigt: FT4. Diese ist 2.5 mal schneller als FT8.	
	Die aktuelle Programmversion ist WSJT-X Version 2.5.4 (Stand: 29. Jan. 2022, siehe [https://physics.princeton.edu//pulsar/k1it/wsjtx-doc/wsjtx-main-2.5.0.html WSJT-X 2.5.0 Benutzerhandbuch].	
Die aktuelle Programmversion ist WSJT-X Version 2.1.0 Release Candidate (Stand: 23. April 2019)	FT4 ist eine experimentelle digitale Betriebsart, die für Contests entworfen wurde. Wie bei FT8, benutzt sie Durchgänge konstanter Dauer mit strukturierten Nachrichtenformaten für minimale QSOs und starker Vorwärtsfehlerkorrektur. Die Durchgän	

ge dauern 6 Sekunden, so dass ein FT4 QSO etwa 2,5 × schneller als ein FT8 QSO gearbeitet werden kann. Dam it ist die Geschwindigkeit etwa vergleichbar mit RTTY im Contestbetrieb.

Dieser Artikel ist noch in Arbeit.

FT4 kann Signale verarbeiten, die etwa 10 dB schwächer sind als erforderlich für RTTY, obwohl weniger Bandbreite benötigt wird.

Einige Infos:

Die Vorwärtsfehlerkorrektur (FEC) in FT4 verwendet einen Paritätsprüfungscode mit niedriger Dichte ([https://de.wikipedia.org/wiki/Low-Density-Parity-Check-Code LDPC]) mit 77 Informationsbits, einer zyklischen 14-Bit-Redundanzprüfung (CRC) und 83 Paritätsbits, die ein 174-Bit-Codewort bilden. Er wird daher als LDPC (174,91)-Code bezeichnet. Das Nachrichtenformat für FT4 ist identisch mit dem für [[FT8]] und ebenfalls mit demselben LDPC (174,91) vor Übertragungsfehlern geschützt.

[http://physics.princeton.edu/pulsar/k1 jt/wsjtx.html WSJT-X] Die Synchronisation verwendet vier 4×4 [https://en.m.wikipedia.org/wiki/C ostas array Costas-Arrays,] und am Anfang und am Ende jeder Übertragung werden Aufwärts- und Abwärtssymbole eingefügt. Die Modulation ist eine 4-Ton-Frequenzumtastung (4-[[GFSK]]) mit Gaußscher Glättung von Frequenzübergängen. Die Taktrate beträgt 12000/576 = 20.8333 Baud. Jedes übertragene Symbol überträgt zwei Bits, so dass die Gesamtzahl der Kanalsymbole 174/2 + 16 + 2 = 105beträgt. Die Gesamtbandbreite beträgt $4 \times 20,8333 = 83,3$ Hz.

[http://forums.grz.com/index.php? - threads/new-digital-mode-ft4.655478 Ankündigung auf QRZ.com] Ein Sendedurchgang beträgt 4,48s verglichen mit 12,64s für FT8.

- Die Modulation basiert auf einer
 vierwertigen Frequency-Shift Keying
 (FSK) mit ungefähr 23,4 Baud.
- + Die vier Frequenzen unterscheiden sich um die Symbolrate.
- Die belegte Bandbreite beträgt 90 Hz.
 + In dieser Bandbreite findet sich 99% der Sendeleistung.

Siehe auch: [[FT8]], [[JT65]], [[JT4]], [[JT9]], [[JT6M]], [[QRA64]], [[MSK144]], [[FSK441]] und [[WSPR]].

Die folgende Tabelle listet die üblichen Frequenzbereiche für FT4 (Stand 2020). Die "Dial Frequency" gibt dabei die Frequenz des (unterdrückten) Trägers an. Dies ist also die angezeigte Frequenz am Funkgerät. Das Funkgerät moduliert das obere Seitenband (USB-Modulation).

