

Inhaltsverzeichnis

1. Geschichte UKW Funk	32
2. Benutzer Diskussion:OE1CWJ	12
3. Benutzer:OE1CWJ	22

Geschichte UKW Funk

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 11. Mai 2012, 12:16 Uhr (Qu elltext anzeigen)

OE1CWJ (Diskussion | Beiträge)
(→DL6MH und der Bayrische Bergtag (BBT))
← Zum vorherigen Versionsunterschied

Zeile 50:

Es ist auch interessant daß viele der neuen Funksprechgeräte heutzutage durch den äußerst breiten Empfangsbereich dieser Geräte oft stark durch Störungen anderer Funkdienste leiden. Es ist wirklich ironisch daß die Geräte oft die Größe einer Zigarettenschachtel haben, daß aber das Filter daß man dazu braucht um die Störungen abzuhalten, oft die Größe einer Schuhschachtel erreicht. Diese Störanfälligkeit ist einerseits durch den breiten Empfangsbereich zu erklären, andrerseits durch die HF Niederspannungsschaltungstechnik mit Bipolaren Transistoren, die den Gebrauch Kreuzmodulations- und Intermodulationasärmerer FETS verbietet und nicht zuletzt durch die übermäßige Anwendung von Dioden in den kritischen HF-Wegen.

Es ist hier weniger beabsichtigt die moderne Gerätetechnik und Trends schlecht zu machen, als den Kontrast zwischen der damaligen Gerätetechnik und der Heutigen Generation von Geräten herauszustellen.

Version vom 11. Mai 2012, 12:24 Uhr (Qu elltext anzeigen)

OE1CWJ (Diskussion | Beiträge)
(→DL6MH und der Bayrische Bergtag (BBT))
Zum nächsten Versionsunterschied →

Zeile 50:

Es ist auch interessant daß viele der neuen Funksprechgeräte heutzutage durch den äußerst breiten Empfangsbereich dieser Geräte oft stark durch Störungen anderer Funkdienste leiden. Es ist wirklich ironisch daß die Geräte oft die Größe einer Zigarettenschachtel haben, daß aber das Filter daß man dazu braucht um die Störungen abzuhalten, oft die Größe einer Schuhschachtel erreicht. Diese Störanfälligkeit ist einerseits durch den breiten Empfangsbereich zu erklären, andrerseits durch die HF Niederspannungsschaltungstechnik mit Bipolaren Transistoren, die den Gebrauch Kreuzmodulations- und Intermodulationasärmerer FETS verbietet und nicht zuletzt durch die übermäßige Anwendung von Dioden in den kritischen HF-Wegen.

Es ist hier weniger beabsichtigt die moderne Gerätetechnik und Trends schlecht zu machen, als den Kontrast zwischen der damaligen Gerätetechnik und der Heutigen Generation von Geräten herauszustellen.

+	
+	
+	
+	
+	== Semco Electronic GmbH, Wesseln ==

+ (c) Leo Schulz, DL9BBR +

Begonnen hat alles um 1960. Im Hildesheimer Blaupunktwerk waren einige Funkamateure beschäftigt, darunter Karl-Heinz Lausen, DL9SB, von Haus aus Fernsehtechniker und Rudolf Loke, DJ2KD, ein gelernter Kaufmann. Zunächst realisierten diese beiden kleinere Amateurfunk-Projekte für den Eigenbedarf, die auch bei anderen Mitgliedern des Hildesheimer DARC-Ortsverbands auf großes Interesse stießen. Zu dieser Zeit gab es in Deutschland praktisch keinen kommerziellen Hersteller für Amateurfunk-Erzeugnisse und so sprach es sich herum, dass diese **Beiden interessante Bausteine** herstellen. Die Mundpropaganda führte zu einer wachsenden Nachfrage und zu dem Entschluss eine eigene Firma zu gründen. Das Gewerbe firmierte zunächst unter K.-H. Lausen. Hildesheim. Bahrfeld-Straße 11. Eines der ersten Produkte war ein Spannungswandler mit 2x AD103 für den Mobilbetrieb mit röhrenbestückten UKW-Endstufen (mit QQE03/12). Danach wurde ein KW-Konverter mit 1,6-MHz-ZF (HFB 1,6) entwickelt, der mit einem MW-Radio als Nachsetzer den Empfang aller 5 KW-Amateurfunkbänder ermöglichte. Der Erfolg dieses Konverters führte dazu. Bausteine für einen voll transistorisierten KW-Empfänger zu realisieren. Es entstand die KW-Konverter-Variante HFB-3.0 mit 3.0-MHz-ZF, ein dazu passender 3-MHz-ZF Baustein und ein NF-Verstärker. Die Auslieferung in Bausatzform wurde jedoch sehr bald

von der Fertigung komplett aufgebauter und abgeglichner Bausteine abgelöst, da sich schnell zeigte, dass viele Funkamateure Probleme mit dem Aufbau der neuen Technik hatten (Selbstbestücken der Platinen und Baustein-Abgleich). Aus den genannten Kurzwellen-Bausteinen entstand der KW-Empfänger Semiconda, der nun auch mit Gehäuse und mechanischen Teilen geliefert wurde. Daraus entstand später der Semiconda 68 mit neuer Frontplatte. Für das 2-m Amateurfunk-Band wurden inzwischen ebenfalls Bausteine entwickelt. Der MB2 als 2-m Konverter und der MB10 als 10-m-Nachsetzer ermöglichten den Aufbau kleiner portabler Stationen. Der dazu entwickelte Sender-Baustein wurde in den UKW-Berichten Heft 2/1964 von U. L. Rohde beschrieben und kostete 1964 etwa 250 DM. Der 2-m-Konverter MB2 setzte damals in seiner baulichen Größe und Empfindlichkeit Maßstäbe. Geringe Vorselektion und mäßige Großsignalfestigkeit der bipolaren Transistoren führten aber zur Trübung des Empfangs durch starke UKW-Rundfunksender. Ab 1964 ergab sich ein enger persönlicher Kontakt zwischen R. Loke und Dipl.-Ing. Horst-D. Zander, DI2EV, der bis 1967 in Hamburg, dann in Freiburg/Brsg. In der industrie tätig war. Aufgrund seiner Begeisterung für das Hobby Amateurfunk und seines Berufes (HFund Halbleitertechnik) gab OM Zander im Laufe der lahre dem Hildesheimer Unternehmen viele Anregungen, die dem Allgemeinen Stand der Amateurfunktechnik deutlich voraus waren. Dazu gehörten u.a. das Schaltungskonzept für den legendären ersten 2-m-Konverter

+

UE2FET mit Feldefekttransistoren und besonders hoher (Vor-) Selektion und Störfestigkeit sowie Verbesserungsvorschläge aufgrund eigener Experimente, wie z.b. Untersuchungen und Schaltungsdetails zur Modulationsqualität ("positive" AM, Linearität von SSB-Senderbausteinen),das Konzept für das bekannte UKW-Funksprechgerät "Semco" und Konzepte für die späteren SSB-Tranceiver. Der rasante Entwicklungsverlauf der Halbleiter brachte preiswerte Transistoren auf den Markt, die die Entwicklung neuer Bausteine für Empfänger und Sender ermöglichten. Hierzu gehörten u.a. der Senderbaustein MBS21 und Folgemodelle und die Umentwicklung des UE2FET von IFETs auf MosFETs (UE2MosFet) und die "Mini Bausteine" die sich schnell einen auten Ruf erwarben. Parallel dazu begann die Entwicklung und Produktion von 2-m-Fertiggeräten wie Funksprechgerät Semco, Tranceiver SSB-Semco, Semco-SSB und Semcoport.

+

Ende 1965 tauchte der Name Semcoset erstmalig in der Firmenbezeichnung auf, die 1966 in Semcoset Lausen & Co. OHG umgewandelt wurde. Im Rahmen der Firmenvergrößerung wechselte der Standort zunächst zur Borsigstr.5 in Hildesheim. 1969 wurden dann Entwicklung und Produktion in einem eigenen Neubau nach Wesseln bei Hildesheim. Über dem Steinbruch 189 verlagert. Hier entstand das SSB-Semco sowie das Semco-Moto und das inzwischen überarbeitete AM-Funksprechgerät Semco, als "Brotdose" bei den Funkamateuren bald ein sehr beliebtes Portabel-

Gerät, das auch bei Fuchsiagden und beim BBT seine Klasse über viele Jahre bewies. Es folgte die Weiterentwicklung des SSB-Semco zum Semco-SSB. Das Semco-Roto 1971 war eine preiswerte Variante für den mobilen Betrieb mit AM und FM. 1973 kam dann das Semco-Terzo auf den Markt. Mit 25 Watt Sendeleistung in SSB und AM und 15 Watt in FM sowie der für Relaisbetrieb erforderlichen Ablage zunächst von 1,6 MHz, war das zu diesem Zeitpunkt **Technisch Machbare erreicht. Die** Variante Terzo-Digital war dann das absolute Spitzen-Produkt von Semcoset und wurde zur Legende. Für Portabelbetrieb entstand das Semcoport als würdiger Nachfolger der "Brotdose" und wurde ebenfalls sehr schnell zum Verkaufserfolg, der längere Lieferzeiten hervorrief. Im Bereich der Bausteine waren in der Zwischenzeit die Nachsetzer und Konverter weiterentwickelt und verbessert worden. Sie stellten eine preiswerte Variante für den Funkamateur dar und es gab dazu einige Baubeschreibungen in der Zeitschrift Funkschau. 1977 kamen die letzten Tranceiver von Semcoset auf den Markt. Hierbei handelt es sich um das Semco-Selecto und das Semco-Roto-S. Diese waren im Empfangsteil mit Schottky-Dioden-Ringmischern ausgestattet und boten im Amateurfunkbereich bis dahin unereichte Großsignal-Festigkeit. Mit dem Tod von DI2KD, der die Firma führte und dessen Spezialgebiet die Panorama-Empfänger wie Semcorama, Spectrolyzer AR, Semco-Spectro MM usw. waren, ging auch die Ära Semcoset zu Ende. Semcoset hatte bis dahin dem zunehmenden

+

Druck der Japanischen Konkurrenz Stand gehalten. Damit endet die deutsche Amateurfunkgeräte-Produktion von Semcoset und somit auch ein großes Stück Amateurfunk-Geschichte.

Version vom 11. Mai 2012, 12:24 Uhr

Geschichte des UKW Funk

Im Vergleich zur Kurzwelle waren in den 1960-er Jahren nur wenige Stationen auf UKW zu hören und es gab auch kaum kommerzielle Neugeräte. Anfangs war es auch sehr schwer, die für den UKW-Eigenbau benötigten Bauteile zu bekommen, bzw. waren diese sehr teuer. Dennoch wurde viel gebastelt und experimentiert.

Der Schwerpunkt dieser Aktivitäten in Mitteleuropa lag in Deutschland. Dieses Land war auch lange Zeit in jeder Hinsicht führend. Da sich in diesem Gebiet das UKW-Band für Kurzstrecken QSO's sehr gut eignete, fand dieser Frequenzbereich in Deutschland großes Interesse. Grund dafür war sicher eine größere Anzahl von Funkamateuren und die größtenteils flache Landschaft. Also ideale Voraussetzungen für diese Frequenzen.

Nicht zuletzt machten es der wirtschaftliche Aufschwung und der Forschungsdrang vieler Funkamateure möglich, diese neue Welt der UKW-Frequenzen zu erobern. Diese OM`s machten sich schon damals Gedanken darüber, wie man die Aktivitäten auf diesen Bändern erhöhen könnte.

Hier sind in loser Folge Beiträge zur Geschichte des UKW Amateurfunks geplant . ich freue mich über Eure Anregungen/Beiträge Christian, OE1CWJ

DL6MH und der Bayrische Bergtag (BBT)

© http://www.ve6aqo.com/dl6MH.htm

Ingenieur Sepp (Josef) Reithofer war mit seinem Rufzeichen DL6MH auf dem Gebiete der VHF-UHF und SHF Amateurfunktechnik im In- und Ausland weithin bekannt. Als "Vater" des BBT (Bayrischer Bergtag) hat er sich in ganz Europa einen Namen gemacht und hat den technischen Fortschritt der portablen 2m und 70cm Klein-Geräte beträchtlich vorwärtsgetrieben. Er hat vielen Erstverbindungen gemacht. Er verstarb am 26. Oktober 1985 im Alter von 77 Jahren in seiner Heimatstadt Straubing.

