

Inhaltsverzeichnis

1. JT4	6
2. Benutzer:OE1VMC	4
3. JT65	8
4. JT6M	10
5. JT9	12
6. WSPR	14

JT4

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 27. November 2015, 17:11 Uhr (Quelltext anzeigen)

OE1VMC (Diskussion | Beiträge)
← Zum vorherigen Versionsunterschied

Zeile 23:

Submode JT4A, JT4B, ..., JT4G.

Der JT4A Submode hat 4,375 Hz Tonabstand und daher 17,5 Hz Gesamtbandbreite.

Die gemessene Blockfehlerrate ist etwa 0,5 bis 1 dB **schlechter als** JT65.

Am anderen Ende der Bandbreitenskala findet man JT4G mit 315 Hz Tonabstand

und 1260 Hz Gesamtbandbreite. Die breiteren JT4 Submodes wurden entworfen für EME-Verbindungen in den höheren Mikrowellenbändern,

Version vom 27. November 2015, 17:18 Uhr (Quelltext anzeigen)

OE1VMC (Diskussion | Beiträge)
Zum nächsten Versionsunterschied →

Zeile 23:

Submode JT4A, JT4B, ..., JT4G.

Der JT4A Submode hat 4,375 Hz Tonabstand und daher 17,5 Hz Gesamtbandbreite.

Die gemessene Kurve der Blockfehlerrate ist um etwa 0,5 bis 1 dB verschoben zu schlechteren Signal- zu Störleistungsverhältnissen gegenüber JT65.

Am anderen Ende der Bandbreitenskala findet man JT4G mit 315 Hz Tonabstand

und 1260 Hz Gesamtbandbreite. Die breiteren JT4 Submodes wurden entworfen für EME-Verbindungen in den höheren Mikrowellenbändern,

Version vom 27. November 2015, 17:18 Uhr

Digitale Betriebsarten im Detail\: JT4

JT4 ist eine digitale Betriebsart, die sehr geeignet ist für Erde-Mond-Erde Verbindungen auf den Mikrowellenbändern. Implementiert wird diese digitale Betriebsart über die Soundkarte eines PC.

Synchronisierung mit Hilfe von GPS und automatischer Dopplerkorrektur im JT4 Decoder ermöglichen Erde-Mond-Erde Verbindungen im 10 GHz Band zwischen portablen Stationen (40 W Sendeleistung mit einem Parabolspiegel von 80 cm Durchmesser) und einer stärkeren (ortsfesten) Station (3 m Speigeldurchmesser).

Das Signal besteht aus 4 Tönen: 4-FSK. Digitale Daten werden strukturiert in Paketen mit 72 Informationsbits, wie bei JT65. Die Informationsbits werden kodiert mit einem Faltungscode der Rate r=1/2 und Einflusslänge K=32. Dies führt zu codierten Nachrichten der Länge $(72+31) \times 2 = 206$ Bit. Die Datenrate entspricht 4.375 baud. Der wirksame Durchsatz ist etwa 0.25 Buchstaben pro Sekunde (characters per second, cps).

Es gibt mehrere experimentelle Varianten ("submodes") von JT4, die sich unterscheiden im Frequenzabstand der vier Einzeltöne: Submode JT4A, JT4B, ..., JT4G. Der JT4A Submode hat 4,375 Hz Tonabstand und daher 17,5 Hz Gesamtbandbreite. Die gemessene Kurve der Blockfehlerrate ist um etwa 0,5 bis 1 dB verschoben zu schlechteren Signal- zu Störleistungsverhältnissen gegenüber JT65. Am anderen Ende der Bandbreitenskala findet man JT4G mit 315 Hz Tonabstand und 1260 Hz Gesamtbandbreite. Die breiteren JT4 Submodes wurden entworfen für EME-Verbindungen in den höheren Mikrowellenbändern, und für Streuverbindungen an Regentropfen bei 10 GHz.

Die PC-Uhr muss auf 2 Sekunden genau sein In einer Aussendung werden maximal 13 ASCII Zeichen übertragen. Es werden nur folgende Informationen übertragen: Rufzeichen, Rapport in dB und LOC (4 Stellen).

Die Decodierung von JT4 Nachrichten verhält sich in etwa so, wie die von JT65: Entweder der Decoder dekodiert erfolgreich oder der Decoder erkennt, dass eine erfolgreiche Dekodierung nicht möglich ist.

Weitere Informationen: WSJT (Wikipedia), WSJT, AC4M Digital Radio Site und WSJT-X.

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 27. November 2015, 17:11 Uhr (Quelltext anzeigen)

OE1VMC (Diskussion | Beiträge)
← Zum vorherigen Versionsunterschied

Zeile 23:

Submode JT4A, JT4B, ..., JT4G.

Der JT4A Submode hat 4,375 Hz Tonabstand und daher 17,5 Hz Gesamtbandbreite.

Die gemessene Blockfehlerrate ist etwa 0,5 bis 1 dB **schlechter als** JT65.

Am anderen Ende der Bandbreitenskala findet man JT4G mit 315 Hz Tonabstand

und 1260 Hz Gesamtbandbreite. Die breiteren JT4 Submodes wurden entworfen für EME-Verbindungen in den höheren Mikrowellenbändern,

Version vom 27. November 2015, 17:18 Uhr (Quelltext anzeigen)

OE1VMC (Diskussion | Beiträge)
Zum nächsten Versionsunterschied →

Zeile 23:

Submode JT4A, JT4B, ..., JT4G.