+

+ {| class="wikitable"

+ |+Dial Frequency

+ 1-

+ | style="text-align:right;" |2190m

+ | style="text-align:right;" |???,??? kHz

+ 1-

+ | style="text-align:right;" |630m

| style="text-align:right;"

+ |freigegeben in Österreich seit Dez. 2020: 474,200 kHz

+ |-

+ | style="text-align:right;" |160m

| style="text-align:right;" |?,??? MHz

```
| style="text-align:right;" |80m
| style="text-align:right;" |3,575 MHz
| style="text-align:right;" |60m
| style="text-align:right:"
|freigegeben in Österreich seit Dez.
2020: 5,357 MHz
| style="text-align:right;" |40m
| style="text-align:right;" |7,0475 MHz
| style="text-align:right;" |30m
| style="text-align:right;" |10,140 MHz
II-
| style="text-align:right;" |20m
| style="text-align:right;" |14,080 MHz
| style="text-align:right;" |17m
| style="text-align:right;" |18,104 MHz
| style="text-align:right;" |15m
| style="text-align:right;" |21,140 MHz
| style="text-align:right;" |12m
| style="text-align:right;" |24,919 MHz
1-
| style="text-align:right;" |10m
| style="text-align:right;" |28,180 MHz
```

```
+ | style="text-align:right;" |6m
   | style="text-align:right;" |50,318 MHz
  | style="text-align:right;" |4m
   | style="text-align:right;" |??,??? MHz
   | style="text-align:right;" |2m
   | style="text-align:right;" |144,120
   MHz
   144,170 MHz
   | style="text-align:right;" |70cm
   | style="text-align:right;" |432,065
   MHz
   | style="text-align:right;" |23cm
   | style="text-align:right;" |1296,065
   MHz
  | style="text-align:right;" |13cm
   | style="text-align:right;" |2301,065
   MHz
   2304,065 MHz
   2320,065 MHz
   | style="text-align:right;" |6cm
   | style="text-align:right;" |3400,065
   MHz
   | style="text-align:right;" |3cm
```

```
| style="text-align:right;" |?????,???
   MHz
+ |-
+ | style="text-align:right;" |1,25cm
   | style="text-align:right;" |?????,???
   MHz
  |}
   ====Weiterführende Links====
   *[https://ww-digi.com World Wide Digi
   DX Contest ("WW Digi")]
   *Dokumentation des [http://physics.
   princeton.edu/pulsar/k1jt
   /FT4 Protocol.pdf FT4 Protokolls (in
   Englisch)] und der [https://physics.
   princeton.edu/pulsar/k1jt
   /FT4 Protocol de.pdf Übersetzung
   von [http://www.qrz.com/db/oeleqw
   Enrico OE1EOW1.
   *Software [http://physics.princeton.
   edu/pulsar/k1jt/wsjtx.html WSJT-X]
   *Die damalige Ankündigung einer
   neuen Betriebsart FT4:
   auf [http://forums.grz.com/index.php?
   threads/new-digital-mode-ft4.655478
   ORZ.com1 bzw. [http://www.
   southgatearc.org/news/2019/april
   /new-digital-mode-ft4.htm Southgate].
   *Mit FT4 verwandte Betriebsarten:
   [[FT8]], [[JT65]], [[JT4]], [[JT9]], [[JT6M]],
   [[QRA64]], [[MSK144]], [[FSK441]], [[FST4
   ]] und [[WSPR]].
```

Version vom 29. Januar 2022, 15:27 Uhr

Digitale Betriebsarten im Detail\: FT4

Joe Taylor K1JT hat im April 2019 eine neue digitale Betriebsart angekündigt: FT4. Diese ist 2.5 mal schneller als FT8. Die aktuelle Programmversion ist WSJT-X Version 2.5.4 (Stand: 29. Jan. 2022, siehe WSJT-X 2.5.0 Benutzerhandbuch.