Die Geräte die hier vorgestellt sind, repräsentieren den Stand der Amateurtechnik um 1961 bis 1967. Am Anfang der 60er Jahre wurden von DL6MH große Anstrengungen gemacht die Röhren aus den Portable Geräten zu verdrängen, sobald neue, geignete Transistoren erschwinglich wurden. Damals war die Auswahl von geeigneten Transistoren noch sehr spärlich und verursachten der oft knappen Amateurkasse große Ausgaben. Jedes mW an UKW-HF mußte man sich mühsam erkämpfen. Transistoren wie OC171, AF118 und ähnliche Typen wurden gequält um die letzten paar mW rauszukitzeln. Oft war man damals auf Fünf oder Zehn mW HF sogar recht stolz.

Erste portable 2m BBT Station, 1955

OM Sepp beim BBT, 1955

BBT Station 1956

TX Baugruppe

BBT Geräte Ausstellung

Ausgabe: 05.05.2024

DL6MH Station für 2m und 70cm

Homemade RIG für 70cm

Transverter für 70cm nach DL6MH

Als Vater des BBT (Bayrischer Bergtag) hat DL6MH den technischen Fortschritt der portablen 2-m Geräte beträchtlich vorwärtsgetrieben. Innerhalb von nur ein paar Jahren wurden die Röhren fast vollkommen verdrängt. Es wurde sogleich erkannt, dass beim BBT mehr das Können und die Lage der Station den Erfolg beim BBT bestimmte. Mit nur 50 bis 200 mW HF wurden vielfach hunderte KM an Reichweiten erzielt. Jedes Jahr stieg die Anteilnahme am BBT. Viele Hams aus den Nachbarländern in OE, I, OK, DM, u.a. nahmen am BBT teil, welcher ungeahnte Beliebtheit erreichte. Nach Möglichkeit wurden im Empfängerteil vielfach UKW-Rundfunk Baugruppen verschiedener Hersteller (Görler) in diesen Geräten nach kleinerem Umbau verwendet. Die folgenden Bilder illustrieren die Kombination von Industrie und Selbstbauschaltungen.

Obwohl die damalige Gerätetechnik uns heute im Zeitalter von computergesteuerten Funkgeräten mit allen Schikanen heute fast primitiv anmutet, sollte man sich immer vor Augen halten, daß diese Geräte ein Wegbereiter der modernen Technik darstellten. Es ist bestimmt möglich daß die OMs damals bestimmt genau so viel Spaß am Ausprobieren und Verwendung der meistens selbstgebauten Geräte hatten, wie heutzutage wir mit den modernen Wundern der Herstellertechnik.

Es muß leider auch gesagt werden daß immer weniger OMs ihre Funkgeräte in ihrer Funktionweise im Detail kennen. Das ist einerseits durch die außerordentliche Miniaturisierung der Bauweise mit SMD Bauteilen zu erklären, als auch daß die meisten Gerätefunktionen indirekt durch fest eingebaute Microcomputer gesteuert werden, deren Funktionsablauf und der Quellcode dem Gebraucher sowieso nicht zugänglich sind. Vorbei ist die Zeit wo ein Bedienungselement direkt das Gerät beinflußte. Die Miniaturisierung ist der fachmännischen Reparatur immer weniger zugänglich und verurteilt viele neue Geräte zum Wegwerfen. Vielfach ist Reparatur nur durch teuren Modulaustausch möglich. Schon lange her sind die Tage wo der OM Schaltbild und Gerät studieren konnte und imstande war sich früh mit der Funktionsweise vertraut zu machen und die meisten Fehler selber beheben zu können. Man sieht hier übrigens auch eine gewisse Parallele zur Automobilreparatur. Es ist leider auch nicht zu verleugnen, daß viele der modernen Computergesteuerten Geräten ein Übermaß an "features" haben. Die meistens Features werden jedoch außer den wichtigen Grundfunktionen sowieso selten gebraucht, setzen leider jedoch für eine vernünftige Bedienung des Gerätes die Mitnahme der "Quick Reference" oder des Benutzerhandbuchs voraus, da man sich oft nach kurzer Zeit des Nichtgebrauchs an die vielen Menus und Tasten Sequenzen nicht mehr auskennt. In der Hinsicht waren früher die nicht Computergesteuerten Geräte viel einfacher in der Bedienung.

Es ist auch interessant daß viele der neuen Funksprechgeräte heutzutage durch den äußerst breiten Empfangsbereich dieser Geräte oft stark durch Störungen anderer Funkdienste leiden. Es ist wirklich ironisch daß die Geräte oft die Größe einer Zigarettenschachtel haben, daß aber das Filter daß man dazu braucht um die Störungen abzuhalten, oft die Größe einer Schuhschachtel erreicht. Diese Störanfälligkeit ist einerseits durch den breiten Empfangsbereich zu erklären, andrerseits durch die HF Niederspannungsschaltungstechnik mit Bipolaren Transistoren, die den Gebrauch Kreuzmodulations- und Intermodulationasärmerer FETS verbietet und nicht zuletzt durch die übermäßige Anwendung von Dioden in den kritischen HF-Wegen. Es ist hier weniger beabsichtigt die moderne Gerätetechnik und Trends schlecht zu machen, als den Kontrast zwischen der damaligen Gerätetechnik und der Heutigen Generation von Geräten herauszustellen.

Semco Electronic GmbH, Wesseln

(c) Leo Schulz, DL9BBR

Begonnen hat alles um 1960. Im Hildesheimer Blaupunktwerk waren einige Funkamateure beschäftigt, darunter Karl-Heinz Lausen, DL9SB, von Haus aus Fernsehtechniker und Rudolf Loke, DJ2KD, ein gelernter Kaufmann. Zunächst realisierten diese beiden kleinere Amateurfunk-Projekte für den Eigenbedarf, die auch bei anderen Mitgliedern des Hildesheimer DARC-

Ortsverbands auf großes Interesse stießen. Zu dieser Zeit gab es in Deutschland praktisch keinen kommerziellen Hersteller für Amateurfunk-Erzeugnisse und so sprach es sich herum, dass diese Beiden interessante Bausteine herstellen. Die Mundpropaganda führte zu einer wachsenden Nachfrage und zu dem Entschluss eine eigene Firma zu gründen. Das Gewerbe firmierte zunächst unter K.-H. Lausen, Hildesheim, Bahrfeld-Straße 11. Eines der ersten Produkte war ein Spannungswandler mit 2x AD103 für den Mobilbetrieb mit röhrenbestückten UKW-Endstufen (mit QQE03/12). Danach wurde ein KW-Konverter mit 1,6-MHz-ZF (HFB 1,6) entwickelt, der mit einem MW-Radio als Nachsetzer den Empfang aller 5 KW-Amateurfunkbänder ermöglichte. Der Erfolg dieses Konverters führte dazu, Bausteine für einen voll transistorisierten KW-Empfänger zu realisieren. Es entstand die KW-Konverter-Variante HFB-3,0 mit 3,0-MHz-ZF, ein dazu passender 3-MHz-ZF Baustein und ein NF-Verstärker. Die Auslieferung in Bausatzform wurde jedoch sehr bald von der Fertigung komplett aufgebauter und abgeglichner Bausteine abgelöst, da sich schnell zeigte, dass viele Funkamateure Probleme mit dem Aufbau der neuen Technik hatten (Selbstbestücken der Platinen und Baustein-Abgleich). Aus den genannten Kurzwellen-Bausteinen entstand der KW-Empfänger Semiconda, der nun auch mit Gehäuse und mechanischen Teilen geliefert wurde. Daraus entstand später der Semiconda 68 mit neuer Frontplatte. Für das 2-m Amateurfunk-Band wurden inzwischen ebenfalls Bausteine entwickelt. Der MB2 als 2-m Konverter und der MB10 als 10-m-Nachsetzer ermöglichten den Aufbau kleiner portabler Stationen. Der dazu entwickelte Sender-Baustein wurde in den UKW-Berichten Heft 2/1964 von U.L. Rohde beschrieben und kostete 1964 etwa 250 DM. Der 2-m-Konverter MB2 setzte damals in seiner baulichen Größe und Empfindlichkeit Maßstäbe. Geringe Vorselektion und mäßige Großsignalfestigkeit der bipolaren Transistoren führten aber zur Trübung des Empfangs durch starke UKW-Rundfunksender. Ab 1964 ergab sich ein enger persönlicher Kontakt zwischen R. Loke und Dipl.-Ing. Horst-D. Zander, DJ2EV, der bis 1967 in Hamburg, dann in Freiburg/Brsg. In der industrie tätig war. Aufgrund seiner Begeisterung für das Hobby Amateurfunk und seines Berufes (HF-und Halbleitertechnik) gab OM Zander im Laufe der Jahre dem Hildesheimer Unternehmen viele Anregungen, die dem Allgemeinen Stand der Amateurfunktechnik deutlich voraus waren. Dazu gehörten u.a. das Schaltungskonzept für den legendären ersten 2-m-Konverter UE2FET mit Feldefekttransistoren und besonders hoher (Vor-) Selektion und Störfestigkeit sowie Verbesserungsvorschläge aufgrund eigener Experimente, wie z.b. Untersuchungen und Schaltungsdetails zur Modulationsqualität ("positive" AM, Linearität von SSB-Senderbausteinen), das Konzept für das bekannte UKW-Funksprechgerät "Semco" und Konzepte für die späteren SSB-Tranceiver. Der rasante Entwicklungsverlauf der Halbleiter brachte preiswerte Transistoren auf den Markt, die die Entwicklung neuer Bausteine für Empfänger und Sender ermöglichten. Hierzu gehörten u.a. der Senderbaustein MBS21 und Folgemodelle und die Umentwicklung des UE2FET von JFETs auf MosFETs (UE2MosFet) und die "Mini Bausteine" die sich schnell einen guten Ruf erwarben. Parallel dazu begann die Entwicklung und Produktion von 2-m-Fertiggeräten wie Funksprechgerät Semco, Tranceiver SSB-Semco, Semco-SSB und Semcoport.

Ende 1965 tauchte der Name Semcoset erstmalig in der Firmenbezeichnung auf, die 1966 in Semcoset Lausen & Co. OHG umgewandelt wurde. Im Rahmen der Firmenvergrößerung wechselte der Standort zunächst zur Borsigstr.5 in Hildesheim. 1969 wurden dann Entwicklung und Produktion in einem eigenen Neubau nach Wesseln bei Hildesheim, Über dem Steinbruch 189 verlagert. Hier entstand das SSB-Semco sowie das Semco-Moto und das inzwischen überarbeitete AM-Funksprechgerät Semco, als "Brotdose" bei den Funkamateuren bald ein sehr beliebtes Portabel-Gerät, das auch bei Fuchsjagden und beim BBT seine Klasse über viele Jahre bewies. Es folgte die Weiterentwicklung des SSB-Semco zum Semco-SSB. Das Semco-Roto 1971 war eine preiswerte Variante für den mobilen Betrieb mit AM und FM.1973 kam dann das Semco-

Terzo auf den Markt. Mit 25 Watt Sendeleistung in SSB und AM und 15 Watt in FM sowie der für Relaisbetrieb erforderlichen Ablage zunächst von 1,6 MHz, war das zu diesem Zeitpunkt Technisch Machbare erreicht. Die Variante Terzo-Digital war dann das absolute Spitzen-Produkt von Semcoset und wurde zur Legende. Für Portabelbetrieb entstand das Semcoport als würdiger Nachfolger der "Brotdose" und wurde ebenfalls sehr schnell zum Verkaufserfolg, der längere Lieferzeiten hervorrief. Im Bereich der Bausteine waren in der Zwischenzeit die Nachsetzer und Konverter weiterentwickelt und verbessert worden. Sie stellten eine preiswerte Variante für den Funkamateur dar und es gab dazu einige Baubeschreibungen in der Zeitschrift Funkschau. 1977 kamen die letzten Tranceiver von Semcoset auf den Markt. Hierbei handelt es sich um das Semco-Selecto und das Semco-Roto-S. Diese waren im Empfangsteil mit Schottky-Dioden-Ringmischern ausgestattet und boten im Amateurfunkbereich bis dahin unereichte Großsignal-Festigkeit. Mit dem Tod von DJ2KD, der die Firma führte und dessen Spezialgebiet die Panorama-Empfänger wie Semcorama, Spectrolyzer AR, Semco-Spectro MM usw. waren, ging auch die Ära Semcoset zu Ende. Semcoset hatte bis dahin dem zunehmenden Druck der Japanischen Konkurrenz Stand gehalten. Damit endet die deutsche Amateurfunkgeräte-Produktion von Semcoset und somit auch ein großes Stück Amateurfunk-Geschichte.

Geschichte UKW Funk: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 11. Mai 2012, 12:16 Uhr (Qu elltext anzeigen)

OE1CWJ (Diskussion | Beiträge)
(→DL6MH und der Bayrische Bergtag (BBT))
← Zum vorherigen Versionsunterschied

Zeile 50:

Es ist auch interessant daß viele der neuen Funksprechgeräte heutzutage durch den äußerst breiten Empfangsbereich dieser Geräte oft stark durch Störungen anderer Funkdienste leiden. Es ist wirklich ironisch daß die Geräte oft die Größe einer Zigarettenschachtel haben, daß aber das Filter daß man dazu braucht um die Störungen abzuhalten, oft die Größe einer Schuhschachtel erreicht. Diese Störanfälligkeit ist einerseits durch den breiten Empfangsbereich zu erklären, andrerseits durch die HF Niederspannungsschaltungstechnik mit Bipolaren Transistoren, die den Gebrauch Kreuzmodulations- und Intermodulationasärmerer FETS verbietet und nicht zuletzt durch die übermäßige Anwendung von Dioden in den kritischen HF-Wegen.

Es ist hier weniger beabsichtigt die moderne Gerätetechnik und Trends schlecht zu machen, als den Kontrast zwischen der damaligen Gerätetechnik und der Heutigen Generation von Geräten herauszustellen.

Version vom 11. Mai 2012, 12:24 Uhr (Qu elltext anzeigen)

OE1CWJ (Diskussion | Beiträge)
(→DL6MH und der Bayrische Bergtag (BBT))
Zum nächsten Versionsunterschied →

Zeile 50:

Es ist auch interessant daß viele der neuen Funksprechgeräte heutzutage durch den äußerst breiten Empfangsbereich dieser Geräte oft stark durch Störungen anderer Funkdienste leiden. Es ist wirklich ironisch daß die Geräte oft die Größe einer Zigarettenschachtel haben, daß aber das Filter daß man dazu braucht um die Störungen abzuhalten, oft die Größe einer Schuhschachtel erreicht. Diese Störanfälligkeit ist einerseits durch den breiten Empfangsbereich zu erklären, andrerseits durch die HF Niederspannungsschaltungstechnik mit Bipolaren Transistoren, die den Gebrauch Kreuzmodulations- und Intermodulationasärmerer FETS verbietet und nicht zuletzt durch die übermäßige Anwendung von Dioden in den kritischen HF-Wegen.

Es ist hier weniger beabsichtigt die moderne Gerätetechnik und Trends schlecht zu machen, als den Kontrast zwischen der damaligen Gerätetechnik und der Heutigen Generation von Geräten herauszustellen.

+	
+	
+	
+	
+	== Semco Electronic GmbH, Wesseln ==

+ (c) Leo Schulz, DL9BBR
+

Begonnen hat alles um 1960. Im Hildesheimer Blaupunktwerk waren einige Funkamateure beschäftigt, darunter Karl-Heinz Lausen, DL9SB, von Haus aus Fernsehtechniker und Rudolf Loke, DJ2KD, ein gelernter Kaufmann. Zunächst realisierten diese beiden kleinere Amateurfunk-Projekte für den Eigenbedarf, die auch bei anderen Mitgliedern des Hildesheimer DARC-Ortsverbands auf großes Interesse stießen. Zu dieser Zeit gab es in Deutschland praktisch keinen kommerziellen Hersteller für Amateurfunk-Erzeugnisse und so sprach es sich herum, dass diese **Beiden interessante Bausteine** herstellen. Die Mundpropaganda führte zu einer wachsenden Nachfrage und zu dem Entschluss eine eigene Firma zu gründen. Das Gewerbe firmierte zunächst unter K.-H. Lausen. Hildesheim. Bahrfeld-Straße 11. Eines der ersten Produkte war ein Spannungswandler mit 2x AD103 für den Mobilbetrieb mit röhrenbestückten UKW-Endstufen (mit QQE03/12). Danach wurde ein KW-Konverter mit 1,6-MHz-ZF (HFB 1,6) entwickelt, der mit einem MW-Radio als Nachsetzer den Empfang aller 5 KW-Amateurfunkbänder ermöglichte. Der Erfolg dieses Konverters führte dazu. Bausteine für einen voll transistorisierten KW-Empfänger zu realisieren. Es entstand die KW-Konverter-Variante HFB-3.0 mit 3.0-MHz-ZF, ein dazu passender 3-MHz-ZF Baustein und ein NF-Verstärker. Die Auslieferung in Bausatzform wurde jedoch sehr bald

von der Fertigung komplett aufgebauter und abgeglichner Bausteine abgelöst, da sich schnell zeigte, dass viele Funkamateure Probleme mit dem Aufbau der neuen Technik hatten (Selbstbestücken der Platinen und Baustein-Abgleich). Aus den genannten Kurzwellen-Bausteinen entstand der KW-Empfänger Semiconda, der nun auch mit Gehäuse und mechanischen Teilen geliefert wurde. Daraus entstand später der Semiconda 68 mit neuer Frontplatte. Für das 2-m Amateurfunk-Band wurden inzwischen ebenfalls Bausteine entwickelt. Der MB2 als 2-m Konverter und der MB10 als 10-m-Nachsetzer ermöglichten den Aufbau kleiner portabler Stationen. Der dazu entwickelte Sender-Baustein wurde in den UKW-Berichten Heft 2/1964 von U. L. Rohde beschrieben und kostete 1964 etwa 250 DM. Der 2-m-Konverter MB2 setzte damals in seiner baulichen Größe und Empfindlichkeit Maßstäbe. Geringe Vorselektion und mäßige Großsignalfestigkeit der bipolaren Transistoren führten aber zur Trübung des Empfangs durch starke UKW-Rundfunksender. Ab 1964 ergab sich ein enger persönlicher Kontakt zwischen R. Loke und Dipl.-Ing. Horst-D. Zander, DI2EV, der bis 1967 in Hamburg, dann in Freiburg/Brsg. In der industrie tätig war. Aufgrund seiner Begeisterung für das Hobby Amateurfunk und seines Berufes (HFund Halbleitertechnik) gab OM Zander im Laufe der lahre dem Hildesheimer Unternehmen viele Anregungen, die dem Allgemeinen Stand der Amateurfunktechnik deutlich voraus waren. Dazu gehörten u.a. das Schaltungskonzept für den legendären ersten 2-m-Konverter

+

UE2FET mit Feldefekttransistoren und besonders hoher (Vor-) Selektion und Störfestigkeit sowie Verbesserungsvorschläge aufgrund eigener Experimente, wie z.b. Untersuchungen und Schaltungsdetails zur Modulationsqualität ("positive" AM, Linearität von SSB-Senderbausteinen),das Konzept für das bekannte UKW-Funksprechgerät "Semco" und Konzepte für die späteren SSB-Tranceiver. Der rasante Entwicklungsverlauf der Halbleiter brachte preiswerte Transistoren auf den Markt, die die Entwicklung neuer Bausteine für Empfänger und Sender ermöglichten. Hierzu gehörten u.a. der Senderbaustein MBS21 und Folgemodelle und die Umentwicklung des UE2FET von IFETs auf MosFETs (UE2MosFet) und die "Mini Bausteine" die sich schnell einen auten Ruf erwarben. Parallel dazu begann die Entwicklung und Produktion von 2-m-Fertiggeräten wie Funksprechgerät Semco, Tranceiver SSB-Semco, Semco-SSB und Semcoport.

+

Ende 1965 tauchte der Name Semcoset erstmalig in der Firmenbezeichnung auf, die 1966 in Semcoset Lausen & Co. OHG umgewandelt wurde. Im Rahmen der Firmenvergrößerung wechselte der Standort zunächst zur Borsigstr.5 in Hildesheim. 1969 wurden dann Entwicklung und Produktion in einem eigenen Neubau nach Wesseln bei Hildesheim. Über dem Steinbruch 189 verlagert. Hier entstand das SSB-Semco sowie das Semco-Moto und das inzwischen überarbeitete AM-Funksprechgerät Semco, als "Brotdose" bei den Funkamateuren bald ein sehr beliebtes Portabel-

Gerät, das auch bei Fuchsiagden und beim BBT seine Klasse über viele Jahre bewies. Es folgte die Weiterentwicklung des SSB-Semco zum Semco-SSB. Das Semco-Roto 1971 war eine preiswerte Variante für den mobilen Betrieb mit AM und FM. 1973 kam dann das Semco-Terzo auf den Markt. Mit 25 Watt Sendeleistung in SSB und AM und 15 Watt in FM sowie der für Relaisbetrieb erforderlichen Ablage zunächst von 1,6 MHz, war das zu diesem Zeitpunkt **Technisch Machbare erreicht. Die** Variante Terzo-Digital war dann das absolute Spitzen-Produkt von Semcoset und wurde zur Legende. Für Portabelbetrieb entstand das Semcoport als würdiger Nachfolger der "Brotdose" und wurde ebenfalls sehr schnell zum Verkaufserfolg, der längere Lieferzeiten hervorrief. Im Bereich der Bausteine waren in der Zwischenzeit die Nachsetzer und Konverter weiterentwickelt und verbessert worden. Sie stellten eine preiswerte Variante für den Funkamateur dar und es gab dazu einige Baubeschreibungen in der Zeitschrift Funkschau. 1977 kamen die letzten Tranceiver von Semcoset auf den Markt. Hierbei handelt es sich um das Semco-Selecto und das Semco-Roto-S. Diese waren im Empfangsteil mit Schottky-Dioden-Ringmischern ausgestattet und boten im Amateurfunkbereich bis dahin unereichte Großsignal-Festigkeit. Mit dem Tod von DI2KD, der die Firma führte und dessen Spezialgebiet die Panorama-Empfänger wie Semcorama, Spectrolyzer AR, Semco-Spectro MM usw. waren, ging auch die Ära Semcoset zu Ende. Semcoset hatte bis dahin dem zunehmenden

+

Druck der Japanischen Konkurrenz Stand gehalten. Damit endet die deutsche Amateurfunkgeräte-Produktion von Semcoset und somit auch ein großes Stück Amateurfunk-Geschichte.

Version vom 11. Mai 2012, 12:24 Uhr

Geschichte des UKW Funk

Im Vergleich zur Kurzwelle waren in den 1960-er Jahren nur wenige Stationen auf UKW zu hören und es gab auch kaum kommerzielle Neugeräte. Anfangs war es auch sehr schwer, die für den UKW-Eigenbau benötigten Bauteile zu bekommen, bzw. waren diese sehr teuer. Dennoch wurde viel gebastelt und experimentiert.

Der Schwerpunkt dieser Aktivitäten in Mitteleuropa lag in Deutschland. Dieses Land war auch lange Zeit in jeder Hinsicht führend. Da sich in diesem Gebiet das UKW-Band für Kurzstrecken QSO's sehr gut eignete, fand dieser Frequenzbereich in Deutschland großes Interesse. Grund dafür war sicher eine größere Anzahl von Funkamateuren und die größtenteils flache Landschaft. Also ideale Voraussetzungen für diese Frequenzen.

Nicht zuletzt machten es der wirtschaftliche Aufschwung und der Forschungsdrang vieler Funkamateure möglich, diese neue Welt der UKW-Frequenzen zu erobern. Diese OM`s machten sich schon damals Gedanken darüber, wie man die Aktivitäten auf diesen Bändern erhöhen könnte.

Hier sind in loser Folge Beiträge zur Geschichte des UKW Amateurfunks geplant . ich freue mich über Eure Anregungen/Beiträge Christian, OE1CWJ

DL6MH und der Bayrische Bergtag (BBT)

© http://www.ve6aqo.com/dl6MH.htm

Ingenieur Sepp (Josef) Reithofer war mit seinem Rufzeichen DL6MH auf dem Gebiete der VHF-UHF und SHF Amateurfunktechnik im In- und Ausland weithin bekannt. Als "Vater" des BBT (Bayrischer Bergtag) hat er sich in ganz Europa einen Namen gemacht und hat den technischen Fortschritt der portablen 2m und 70cm Klein-Geräte beträchtlich vorwärtsgetrieben. Er hat vielen Erstverbindungen gemacht. Er verstarb am 26. Oktober 1985 im Alter von 77 Jahren in seiner Heimatstadt Straubing.