FT4 ist eine experimentelle digitale Betriebsart, die für Contests entworfen wurde. Wie bei FT8, benutzt sie Durchgänge konstanter Dauer mit strukturierten Nachrichtenformaten für minimale QSOs und starker Vorwärtsfehlerkorrektur. Die Durchgänge dauern 6 Sekunden, so dass ein FT4 QSO etwa 2,5 × schneller als ein FT8 QSO gearbeitet werden kann. Damit ist die Geschwindigkeit etwa vergleichbar mit RTTY im Contestbetrieb.

FT4 kann Signale verarbeiten, die etwa 10 dB schwächer sind als erforderlich für RTTY, obwohl weniger Bandbreite benötigt wird.

Die Vorwärtsfehlerkorrektur (FEC) in FT4 verwendet einen Paritätsprüfungscode mit niedriger Dichte (LDPC) mit 77 Informationsbits, einer zyklischen 14-Bit-Redundanzprüfung (CRC) und 83 Paritätsbits, die ein 174-Bit-Codewort bilden. Er wird daher als LDPC (174,91)-Code bezeichnet. Das Nachrichtenformat für FT4 ist identisch mit dem für FT8 und ebenfalls mit demselben LDPC (174,91) vor Übertragungsfehlern geschützt.

Die Synchronisation verwendet vier 4×4 Costas-Arrays, und am Anfang und am Ende jeder Übertragung werden Aufwärts- und Abwärtssymbole eingefügt. Die Modulation ist eine 4-Ton-Frequenzumtastung (4-GFSK) mit Gaußscher Glättung von Frequenzübergängen. Die Taktrate beträgt 12000/576 = 20,8333 Baud. Jedes übertragene Symbol überträgt zwei Bits, so dass die Gesamtzahl der Kanalsymbole 174/2 + 16 + 2 = 105 beträgt. Die Gesamtbandbreite beträgt $4\times20,8333 = 83,3$ Hz.

Ein Sendedurchgang beträgt 4,48s verglichen mit 12,64s für FT8. Die Modulation basiert auf einer vierwertigen Frequency-Shift Keying (FSK) mit ungefähr 23,4 Baud. Die vier Frequenzen unterscheiden sich um die Symbolrate. Die belegte Bandbreite beträgt 90 Hz. In dieser Bandbreite findet sich 99% der Sendeleistung.

Die folgende Tabelle listet die üblichen Frequenzbereiche für FT4 (Stand 2020). Die "Dial Frequency" gibt dabei die Frequenz des (unterdrückten) Trägers an. Dies ist also die angezeigte Frequenz am Funkgerät. Das Funkgerät moduliert das obere Seitenband (USB-Modulation).

Dial Frequency

2190m	???,??? kHz
630m	freigegeben in Österreich seit Dez. 2020: 474,200 kHz
160m	?,??? MHz
80m	3,575 MHz
60m	freigegeben in Österreich seit Dez. 2020: 5,357 MHz
40m	7,0475 MHz
30m	10,140 MHz
20m	14,080 MHz

17m	18,104	MHz
15m	21,140	MHz
12m	24,919	MHz
10m	28,180	MHz
6m	50,318	MHz
4m	??,???	MHz
2m	144,120	MHz
	144,170	MHz
70cm	432,065	MHz
23cm	1296,065	MHz
13cm	2301,065	MHz
	2304,065	MHz
	2320,065	MHz
6cm	3400,065	MHz
3cm	?????,???	MHz
1,25 cm	?????,???	MHz

- World Wide Digi DX Contest ("WW Digi")
- Dokumentation des FT4 Protokolls (in Englisch) und der Übersetzung von Enrico OE1EQW.
- Software WSJT-X
- Die damalige Ankündigung einer neuen Betriebsart FT4: auf QRZ.com bzw. Southgate.
- Mit FT4 verwandte Betriebsarten: FT8, JT65, JT4, JT9, JT6M, QRA64, MSK144, FSK441, FST4 und WSPR.