Die Geräte die hier vorgestellt sind, repräsentieren den Stand der Amateurtechnik um 1961 bis 1967. Am Anfang der 60er Jahre wurden von DL6MH große Anstrengungen gemacht die Röhren aus den Portable Geräten zu verdrängen, sobald neue, geignete Transistoren erschwinglich wurden. Damals war die Auswahl von geeigneten Transistoren noch sehr spärlich und verursachten der oft knappen Amateurkasse große Ausgaben. Jedes mW an UKW-HF mußte man sich mühsam erkämpfen. Transistoren wie OC171, AF118 und ähnliche Typen wurden gequält um die letzten paar mW rauszukitzeln. Oft war man damals auf Fünf oder Zehn mW HF sogar recht stolz.

Erste portable 2m BBT Station, 1955

OM Sepp beim BBT, 1955

BBT Station 1956

TX Baugruppe

BBT Geräte Ausstellung

Ausgabe: 05.05.2024

DL6MH Station für 2m und 70cm

Homemade RIG für 70cm

Transverter für 70cm nach DL6MH

Als Vater des BBT (Bayrischer Bergtag) hat DL6MH den technischen Fortschritt der portablen 2-m Geräte beträchtlich vorwärtsgetrieben. Innerhalb von nur ein paar Jahren wurden die Röhren fast vollkommen verdrängt. Es wurde sogleich erkannt, dass beim BBT mehr das Können und die Lage der Station den Erfolg beim BBT bestimmte. Mit nur 50 bis 200 mW HF wurden vielfach hunderte KM an Reichweiten erzielt. Jedes Jahr stieg die Anteilnahme am BBT. Viele Hams aus den Nachbarländern in OE, I, OK, DM, u.a. nahmen am BBT teil, welcher ungeahnte Beliebtheit erreichte. Nach Möglichkeit wurden im Empfängerteil vielfach UKW-Rundfunk Baugruppen verschiedener Hersteller (Görler) in diesen Geräten nach kleinerem Umbau verwendet. Die folgenden Bilder illustrieren die Kombination von Industrie und Selbstbauschaltungen.

Obwohl die damalige Gerätetechnik uns heute im Zeitalter von computergesteuerten Funkgeräten mit allen Schikanen heute fast primitiv anmutet, sollte man sich immer vor Augen halten, daß diese Geräte ein Wegbereiter der modernen Technik darstellten. Es ist bestimmt möglich daß die OMs damals bestimmt genau so viel Spaß am Ausprobieren und Verwendung der meistens selbstgebauten Geräte hatten, wie heutzutage wir mit den modernen Wundern der Herstellertechnik.

Es muß leider auch gesagt werden daß immer weniger OMs ihre Funkgeräte in ihrer Funktionweise im Detail kennen. Das ist einerseits durch die außerordentliche Miniaturisierung der Bauweise mit SMD Bauteilen zu erklären, als auch daß die meisten Gerätefunktionen indirekt durch fest eingebaute Microcomputer gesteuert werden, deren Funktionsablauf und der Quellcode dem Gebraucher sowieso nicht zugänglich sind. Vorbei ist die Zeit wo ein Bedienungselement direkt das Gerät beinflußte. Die Miniaturisierung ist der fachmännischen Reparatur immer weniger zugänglich und verurteilt viele neue Geräte zum Wegwerfen. Vielfach ist Reparatur nur durch teuren Modulaustausch möglich. Schon lange her sind die Tage wo der OM Schaltbild und Gerät studieren konnte und imstande war sich früh mit der Funktionsweise vertraut zu machen und die meisten Fehler selber beheben zu können. Man sieht hier übrigens auch eine gewisse Parallele zur Automobilreparatur. Es ist leider auch nicht zu verleugnen, daß viele der modernen Computergesteuerten Geräten ein Übermaß an "features" haben. Die meistens Features werden jedoch außer den wichtigen Grundfunktionen sowieso selten gebraucht, setzen leider jedoch für eine vernünftige Bedienung des Gerätes die Mitnahme der "Quick Reference" oder des Benutzerhandbuchs voraus, da man sich oft nach kurzer Zeit des Nichtgebrauchs an die vielen Menus und Tasten Sequenzen nicht mehr auskennt. In der Hinsicht waren früher die nicht Computergesteuerten Geräte viel einfacher in der Bedienung.

Es ist auch interessant daß viele der neuen Funksprechgeräte heutzutage durch den äußerst breiten Empfangsbereich dieser Geräte oft stark durch Störungen anderer Funkdienste leiden. Es ist wirklich ironisch daß die Geräte oft die Größe einer Zigarettenschachtel haben, daß aber das Filter daß man dazu braucht um die Störungen abzuhalten, oft die Größe einer Schuhschachtel erreicht. Diese Störanfälligkeit ist einerseits durch den breiten Empfangsbereich zu erklären, andrerseits durch die HF Niederspannungsschaltungstechnik mit Bipolaren Transistoren, die den Gebrauch Kreuzmodulations- und Intermodulationasärmerer FETS verbietet und nicht zuletzt durch die übermäßige Anwendung von Dioden in den kritischen HF-Wegen. Es ist hier weniger beabsichtigt die moderne Gerätetechnik und Trends schlecht zu machen, als den Kontrast zwischen der damaligen Gerätetechnik und der Heutigen Generation von Geräten herauszustellen.

Semco Electronic GmbH, Wesseln

(c) Leo Schulz, DL9BBR

Begonnen hat alles um 1960. Im Hildesheimer Blaupunktwerk waren einige Funkamateure beschäftigt, darunter Karl-Heinz Lausen, DL9SB, von Haus aus Fernsehtechniker und Rudolf Loke, DJ2KD, ein gelernter Kaufmann. Zunächst realisierten diese beiden kleinere Amateurfunk-Projekte für den Eigenbedarf, die auch bei anderen Mitgliedern des Hildesheimer DARC-

Ausgabe: 05.05.2024 Dieses Dokument wurde erzeugt mit BlueSpice

Ortsverbands auf großes Interesse stießen. Zu dieser Zeit gab es in Deutschland praktisch keinen kommerziellen Hersteller für Amateurfunk-Erzeugnisse und so sprach es sich herum, dass diese Beiden interessante Bausteine herstellen. Die Mundpropaganda führte zu einer wachsenden Nachfrage und zu dem Entschluss eine eigene Firma zu gründen. Das Gewerbe firmierte zunächst unter K.-H. Lausen, Hildesheim, Bahrfeld-Straße 11. Eines der ersten Produkte war ein Spannungswandler mit 2x AD103 für den Mobilbetrieb mit röhrenbestückten UKW-Endstufen (mit QQE03/12). Danach wurde ein KW-Konverter mit 1,6-MHz-ZF (HFB 1,6) entwickelt, der mit einem MW-Radio als Nachsetzer den Empfang aller 5 KW-Amateurfunkbänder ermöglichte. Der Erfolg dieses Konverters führte dazu, Bausteine für einen voll transistorisierten KW-Empfänger zu realisieren. Es entstand die KW-Konverter-Variante HFB-3,0 mit 3,0-MHz-ZF, ein dazu passender 3-MHz-ZF Baustein und ein NF-Verstärker. Die Auslieferung in Bausatzform wurde jedoch sehr bald von der Fertigung komplett aufgebauter und abgeglichner Bausteine abgelöst, da sich schnell zeigte, dass viele Funkamateure Probleme mit dem Aufbau der neuen Technik hatten (Selbstbestücken der Platinen und Baustein-Abgleich). Aus den genannten Kurzwellen-Bausteinen entstand der KW-Empfänger Semiconda, der nun auch mit Gehäuse und mechanischen Teilen geliefert wurde. Daraus entstand später der Semiconda 68 mit neuer Frontplatte. Für das 2-m Amateurfunk-Band wurden inzwischen ebenfalls Bausteine entwickelt. Der MB2 als 2-m Konverter und der MB10 als 10-m-Nachsetzer ermöglichten den Aufbau kleiner portabler Stationen. Der dazu entwickelte Sender-Baustein wurde in den UKW-Berichten Heft 2/1964 von U.L. Rohde beschrieben und kostete 1964 etwa 250 DM. Der 2-m-Konverter MB2 setzte damals in seiner baulichen Größe und Empfindlichkeit Maßstäbe. Geringe Vorselektion und mäßige Großsignalfestigkeit der bipolaren Transistoren führten aber zur Trübung des Empfangs durch starke UKW-Rundfunksender. Ab 1964 ergab sich ein enger persönlicher Kontakt zwischen R. Loke und Dipl.-Ing. Horst-D. Zander, DJ2EV, der bis 1967 in Hamburg, dann in Freiburg/Brsg. In der industrie tätig war. Aufgrund seiner Begeisterung für das Hobby Amateurfunk und seines Berufes (HF-und Halbleitertechnik) gab OM Zander im Laufe der Jahre dem Hildesheimer Unternehmen viele Anregungen, die dem Allgemeinen Stand der Amateurfunktechnik deutlich voraus waren. Dazu gehörten u.a. das Schaltungskonzept für den legendären ersten 2-m-Konverter UE2FET mit Feldefekttransistoren und besonders hoher (Vor-) Selektion und Störfestigkeit sowie Verbesserungsvorschläge aufgrund eigener Experimente, wie z.b. Untersuchungen und Schaltungsdetails zur Modulationsqualität ("positive" AM, Linearität von SSB-Senderbausteinen), das Konzept für das bekannte UKW-Funksprechgerät "Semco" und Konzepte für die späteren SSB-Tranceiver. Der rasante Entwicklungsverlauf der Halbleiter brachte preiswerte Transistoren auf den Markt, die die Entwicklung neuer Bausteine für Empfänger und Sender ermöglichten. Hierzu gehörten u.a. der Senderbaustein MBS21 und Folgemodelle und die Umentwicklung des UE2FET von JFETs auf MosFETs (UE2MosFet) und die "Mini Bausteine" die sich schnell einen guten Ruf erwarben. Parallel dazu begann die Entwicklung und Produktion von 2-m-Fertiggeräten wie Funksprechgerät Semco, Tranceiver SSB-Semco, Semco-SSB und Semcoport.

Ende 1965 tauchte der Name Semcoset erstmalig in der Firmenbezeichnung auf, die 1966 in Semcoset Lausen & Co. OHG umgewandelt wurde. Im Rahmen der Firmenvergrößerung wechselte der Standort zunächst zur Borsigstr.5 in Hildesheim. 1969 wurden dann Entwicklung und Produktion in einem eigenen Neubau nach Wesseln bei Hildesheim, Über dem Steinbruch 189 verlagert. Hier entstand das SSB-Semco sowie das Semco-Moto und das inzwischen überarbeitete AM-Funksprechgerät Semco, als "Brotdose" bei den Funkamateuren bald ein sehr beliebtes Portabel-Gerät, das auch bei Fuchsjagden und beim BBT seine Klasse über viele Jahre bewies. Es folgte die Weiterentwicklung des SSB-Semco zum Semco-SSB. Das Semco-Roto 1971 war eine preiswerte Variante für den mobilen Betrieb mit AM und FM.1973 kam dann das Semco-

Terzo auf den Markt. Mit 25 Watt Sendeleistung in SSB und AM und 15 Watt in FM sowie der für Relaisbetrieb erforderlichen Ablage zunächst von 1,6 MHz, war das zu diesem Zeitpunkt Technisch Machbare erreicht. Die Variante Terzo-Digital war dann das absolute Spitzen-Produkt von Semcoset und wurde zur Legende. Für Portabelbetrieb entstand das Semcoport als würdiger Nachfolger der "Brotdose" und wurde ebenfalls sehr schnell zum Verkaufserfolg, der längere Lieferzeiten hervorrief. Im Bereich der Bausteine waren in der Zwischenzeit die Nachsetzer und Konverter weiterentwickelt und verbessert worden. Sie stellten eine preiswerte Variante für den Funkamateur dar und es gab dazu einige Baubeschreibungen in der Zeitschrift Funkschau. 1977 kamen die letzten Tranceiver von Semcoset auf den Markt. Hierbei handelt es sich um das Semco-Selecto und das Semco-Roto-S. Diese waren im Empfangsteil mit Schottky-Dioden-Ringmischern ausgestattet und boten im Amateurfunkbereich bis dahin unereichte Großsignal-Festigkeit. Mit dem Tod von DJ2KD, der die Firma führte und dessen Spezialgebiet die Panorama-Empfänger wie Semcorama, Spectrolyzer AR, Semco-Spectro MM usw. waren, ging auch die Ära Semcoset zu Ende. Semcoset hatte bis dahin dem zunehmenden Druck der Japanischen Konkurrenz Stand gehalten. Damit endet die deutsche Amateurfunkgeräte-Produktion von Semcoset und somit auch ein großes Stück Amateurfunk-Geschichte.

Geschichte UKW Funk: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 11. Mai 2012, 12:16 Uhr (Qu elltext anzeigen)

OE1CWJ (Diskussion | Beiträge)
(→DL6MH und der Bayrische Bergtag (BBT))
← Zum vorherigen Versionsunterschied

Zeile 50:

Es ist auch interessant daß viele der neuen Funksprechgeräte heutzutage durch den äußerst breiten Empfangsbereich dieser Geräte oft stark durch Störungen anderer Funkdienste leiden. Es ist wirklich ironisch daß die Geräte oft die Größe einer Zigarettenschachtel haben, daß aber das Filter daß man dazu braucht um die Störungen abzuhalten, oft die Größe einer Schuhschachtel erreicht. Diese Störanfälligkeit ist einerseits durch den breiten Empfangsbereich zu erklären, andrerseits durch die HF Niederspannungsschaltungstechnik mit Bipolaren Transistoren, die den Gebrauch Kreuzmodulations- und Intermodulationasärmerer FETS verbietet und nicht zuletzt durch die übermäßige Anwendung von Dioden in den kritischen HF-Wegen.

Es ist hier weniger beabsichtigt die moderne Gerätetechnik und Trends schlecht zu machen, als den Kontrast zwischen der damaligen Gerätetechnik und der Heutigen Generation von Geräten herauszustellen.

Version vom 11. Mai 2012, 12:24 Uhr (Qu elltext anzeigen)

OE1CWJ (Diskussion | Beiträge)
(→DL6MH und der Bayrische Bergtag (BBT))
Zum nächsten Versionsunterschied →

Zeile 50:

Es ist auch interessant daß viele der neuen Funksprechgeräte heutzutage durch den äußerst breiten Empfangsbereich dieser Geräte oft stark durch Störungen anderer Funkdienste leiden. Es ist wirklich ironisch daß die Geräte oft die Größe einer Zigarettenschachtel haben, daß aber das Filter daß man dazu braucht um die Störungen abzuhalten, oft die Größe einer Schuhschachtel erreicht. Diese Störanfälligkeit ist einerseits durch den breiten Empfangsbereich zu erklären, andrerseits durch die HF Niederspannungsschaltungstechnik mit Bipolaren Transistoren, die den Gebrauch Kreuzmodulations- und Intermodulationasärmerer FETS verbietet und nicht zuletzt durch die übermäßige Anwendung von Dioden in den kritischen HF-Wegen.

Es ist hier weniger beabsichtigt die moderne Gerätetechnik und Trends schlecht zu machen, als den Kontrast zwischen der damaligen Gerätetechnik und der Heutigen Generation von Geräten herauszustellen.

+	
+	
+	
+	
+	== Semco Electronic GmbH, Wesseln ==

+ (c) Leo Schulz, DL9BBR
+

Begonnen hat alles um 1960. Im Hildesheimer Blaupunktwerk waren einige Funkamateure beschäftigt, darunter Karl-Heinz Lausen, DL9SB, von Haus aus Fernsehtechniker und Rudolf Loke, DJ2KD, ein gelernter Kaufmann. Zunächst realisierten diese beiden kleinere Amateurfunk-Projekte für den Eigenbedarf, die auch bei anderen Mitgliedern des Hildesheimer DARC-Ortsverbands auf großes Interesse stießen. Zu dieser Zeit gab es in Deutschland praktisch keinen kommerziellen Hersteller für Amateurfunk-Erzeugnisse und so sprach es sich herum, dass diese **Beiden interessante Bausteine** herstellen. Die Mundpropaganda führte zu einer wachsenden Nachfrage und zu dem Entschluss eine eigene Firma zu gründen. Das Gewerbe firmierte zunächst unter K.-H. Lausen. Hildesheim. Bahrfeld-Straße 11. Eines der ersten Produkte war ein Spannungswandler mit 2x AD103 für den Mobilbetrieb mit röhrenbestückten UKW-Endstufen (mit QQE03/12). Danach wurde ein KW-Konverter mit 1,6-MHz-ZF (HFB 1,6) entwickelt, der mit einem MW-Radio als Nachsetzer den Empfang aller 5 KW-Amateurfunkbänder ermöglichte. Der Erfolg dieses Konverters führte dazu. Bausteine für einen voll transistorisierten KW-Empfänger zu realisieren. Es entstand die KW-Konverter-Variante HFB-3.0 mit 3.0-MHz-ZF, ein dazu passender 3-MHz-ZF Baustein und ein NF-Verstärker. Die Auslieferung in Bausatzform wurde jedoch sehr bald

von der Fertigung komplett aufgebauter und abgeglichner Bausteine abgelöst, da sich schnell zeigte, dass viele Funkamateure Probleme mit dem Aufbau der neuen Technik hatten (Selbstbestücken der Platinen und Baustein-Abgleich). Aus den genannten Kurzwellen-Bausteinen entstand der KW-Empfänger Semiconda, der nun auch mit Gehäuse und mechanischen Teilen geliefert wurde. Daraus entstand später der Semiconda 68 mit neuer Frontplatte. Für das 2-m Amateurfunk-Band wurden inzwischen ebenfalls Bausteine entwickelt. Der MB2 als 2-m Konverter und der MB10 als 10-m-Nachsetzer ermöglichten den Aufbau kleiner portabler Stationen. Der dazu entwickelte Sender-Baustein wurde in den UKW-Berichten Heft 2/1964 von U. L. Rohde beschrieben und kostete 1964 etwa 250 DM. Der 2-m-Konverter MB2 setzte damals in seiner baulichen Größe und Empfindlichkeit Maßstäbe. Geringe Vorselektion und mäßige Großsignalfestigkeit der bipolaren Transistoren führten aber zur Trübung des Empfangs durch starke UKW-Rundfunksender. Ab 1964 ergab sich ein enger persönlicher Kontakt zwischen R. Loke und Dipl.-Ing. Horst-D. Zander, DI2EV, der bis 1967 in Hamburg, dann in Freiburg/Brsg. In der industrie tätig war. Aufgrund seiner Begeisterung für das Hobby Amateurfunk und seines Berufes (HFund Halbleitertechnik) gab OM Zander im Laufe der lahre dem Hildesheimer Unternehmen viele Anregungen, die dem Allgemeinen Stand der Amateurfunktechnik deutlich voraus waren. Dazu gehörten u.a. das Schaltungskonzept für den legendären ersten 2-m-Konverter

UE2FET mit Feldefekttransistoren und besonders hoher (Vor-) Selektion und Störfestigkeit sowie Verbesserungsvorschläge aufgrund eigener Experimente, wie z.b. Untersuchungen und Schaltungsdetails zur Modulationsqualität ("positive" AM, Linearität von SSB-Senderbausteinen),das Konzept für das bekannte UKW-Funksprechgerät "Semco" und Konzepte für die späteren SSB-Tranceiver. Der rasante Entwicklungsverlauf der Halbleiter brachte preiswerte Transistoren auf den Markt, die die Entwicklung neuer Bausteine für Empfänger und Sender ermöglichten. Hierzu gehörten u.a. der Senderbaustein MBS21 und Folgemodelle und die Umentwicklung des UE2FET von IFETs auf MosFETs (UE2MosFet) und die "Mini Bausteine" die sich schnell einen auten Ruf erwarben. Parallel dazu begann die Entwicklung und Produktion von 2-m-Fertiggeräten wie Funksprechgerät Semco, Tranceiver SSB-Semco, Semco-SSB und Semcoport.

+

Ende 1965 tauchte der Name Semcoset erstmalig in der Firmenbezeichnung auf, die 1966 in Semcoset Lausen & Co. OHG umgewandelt wurde. Im Rahmen der Firmenvergrößerung wechselte der Standort zunächst zur Borsigstr.5 in Hildesheim. 1969 wurden dann Entwicklung und Produktion in einem eigenen Neubau nach Wesseln bei Hildesheim. Über dem Steinbruch 189 verlagert. Hier entstand das SSB-Semco sowie das Semco-Moto und das inzwischen überarbeitete AM-Funksprechgerät Semco, als "Brotdose" bei den Funkamateuren bald ein sehr beliebtes Portabel-

Gerät, das auch bei Fuchsiagden und beim BBT seine Klasse über viele Jahre bewies. Es folgte die Weiterentwicklung des SSB-Semco zum Semco-SSB. Das Semco-Roto 1971 war eine preiswerte Variante für den mobilen Betrieb mit AM und FM. 1973 kam dann das Semco-Terzo auf den Markt. Mit 25 Watt Sendeleistung in SSB und AM und 15 Watt in FM sowie der für Relaisbetrieb erforderlichen Ablage zunächst von 1,6 MHz, war das zu diesem Zeitpunkt **Technisch Machbare erreicht. Die** Variante Terzo-Digital war dann das absolute Spitzen-Produkt von Semcoset und wurde zur Legende. Für Portabelbetrieb entstand das Semcoport als würdiger Nachfolger der "Brotdose" und wurde ebenfalls sehr schnell zum Verkaufserfolg, der längere Lieferzeiten hervorrief. Im Bereich der Bausteine waren in der Zwischenzeit die Nachsetzer und Konverter weiterentwickelt und verbessert worden. Sie stellten eine preiswerte Variante für den Funkamateur dar und es gab dazu einige Baubeschreibungen in der Zeitschrift Funkschau. 1977 kamen die letzten Tranceiver von Semcoset auf den Markt. Hierbei handelt es sich um das Semco-Selecto und das Semco-Roto-S. Diese waren im Empfangsteil mit Schottky-Dioden-Ringmischern ausgestattet und boten im Amateurfunkbereich bis dahin unereichte Großsignal-Festigkeit. Mit dem Tod von DI2KD, der die Firma führte und dessen Spezialgebiet die Panorama-Empfänger wie Semcorama, Spectrolyzer AR, Semco-Spectro MM usw. waren, ging auch die Ära Semcoset zu Ende. Semcoset hatte bis dahin dem zunehmenden

+

Druck der Japanischen Konkurrenz Stand gehalten. Damit endet die deutsche Amateurfunkgeräte-Produktion von Semcoset und somit auch ein großes Stück Amateurfunk-Geschichte.

Version vom 11. Mai 2012, 12:24 Uhr

Geschichte des UKW Funk

Im Vergleich zur Kurzwelle waren in den 1960-er Jahren nur wenige Stationen auf UKW zu hören und es gab auch kaum kommerzielle Neugeräte. Anfangs war es auch sehr schwer, die für den UKW-Eigenbau benötigten Bauteile zu bekommen, bzw. waren diese sehr teuer. Dennoch wurde viel gebastelt und experimentiert.

Der Schwerpunkt dieser Aktivitäten in Mitteleuropa lag in Deutschland. Dieses Land war auch lange Zeit in jeder Hinsicht führend. Da sich in diesem Gebiet das UKW-Band für Kurzstrecken QSO's sehr gut eignete, fand dieser Frequenzbereich in Deutschland großes Interesse. Grund dafür war sicher eine größere Anzahl von Funkamateuren und die größtenteils flache Landschaft. Also ideale Voraussetzungen für diese Frequenzen.

Nicht zuletzt machten es der wirtschaftliche Aufschwung und der Forschungsdrang vieler Funkamateure möglich, diese neue Welt der UKW-Frequenzen zu erobern. Diese OM`s machten sich schon damals Gedanken darüber, wie man die Aktivitäten auf diesen Bändern erhöhen könnte.

Hier sind in loser Folge Beiträge zur Geschichte des UKW Amateurfunks geplant . ich freue mich über Eure Anregungen/Beiträge Christian, OE1CWJ

DL6MH und der Bayrische Bergtag (BBT)

© http://www.ve6aqo.com/dl6MH.htm

Ingenieur Sepp (Josef) Reithofer war mit seinem Rufzeichen DL6MH auf dem Gebiete der VHF-UHF und SHF Amateurfunktechnik im In- und Ausland weithin bekannt. Als "Vater" des BBT (Bayrischer Bergtag) hat er sich in ganz Europa einen Namen gemacht und hat den technischen Fortschritt der portablen 2m und 70cm Klein-Geräte beträchtlich vorwärtsgetrieben. Er hat vielen Erstverbindungen gemacht. Er verstarb am 26. Oktober 1985 im Alter von 77 Jahren in seiner Heimatstadt Straubing.

Die Geräte die hier vorgestellt sind, repräsentieren den Stand der Amateurtechnik um 1961 bis 1967. Am Anfang der 60er Jahre wurden von DL6MH große Anstrengungen gemacht die Röhren aus den Portable Geräten zu verdrängen, sobald neue, geignete Transistoren erschwinglich wurden. Damals war die Auswahl von geeigneten Transistoren noch sehr spärlich und verursachten der oft knappen Amateurkasse große Ausgaben. Jedes mW an UKW-HF mußte man sich mühsam erkämpfen. Transistoren wie OC171, AF118 und ähnliche Typen wurden gequält um die letzten paar mW rauszukitzeln. Oft war man damals auf Fünf oder Zehn mW HF sogar recht stolz.

Erste portable 2m BBT Station, 1955

OM Sepp beim BBT, 1955

BBT Station 1956

TX Baugruppe

BBT Geräte Ausstellung

Ausgabe: 05.05.2024

DL6MH Station für 2m und 70cm

Homemade RIG für 70cm

Transverter für 70cm nach DL6MH

Als Vater des BBT (Bayrischer Bergtag) hat DL6MH den technischen Fortschritt der portablen 2-m Geräte beträchtlich vorwärtsgetrieben. Innerhalb von nur ein paar Jahren wurden die Röhren fast vollkommen verdrängt. Es wurde sogleich erkannt, dass beim BBT mehr das Können und die Lage der Station den Erfolg beim BBT bestimmte. Mit nur 50 bis 200 mW HF wurden vielfach hunderte KM an Reichweiten erzielt. Jedes Jahr stieg die Anteilnahme am BBT. Viele Hams aus den Nachbarländern in OE, I, OK, DM, u.a. nahmen am BBT teil, welcher ungeahnte Beliebtheit erreichte. Nach Möglichkeit wurden im Empfängerteil vielfach UKW-Rundfunk Baugruppen verschiedener Hersteller (Görler) in diesen Geräten nach kleinerem Umbau verwendet. Die folgenden Bilder illustrieren die Kombination von Industrie und Selbstbauschaltungen.

Obwohl die damalige Gerätetechnik uns heute im Zeitalter von computergesteuerten Funkgeräten mit allen Schikanen heute fast primitiv anmutet, sollte man sich immer vor Augen halten, daß diese Geräte ein Wegbereiter der modernen Technik darstellten. Es ist bestimmt möglich daß die OMs damals bestimmt genau so viel Spaß am Ausprobieren und Verwendung der meistens selbstgebauten Geräte hatten, wie heutzutage wir mit den modernen Wundern der Herstellertechnik.

Es muß leider auch gesagt werden daß immer weniger OMs ihre Funkgeräte in ihrer Funktionweise im Detail kennen. Das ist einerseits durch die außerordentliche Miniaturisierung der Bauweise mit SMD Bauteilen zu erklären, als auch daß die meisten Gerätefunktionen indirekt durch fest eingebaute Microcomputer gesteuert werden, deren Funktionsablauf und der Quellcode dem Gebraucher sowieso nicht zugänglich sind. Vorbei ist die Zeit wo ein Bedienungselement direkt das Gerät beinflußte. Die Miniaturisierung ist der fachmännischen Reparatur immer weniger zugänglich und verurteilt viele neue Geräte zum Wegwerfen. Vielfach ist Reparatur nur durch teuren Modulaustausch möglich. Schon lange her sind die Tage wo der OM Schaltbild und Gerät studieren konnte und imstande war sich früh mit der Funktionsweise vertraut zu machen und die meisten Fehler selber beheben zu können. Man sieht hier übrigens auch eine gewisse Parallele zur Automobilreparatur. Es ist leider auch nicht zu verleugnen, daß viele der modernen Computergesteuerten Geräten ein Übermaß an "features" haben. Die meistens Features werden jedoch außer den wichtigen Grundfunktionen sowieso selten gebraucht, setzen leider jedoch für eine vernünftige Bedienung des Gerätes die Mitnahme der "Quick Reference" oder des Benutzerhandbuchs voraus, da man sich oft nach kurzer Zeit des Nichtgebrauchs an die vielen Menus und Tasten Sequenzen nicht mehr auskennt. In der Hinsicht waren früher die nicht Computergesteuerten Geräte viel einfacher in der Bedienung.

Es ist auch interessant daß viele der neuen Funksprechgeräte heutzutage durch den äußerst breiten Empfangsbereich dieser Geräte oft stark durch Störungen anderer Funkdienste leiden. Es ist wirklich ironisch daß die Geräte oft die Größe einer Zigarettenschachtel haben, daß aber das Filter daß man dazu braucht um die Störungen abzuhalten, oft die Größe einer Schuhschachtel erreicht. Diese Störanfälligkeit ist einerseits durch den breiten Empfangsbereich zu erklären, andrerseits durch die HF Niederspannungsschaltungstechnik mit Bipolaren Transistoren, die den Gebrauch Kreuzmodulations- und Intermodulationasärmerer FETS verbietet und nicht zuletzt durch die übermäßige Anwendung von Dioden in den kritischen HF-Wegen. Es ist hier weniger beabsichtigt die moderne Gerätetechnik und Trends schlecht zu machen, als den Kontrast zwischen der damaligen Gerätetechnik und der Heutigen Generation von Geräten herauszustellen.

Semco Electronic GmbH, Wesseln

(c) Leo Schulz, DL9BBR

Begonnen hat alles um 1960. Im Hildesheimer Blaupunktwerk waren einige Funkamateure beschäftigt, darunter Karl-Heinz Lausen, DL9SB, von Haus aus Fernsehtechniker und Rudolf Loke, DJ2KD, ein gelernter Kaufmann. Zunächst realisierten diese beiden kleinere Amateurfunk-Projekte für den Eigenbedarf, die auch bei anderen Mitgliedern des Hildesheimer DARC-

Ortsverbands auf großes Interesse stießen. Zu dieser Zeit gab es in Deutschland praktisch keinen kommerziellen Hersteller für Amateurfunk-Erzeugnisse und so sprach es sich herum, dass diese Beiden interessante Bausteine herstellen. Die Mundpropaganda führte zu einer wachsenden Nachfrage und zu dem Entschluss eine eigene Firma zu gründen. Das Gewerbe firmierte zunächst unter K.-H. Lausen, Hildesheim, Bahrfeld-Straße 11. Eines der ersten Produkte war ein Spannungswandler mit 2x AD103 für den Mobilbetrieb mit röhrenbestückten UKW-Endstufen (mit QQE03/12). Danach wurde ein KW-Konverter mit 1,6-MHz-ZF (HFB 1,6) entwickelt, der mit einem MW-Radio als Nachsetzer den Empfang aller 5 KW-Amateurfunkbänder ermöglichte. Der Erfolg dieses Konverters führte dazu, Bausteine für einen voll transistorisierten KW-Empfänger zu realisieren. Es entstand die KW-Konverter-Variante HFB-3,0 mit 3,0-MHz-ZF, ein dazu passender 3-MHz-ZF Baustein und ein NF-Verstärker. Die Auslieferung in Bausatzform wurde jedoch sehr bald von der Fertigung komplett aufgebauter und abgeglichner Bausteine abgelöst, da sich schnell zeigte, dass viele Funkamateure Probleme mit dem Aufbau der neuen Technik hatten (Selbstbestücken der Platinen und Baustein-Abgleich). Aus den genannten Kurzwellen-Bausteinen entstand der KW-Empfänger Semiconda, der nun auch mit Gehäuse und mechanischen Teilen geliefert wurde. Daraus entstand später der Semiconda 68 mit neuer Frontplatte. Für das 2-m Amateurfunk-Band wurden inzwischen ebenfalls Bausteine entwickelt. Der MB2 als 2-m Konverter und der MB10 als 10-m-Nachsetzer ermöglichten den Aufbau kleiner portabler Stationen. Der dazu entwickelte Sender-Baustein wurde in den UKW-Berichten Heft 2/1964 von U.L. Rohde beschrieben und kostete 1964 etwa 250 DM. Der 2-m-Konverter MB2 setzte damals in seiner baulichen Größe und Empfindlichkeit Maßstäbe. Geringe Vorselektion und mäßige Großsignalfestigkeit der bipolaren Transistoren führten aber zur Trübung des Empfangs durch starke UKW-Rundfunksender. Ab 1964 ergab sich ein enger persönlicher Kontakt zwischen R. Loke und Dipl.-Ing. Horst-D. Zander, DJ2EV, der bis 1967 in Hamburg, dann in Freiburg/Brsg. In der industrie tätig war. Aufgrund seiner Begeisterung für das Hobby Amateurfunk und seines Berufes (HF-und Halbleitertechnik) gab OM Zander im Laufe der Jahre dem Hildesheimer Unternehmen viele Anregungen, die dem Allgemeinen Stand der Amateurfunktechnik deutlich voraus waren. Dazu gehörten u.a. das Schaltungskonzept für den legendären ersten 2-m-Konverter UE2FET mit Feldefekttransistoren und besonders hoher (Vor-) Selektion und Störfestigkeit sowie Verbesserungsvorschläge aufgrund eigener Experimente, wie z.b. Untersuchungen und Schaltungsdetails zur Modulationsqualität ("positive" AM, Linearität von SSB-Senderbausteinen), das Konzept für das bekannte UKW-Funksprechgerät "Semco" und Konzepte für die späteren SSB-Tranceiver. Der rasante Entwicklungsverlauf der Halbleiter brachte preiswerte Transistoren auf den Markt, die die Entwicklung neuer Bausteine für Empfänger und Sender ermöglichten. Hierzu gehörten u.a. der Senderbaustein MBS21 und Folgemodelle und die Umentwicklung des UE2FET von JFETs auf MosFETs (UE2MosFet) und die "Mini Bausteine" die sich schnell einen guten Ruf erwarben. Parallel dazu begann die Entwicklung und Produktion von 2-m-Fertiggeräten wie Funksprechgerät Semco, Tranceiver SSB-Semco, Semco-SSB und Semcoport.

Ende 1965 tauchte der Name Semcoset erstmalig in der Firmenbezeichnung auf, die 1966 in Semcoset Lausen & Co. OHG umgewandelt wurde. Im Rahmen der Firmenvergrößerung wechselte der Standort zunächst zur Borsigstr.5 in Hildesheim. 1969 wurden dann Entwicklung und Produktion in einem eigenen Neubau nach Wesseln bei Hildesheim, Über dem Steinbruch 189 verlagert. Hier entstand das SSB-Semco sowie das Semco-Moto und das inzwischen überarbeitete AM-Funksprechgerät Semco, als "Brotdose" bei den Funkamateuren bald ein sehr beliebtes Portabel-Gerät, das auch bei Fuchsjagden und beim BBT seine Klasse über viele Jahre bewies. Es folgte die Weiterentwicklung des SSB-Semco zum Semco-SSB. Das Semco-Roto 1971 war eine preiswerte Variante für den mobilen Betrieb mit AM und FM.1973 kam dann das Semco-

Terzo auf den Markt. Mit 25 Watt Sendeleistung in SSB und AM und 15 Watt in FM sowie der für Relaisbetrieb erforderlichen Ablage zunächst von 1,6 MHz, war das zu diesem Zeitpunkt Technisch Machbare erreicht. Die Variante Terzo-Digital war dann das absolute Spitzen-Produkt von Semcoset und wurde zur Legende. Für Portabelbetrieb entstand das Semcoport als würdiger Nachfolger der "Brotdose" und wurde ebenfalls sehr schnell zum Verkaufserfolg, der längere Lieferzeiten hervorrief. Im Bereich der Bausteine waren in der Zwischenzeit die Nachsetzer und Konverter weiterentwickelt und verbessert worden. Sie stellten eine preiswerte Variante für den Funkamateur dar und es gab dazu einige Baubeschreibungen in der Zeitschrift Funkschau. 1977 kamen die letzten Tranceiver von Semcoset auf den Markt. Hierbei handelt es sich um das Semco-Selecto und das Semco-Roto-S. Diese waren im Empfangsteil mit Schottky-Dioden-Ringmischern ausgestattet und boten im Amateurfunkbereich bis dahin unereichte Großsignal-Festigkeit. Mit dem Tod von DJ2KD, der die Firma führte und dessen Spezialgebiet die Panorama-Empfänger wie Semcorama, Spectrolyzer AR, Semco-Spectro MM usw. waren, ging auch die Ära Semcoset zu Ende. Semcoset hatte bis dahin dem zunehmenden Druck der Japanischen Konkurrenz Stand gehalten. Damit endet die deutsche Amateurfunkgeräte-Produktion von Semcoset und somit auch ein großes Stück Amateurfunk-Geschichte.

Geschichte UKW Funk: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 11. Mai 2012, 12:16 Uhr (Qu elltext anzeigen)

OE1CWJ (Diskussion | Beiträge)
(→DL6MH und der Bayrische Bergtag (BBT))
← Zum vorherigen Versionsunterschied

Zeile 50:

Es ist auch interessant daß viele der neuen Funksprechgeräte heutzutage durch den äußerst breiten Empfangsbereich dieser Geräte oft stark durch Störungen anderer Funkdienste leiden. Es ist wirklich ironisch daß die Geräte oft die Größe einer Zigarettenschachtel haben, daß aber das Filter daß man dazu braucht um die Störungen abzuhalten, oft die Größe einer Schuhschachtel erreicht. Diese Störanfälligkeit ist einerseits durch den breiten Empfangsbereich zu erklären, andrerseits durch die HF Niederspannungsschaltungstechnik mit Bipolaren Transistoren, die den Gebrauch Kreuzmodulations- und Intermodulationasärmerer FETS verbietet und nicht zuletzt durch die übermäßige Anwendung von Dioden in den kritischen HF-Wegen.

Es ist hier weniger beabsichtigt die moderne Gerätetechnik und Trends schlecht zu machen, als den Kontrast zwischen der damaligen Gerätetechnik und der Heutigen Generation von Geräten herauszustellen.

Version vom 11. Mai 2012, 12:24 Uhr (Qu elltext anzeigen)

OE1CWJ (Diskussion | Beiträge)
(→DL6MH und der Bayrische Bergtag (BBT))
Zum nächsten Versionsunterschied →

Zeile 50:

Es ist auch interessant daß viele der neuen Funksprechgeräte heutzutage durch den äußerst breiten Empfangsbereich dieser Geräte oft stark durch Störungen anderer Funkdienste leiden. Es ist wirklich ironisch daß die Geräte oft die Größe einer Zigarettenschachtel haben, daß aber das Filter daß man dazu braucht um die Störungen abzuhalten, oft die Größe einer Schuhschachtel erreicht. Diese Störanfälligkeit ist einerseits durch den breiten Empfangsbereich zu erklären, andrerseits durch die HF Niederspannungsschaltungstechnik mit Bipolaren Transistoren, die den Gebrauch Kreuzmodulations- und Intermodulationasärmerer FETS verbietet und nicht zuletzt durch die übermäßige Anwendung von Dioden in den kritischen HF-Wegen.

Es ist hier weniger beabsichtigt die moderne Gerätetechnik und Trends schlecht zu machen, als den Kontrast zwischen der damaligen Gerätetechnik und der Heutigen Generation von Geräten herauszustellen.

+	
+	
+	
+	
+	== Semco Electronic GmbH, Wesseln ==

+ (c) Leo Schulz, DL9BBR
+

Begonnen hat alles um 1960. Im Hildesheimer Blaupunktwerk waren einige Funkamateure beschäftigt, darunter Karl-Heinz Lausen, DL9SB, von Haus aus Fernsehtechniker und Rudolf Loke, DJ2KD, ein gelernter Kaufmann. Zunächst realisierten diese beiden kleinere Amateurfunk-Projekte für den Eigenbedarf, die auch bei anderen Mitgliedern des Hildesheimer DARC-Ortsverbands auf großes Interesse stießen. Zu dieser Zeit gab es in Deutschland praktisch keinen kommerziellen Hersteller für Amateurfunk-Erzeugnisse und so sprach es sich herum, dass diese **Beiden interessante Bausteine** herstellen. Die Mundpropaganda führte zu einer wachsenden Nachfrage und zu dem Entschluss eine eigene Firma zu gründen. Das Gewerbe firmierte zunächst unter K.-H. Lausen. Hildesheim. Bahrfeld-Straße 11. Eines der ersten Produkte war ein Spannungswandler mit 2x AD103 für den Mobilbetrieb mit röhrenbestückten UKW-Endstufen (mit QQE03/12). Danach wurde ein KW-Konverter mit 1,6-MHz-ZF (HFB 1,6) entwickelt, der mit einem MW-Radio als Nachsetzer den Empfang aller 5 KW-Amateurfunkbänder ermöglichte. Der Erfolg dieses Konverters führte dazu. Bausteine für einen voll transistorisierten KW-Empfänger zu realisieren. Es entstand die KW-Konverter-Variante HFB-3.0 mit 3.0-MHz-ZF, ein dazu passender 3-MHz-ZF Baustein und ein NF-Verstärker. Die Auslieferung in Bausatzform wurde jedoch sehr bald

von der Fertigung komplett aufgebauter und abgeglichner Bausteine abgelöst, da sich schnell zeigte, dass viele Funkamateure Probleme mit dem Aufbau der neuen Technik hatten (Selbstbestücken der Platinen und Baustein-Abgleich). Aus den genannten Kurzwellen-Bausteinen entstand der KW-Empfänger Semiconda, der nun auch mit Gehäuse und mechanischen Teilen geliefert wurde. Daraus entstand später der Semiconda 68 mit neuer Frontplatte. Für das 2-m Amateurfunk-Band wurden inzwischen ebenfalls Bausteine entwickelt. Der MB2 als 2-m Konverter und der MB10 als 10-m-Nachsetzer ermöglichten den Aufbau kleiner portabler Stationen. Der dazu entwickelte Sender-Baustein wurde in den UKW-Berichten Heft 2/1964 von U. L. Rohde beschrieben und kostete 1964 etwa 250 DM. Der 2-m-Konverter MB2 setzte damals in seiner baulichen Größe und Empfindlichkeit Maßstäbe. Geringe Vorselektion und mäßige Großsignalfestigkeit der bipolaren Transistoren führten aber zur Trübung des Empfangs durch starke UKW-Rundfunksender. Ab 1964 ergab sich ein enger persönlicher Kontakt zwischen R. Loke und Dipl.-Ing. Horst-D. Zander, DI2EV, der bis 1967 in Hamburg, dann in Freiburg/Brsg. In der industrie tätig war. Aufgrund seiner Begeisterung für das Hobby Amateurfunk und seines Berufes (HFund Halbleitertechnik) gab OM Zander im Laufe der lahre dem Hildesheimer Unternehmen viele Anregungen, die dem Allgemeinen Stand der Amateurfunktechnik deutlich voraus waren. Dazu gehörten u.a. das Schaltungskonzept für den legendären ersten 2-m-Konverter

+

UE2FET mit Feldefekttransistoren und besonders hoher (Vor-) Selektion und Störfestigkeit sowie Verbesserungsvorschläge aufgrund eigener Experimente, wie z.b. Untersuchungen und Schaltungsdetails zur Modulationsqualität ("positive" AM, Linearität von SSB-Senderbausteinen),das Konzept für das bekannte UKW-Funksprechgerät "Semco" und Konzepte für die späteren SSB-Tranceiver. Der rasante Entwicklungsverlauf der Halbleiter brachte preiswerte Transistoren auf den Markt, die die Entwicklung neuer Bausteine für Empfänger und Sender ermöglichten. Hierzu gehörten u.a. der Senderbaustein MBS21 und Folgemodelle und die Umentwicklung des UE2FET von IFETs auf MosFETs (UE2MosFet) und die "Mini Bausteine" die sich schnell einen auten Ruf erwarben. Parallel dazu begann die Entwicklung und Produktion von 2-m-Fertiggeräten wie Funksprechgerät Semco, Tranceiver SSB-Semco, Semco-SSB und Semcoport.

+

Ende 1965 tauchte der Name Semcoset erstmalig in der Firmenbezeichnung auf, die 1966 in Semcoset Lausen & Co. OHG umgewandelt wurde. Im Rahmen der Firmenvergrößerung wechselte der Standort zunächst zur Borsigstr.5 in Hildesheim. 1969 wurden dann Entwicklung und Produktion in einem eigenen Neubau nach Wesseln bei Hildesheim. Über dem Steinbruch 189 verlagert. Hier entstand das SSB-Semco sowie das Semco-Moto und das inzwischen überarbeitete AM-Funksprechgerät Semco, als "Brotdose" bei den Funkamateuren bald ein sehr beliebtes Portabel-

Gerät, das auch bei Fuchsiagden und beim BBT seine Klasse über viele Jahre bewies. Es folgte die Weiterentwicklung des SSB-Semco zum Semco-SSB. Das Semco-Roto 1971 war eine preiswerte Variante für den mobilen Betrieb mit AM und FM. 1973 kam dann das Semco-Terzo auf den Markt. Mit 25 Watt Sendeleistung in SSB und AM und 15 Watt in FM sowie der für Relaisbetrieb erforderlichen Ablage zunächst von 1,6 MHz, war das zu diesem Zeitpunkt **Technisch Machbare erreicht. Die** Variante Terzo-Digital war dann das absolute Spitzen-Produkt von Semcoset und wurde zur Legende. Für Portabelbetrieb entstand das Semcoport als würdiger Nachfolger der "Brotdose" und wurde ebenfalls sehr schnell zum Verkaufserfolg, der längere Lieferzeiten hervorrief. Im Bereich der Bausteine waren in der Zwischenzeit die Nachsetzer und Konverter weiterentwickelt und verbessert worden. Sie stellten eine preiswerte Variante für den Funkamateur dar und es gab dazu einige Baubeschreibungen in der Zeitschrift Funkschau. 1977 kamen die letzten Tranceiver von Semcoset auf den Markt. Hierbei handelt es sich um das Semco-Selecto und das Semco-Roto-S. Diese waren im Empfangsteil mit Schottky-Dioden-Ringmischern ausgestattet und boten im Amateurfunkbereich bis dahin unereichte Großsignal-Festigkeit. Mit dem Tod von DI2KD, der die Firma führte und dessen Spezialgebiet die Panorama-Empfänger wie Semcorama, Spectrolyzer AR, Semco-Spectro MM usw. waren, ging auch die Ära Semcoset zu Ende. Semcoset hatte bis dahin dem zunehmenden

+

Druck der Japanischen Konkurrenz Stand gehalten. Damit endet die deutsche Amateurfunkgeräte-Produktion von Semcoset und somit auch ein großes Stück Amateurfunk-Geschichte.

Version vom 11. Mai 2012, 12:24 Uhr

Geschichte des UKW Funk

Im Vergleich zur Kurzwelle waren in den 1960-er Jahren nur wenige Stationen auf UKW zu hören und es gab auch kaum kommerzielle Neugeräte. Anfangs war es auch sehr schwer, die für den UKW-Eigenbau benötigten Bauteile zu bekommen, bzw. waren diese sehr teuer. Dennoch wurde viel gebastelt und experimentiert.

Der Schwerpunkt dieser Aktivitäten in Mitteleuropa lag in Deutschland. Dieses Land war auch lange Zeit in jeder Hinsicht führend. Da sich in diesem Gebiet das UKW-Band für Kurzstrecken QSO's sehr gut eignete, fand dieser Frequenzbereich in Deutschland großes Interesse. Grund dafür war sicher eine größere Anzahl von Funkamateuren und die größtenteils flache Landschaft. Also ideale Voraussetzungen für diese Frequenzen.

Nicht zuletzt machten es der wirtschaftliche Aufschwung und der Forschungsdrang vieler Funkamateure möglich, diese neue Welt der UKW-Frequenzen zu erobern. Diese OM`s machten sich schon damals Gedanken darüber, wie man die Aktivitäten auf diesen Bändern erhöhen könnte.

Hier sind in loser Folge Beiträge zur Geschichte des UKW Amateurfunks geplant . ich freue mich über Eure Anregungen/Beiträge Christian, OE1CWJ

DL6MH und der Bayrische Bergtag (BBT)

© http://www.ve6aqo.com/dl6MH.htm

Ingenieur Sepp (Josef) Reithofer war mit seinem Rufzeichen DL6MH auf dem Gebiete der VHF-UHF und SHF Amateurfunktechnik im In- und Ausland weithin bekannt. Als "Vater" des BBT (Bayrischer Bergtag) hat er sich in ganz Europa einen Namen gemacht und hat den technischen Fortschritt der portablen 2m und 70cm Klein-Geräte beträchtlich vorwärtsgetrieben. Er hat vielen Erstverbindungen gemacht. Er verstarb am 26. Oktober 1985 im Alter von 77 Jahren in seiner Heimatstadt Straubing.

Die Geräte die hier vorgestellt sind, repräsentieren den Stand der Amateurtechnik um 1961 bis 1967. Am Anfang der 60er Jahre wurden von DL6MH große Anstrengungen gemacht die Röhren aus den Portable Geräten zu verdrängen, sobald neue, geignete Transistoren erschwinglich wurden. Damals war die Auswahl von geeigneten Transistoren noch sehr spärlich und verursachten der oft knappen Amateurkasse große Ausgaben. Jedes mW an UKW-HF mußte man sich mühsam erkämpfen. Transistoren wie OC171, AF118 und ähnliche Typen wurden gequält um die letzten paar mW rauszukitzeln. Oft war man damals auf Fünf oder Zehn mW HF sogar recht stolz.

Erste portable 2m BBT Station, 1955

OM Sepp beim BBT, 1955

BBT Station 1956

TX Baugruppe

BBT Geräte Ausstellung

Ausgabe: 05.05.2024

DL6MH Station für 2m und 70cm

Homemade RIG für 70cm

Transverter für 70cm nach DL6MH

Als Vater des BBT (Bayrischer Bergtag) hat DL6MH den technischen Fortschritt der portablen 2-m Geräte beträchtlich vorwärtsgetrieben. Innerhalb von nur ein paar Jahren wurden die Röhren fast vollkommen verdrängt. Es wurde sogleich erkannt, dass beim BBT mehr das Können und die Lage der Station den Erfolg beim BBT bestimmte. Mit nur 50 bis 200 mW HF wurden vielfach hunderte KM an Reichweiten erzielt. Jedes Jahr stieg die Anteilnahme am BBT. Viele Hams aus den Nachbarländern in OE, I, OK, DM, u.a. nahmen am BBT teil, welcher ungeahnte Beliebtheit erreichte. Nach Möglichkeit wurden im Empfängerteil vielfach UKW-Rundfunk Baugruppen verschiedener Hersteller (Görler) in diesen Geräten nach kleinerem Umbau verwendet. Die folgenden Bilder illustrieren die Kombination von Industrie und Selbstbauschaltungen.

Obwohl die damalige Gerätetechnik uns heute im Zeitalter von computergesteuerten Funkgeräten mit allen Schikanen heute fast primitiv anmutet, sollte man sich immer vor Augen halten, daß diese Geräte ein Wegbereiter der modernen Technik darstellten. Es ist bestimmt möglich daß die OMs damals bestimmt genau so viel Spaß am Ausprobieren und Verwendung der meistens selbstgebauten Geräte hatten, wie heutzutage wir mit den modernen Wundern der Herstellertechnik.

Es muß leider auch gesagt werden daß immer weniger OMs ihre Funkgeräte in ihrer Funktionweise im Detail kennen. Das ist einerseits durch die außerordentliche Miniaturisierung der Bauweise mit SMD Bauteilen zu erklären, als auch daß die meisten Gerätefunktionen indirekt durch fest eingebaute Microcomputer gesteuert werden, deren Funktionsablauf und der Quellcode dem Gebraucher sowieso nicht zugänglich sind. Vorbei ist die Zeit wo ein Bedienungselement direkt das Gerät beinflußte. Die Miniaturisierung ist der fachmännischen Reparatur immer weniger zugänglich und verurteilt viele neue Geräte zum Wegwerfen. Vielfach ist Reparatur nur durch teuren Modulaustausch möglich. Schon lange her sind die Tage wo der OM Schaltbild und Gerät studieren konnte und imstande war sich früh mit der Funktionsweise vertraut zu machen und die meisten Fehler selber beheben zu können. Man sieht hier übrigens auch eine gewisse Parallele zur Automobilreparatur. Es ist leider auch nicht zu verleugnen, daß viele der modernen Computergesteuerten Geräten ein Übermaß an "features" haben. Die meistens Features werden jedoch außer den wichtigen Grundfunktionen sowieso selten gebraucht, setzen leider jedoch für eine vernünftige Bedienung des Gerätes die Mitnahme der "Quick Reference" oder des Benutzerhandbuchs voraus, da man sich oft nach kurzer Zeit des Nichtgebrauchs an die vielen Menus und Tasten Sequenzen nicht mehr auskennt. In der Hinsicht waren früher die nicht Computergesteuerten Geräte viel einfacher in der Bedienung.

Es ist auch interessant daß viele der neuen Funksprechgeräte heutzutage durch den äußerst breiten Empfangsbereich dieser Geräte oft stark durch Störungen anderer Funkdienste leiden. Es ist wirklich ironisch daß die Geräte oft die Größe einer Zigarettenschachtel haben, daß aber das Filter daß man dazu braucht um die Störungen abzuhalten, oft die Größe einer Schuhschachtel erreicht. Diese Störanfälligkeit ist einerseits durch den breiten Empfangsbereich zu erklären, andrerseits durch die HF Niederspannungsschaltungstechnik mit Bipolaren Transistoren, die den Gebrauch Kreuzmodulations- und Intermodulationasärmerer FETS verbietet und nicht zuletzt durch die übermäßige Anwendung von Dioden in den kritischen HF-Wegen. Es ist hier weniger beabsichtigt die moderne Gerätetechnik und Trends schlecht zu machen, als den Kontrast zwischen der damaligen Gerätetechnik und der Heutigen Generation von Geräten herauszustellen.

Semco Electronic GmbH, Wesseln

(c) Leo Schulz, DL9BBR

Begonnen hat alles um 1960. Im Hildesheimer Blaupunktwerk waren einige Funkamateure beschäftigt, darunter Karl-Heinz Lausen, DL9SB, von Haus aus Fernsehtechniker und Rudolf Loke, DJ2KD, ein gelernter Kaufmann. Zunächst realisierten diese beiden kleinere Amateurfunk-Projekte für den Eigenbedarf, die auch bei anderen Mitgliedern des Hildesheimer DARC-

Ortsverbands auf großes Interesse stießen. Zu dieser Zeit gab es in Deutschland praktisch keinen kommerziellen Hersteller für Amateurfunk-Erzeugnisse und so sprach es sich herum, dass diese Beiden interessante Bausteine herstellen. Die Mundpropaganda führte zu einer wachsenden Nachfrage und zu dem Entschluss eine eigene Firma zu gründen. Das Gewerbe firmierte zunächst unter K.-H. Lausen, Hildesheim, Bahrfeld-Straße 11. Eines der ersten Produkte war ein Spannungswandler mit 2x AD103 für den Mobilbetrieb mit röhrenbestückten UKW-Endstufen (mit QQE03/12). Danach wurde ein KW-Konverter mit 1,6-MHz-ZF (HFB 1,6) entwickelt, der mit einem MW-Radio als Nachsetzer den Empfang aller 5 KW-Amateurfunkbänder ermöglichte. Der Erfolg dieses Konverters führte dazu, Bausteine für einen voll transistorisierten KW-Empfänger zu realisieren. Es entstand die KW-Konverter-Variante HFB-3,0 mit 3,0-MHz-ZF, ein dazu passender 3-MHz-ZF Baustein und ein NF-Verstärker. Die Auslieferung in Bausatzform wurde jedoch sehr bald von der Fertigung komplett aufgebauter und abgeglichner Bausteine abgelöst, da sich schnell zeigte, dass viele Funkamateure Probleme mit dem Aufbau der neuen Technik hatten (Selbstbestücken der Platinen und Baustein-Abgleich). Aus den genannten Kurzwellen-Bausteinen entstand der KW-Empfänger Semiconda, der nun auch mit Gehäuse und mechanischen Teilen geliefert wurde. Daraus entstand später der Semiconda 68 mit neuer Frontplatte. Für das 2-m Amateurfunk-Band wurden inzwischen ebenfalls Bausteine entwickelt. Der MB2 als 2-m Konverter und der MB10 als 10-m-Nachsetzer ermöglichten den Aufbau kleiner portabler Stationen. Der dazu entwickelte Sender-Baustein wurde in den UKW-Berichten Heft 2/1964 von U.L. Rohde beschrieben und kostete 1964 etwa 250 DM. Der 2-m-Konverter MB2 setzte damals in seiner baulichen Größe und Empfindlichkeit Maßstäbe. Geringe Vorselektion und mäßige Großsignalfestigkeit der bipolaren Transistoren führten aber zur Trübung des Empfangs durch starke UKW-Rundfunksender. Ab 1964 ergab sich ein enger persönlicher Kontakt zwischen R. Loke und Dipl.-Ing. Horst-D. Zander, DJ2EV, der bis 1967 in Hamburg, dann in Freiburg/Brsg. In der industrie tätig war. Aufgrund seiner Begeisterung für das Hobby Amateurfunk und seines Berufes (HF-und Halbleitertechnik) gab OM Zander im Laufe der Jahre dem Hildesheimer Unternehmen viele Anregungen, die dem Allgemeinen Stand der Amateurfunktechnik deutlich voraus waren. Dazu gehörten u.a. das Schaltungskonzept für den legendären ersten 2-m-Konverter UE2FET mit Feldefekttransistoren und besonders hoher (Vor-) Selektion und Störfestigkeit sowie Verbesserungsvorschläge aufgrund eigener Experimente, wie z.b. Untersuchungen und Schaltungsdetails zur Modulationsqualität ("positive" AM, Linearität von SSB-Senderbausteinen), das Konzept für das bekannte UKW-Funksprechgerät "Semco" und Konzepte für die späteren SSB-Tranceiver. Der rasante Entwicklungsverlauf der Halbleiter brachte preiswerte Transistoren auf den Markt, die die Entwicklung neuer Bausteine für Empfänger und Sender ermöglichten. Hierzu gehörten u.a. der Senderbaustein MBS21 und Folgemodelle und die Umentwicklung des UE2FET von JFETs auf MosFETs (UE2MosFet) und die "Mini Bausteine" die sich schnell einen guten Ruf erwarben. Parallel dazu begann die Entwicklung und Produktion von 2-m-Fertiggeräten wie Funksprechgerät Semco, Tranceiver SSB-Semco, Semco-SSB und Semcoport.

Ende 1965 tauchte der Name Semcoset erstmalig in der Firmenbezeichnung auf, die 1966 in Semcoset Lausen & Co. OHG umgewandelt wurde. Im Rahmen der Firmenvergrößerung wechselte der Standort zunächst zur Borsigstr.5 in Hildesheim. 1969 wurden dann Entwicklung und Produktion in einem eigenen Neubau nach Wesseln bei Hildesheim, Über dem Steinbruch 189 verlagert. Hier entstand das SSB-Semco sowie das Semco-Moto und das inzwischen überarbeitete AM-Funksprechgerät Semco, als "Brotdose" bei den Funkamateuren bald ein sehr beliebtes Portabel-Gerät, das auch bei Fuchsjagden und beim BBT seine Klasse über viele Jahre bewies. Es folgte die Weiterentwicklung des SSB-Semco zum Semco-SSB. Das Semco-Roto 1971 war eine preiswerte Variante für den mobilen Betrieb mit AM und FM.1973 kam dann das Semco-

Terzo auf den Markt. Mit 25 Watt Sendeleistung in SSB und AM und 15 Watt in FM sowie der für Relaisbetrieb erforderlichen Ablage zunächst von 1,6 MHz, war das zu diesem Zeitpunkt Technisch Machbare erreicht. Die Variante Terzo-Digital war dann das absolute Spitzen-Produkt von Semcoset und wurde zur Legende. Für Portabelbetrieb entstand das Semcoport als würdiger Nachfolger der "Brotdose" und wurde ebenfalls sehr schnell zum Verkaufserfolg, der längere Lieferzeiten hervorrief. Im Bereich der Bausteine waren in der Zwischenzeit die Nachsetzer und Konverter weiterentwickelt und verbessert worden. Sie stellten eine preiswerte Variante für den Funkamateur dar und es gab dazu einige Baubeschreibungen in der Zeitschrift Funkschau. 1977 kamen die letzten Tranceiver von Semcoset auf den Markt. Hierbei handelt es sich um das Semco-Selecto und das Semco-Roto-S. Diese waren im Empfangsteil mit Schottky-Dioden-Ringmischern ausgestattet und boten im Amateurfunkbereich bis dahin unereichte Großsignal-Festigkeit. Mit dem Tod von DJ2KD, der die Firma führte und dessen Spezialgebiet die Panorama-Empfänger wie Semcorama, Spectrolyzer AR, Semco-Spectro MM usw. waren, ging auch die Ära Semcoset zu Ende. Semcoset hatte bis dahin dem zunehmenden Druck der Japanischen Konkurrenz Stand gehalten. Damit endet die deutsche Amateurfunkgeräte-Produktion von Semcoset und somit auch ein großes Stück Amateurfunk-Geschichte.