Der JT4A Submode hat 4,375 Hz Tonabstand und daher 17,5 Hz Gesamtbandbreite.

Die gemessene Kurve der Blockfehlerrate ist um etwa 0,5 bis 1 dB verschoben zu schlechteren Signal- zu Störleistungsverhältnissen gegenüber JT65.

Am anderen Ende der Bandbreitenskala findet man JT4G mit 315 Hz Tonabstand

und 1260 Hz Gesamtbandbreite. Die breiteren JT4 Submodes wurden entworfen für EME-Verbindungen in den höheren Mikrowellenbändern,

Version vom 27. November 2015, 17:18 Uhr

Digitale Betriebsarten im Detail\: JT4

JT4 ist eine digitale Betriebsart, die sehr geeignet ist für Erde-Mond-Erde Verbindungen auf den Mikrowellenbändern. Implementiert wird diese digitale Betriebsart über die Soundkarte eines PC.

Synchronisierung mit Hilfe von GPS und automatischer Dopplerkorrektur im JT4 Decoder ermöglichen Erde-Mond-Erde Verbindungen im 10 GHz Band zwischen portablen Stationen (40 W Sendeleistung mit einem Parabolspiegel von 80 cm Durchmesser) und einer stärkeren (ortsfesten) Station (3 m Speigeldurchmesser).

Das Signal besteht aus 4 Tönen: 4-FSK. Digitale Daten werden strukturiert in Paketen mit 72 Informationsbits, wie bei JT65. Die Informationsbits werden kodiert mit einem Faltungscode der Rate r=1/2 und Einflusslänge K=32. Dies führt zu codierten Nachrichten der Länge $(72+31) \times 2 = 206$ Bit. Die Datenrate entspricht 4.375 baud. Der wirksame Durchsatz ist etwa 0.25 Buchstaben pro Sekunde (characters per second, cps).

Es gibt mehrere experimentelle Varianten ("submodes") von JT4, die sich unterscheiden im Frequenzabstand der vier Einzeltöne: Submode JT4A, JT4B, ..., JT4G. Der JT4A Submode hat 4,375 Hz Tonabstand und daher 17,5 Hz Gesamtbandbreite. Die gemessene Kurve der Blockfehlerrate ist um etwa 0,5 bis 1 dB verschoben zu schlechteren Signal- zu Störleistungsverhältnissen gegenüber JT65. Am anderen Ende der Bandbreitenskala findet man JT4G mit 315 Hz Tonabstand und 1260 Hz Gesamtbandbreite. Die breiteren JT4 Submodes wurden entworfen für EME-Verbindungen in den höheren Mikrowellenbändern, und für Streuverbindungen an Regentropfen bei 10 GHz.

Die PC-Uhr muss auf 2 Sekunden genau sein In einer Aussendung werden maximal 13 ASCII Zeichen übertragen. Es werden nur folgende Informationen übertragen: Rufzeichen, Rapport in dB und LOC (4 Stellen).

Die Decodierung von JT4 Nachrichten verhält sich in etwa so, wie die von JT65: Entweder der Decoder dekodiert erfolgreich oder der Decoder erkennt, dass eine erfolgreiche Dekodierung nicht möglich ist.

Weitere Informationen: WSJT (Wikipedia), WSJT, AC4M Digital Radio Site und WSJT-X.

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 27. November 2015, 17:11 Uhr (Quelltext anzeigen)

OE1VMC (Diskussion | Beiträge)
← Zum vorherigen Versionsunterschied

Zeile 23:

Submode JT4A, JT4B, ..., JT4G.

Der JT4A Submode hat 4,375 Hz Tonabstand und daher 17,5 Hz Gesamtbandbreite.

Die gemessene Blockfehlerrate ist etwa 0,5 bis 1 dB schlechter als JT65.

Am anderen Ende der Bandbreitenskala findet man JT4G mit 315 Hz Tonabstand

und 1260 Hz Gesamtbandbreite. Die breiteren JT4 Submodes wurden entworfen für EME-Verbindungen in den höheren Mikrowellenbändern,

Version vom 27. November 2015, 17:18 Uhr (Quelltext anzeigen)

OE1VMC (Diskussion | Beiträge)
Zum nächsten Versionsunterschied →

Zeile 23:

Submode JT4A, JT4B, ..., JT4G.

Der JT4A Submode hat 4,375 Hz Tonabstand und daher 17,5 Hz Gesamtbandbreite.

Die gemessene Kurve der Blockfehlerrate ist um etwa 0,5 bis 1 dB verschoben zu schlechteren Signal- zu Störleistungsverhältnissen gegenüber JT65.

Am anderen Ende der Bandbreitenskala findet man JT4G mit 315 Hz Tonabstand

und 1260 Hz Gesamtbandbreite. Die breiteren JT4 Submodes wurden entworfen für EME-Verbindungen in den höheren Mikrowellenbändern,

Version vom 27. November 2015, 17:18 Uhr

Digitale Betriebsarten im Detail\: JT4

JT4 ist eine digitale Betriebsart, die sehr geeignet ist für Erde-Mond-Erde Verbindungen auf den Mikrowellenbändern. Implementiert wird diese digitale Betriebsart über die Soundkarte eines PC.

Synchronisierung mit Hilfe von GPS und automatischer Dopplerkorrektur im JT4 Decoder ermöglichen Erde-Mond-Erde Verbindungen im 10 GHz Band zwischen portablen Stationen (40 W Sendeleistung mit einem Parabolspiegel von 80 cm Durchmesser) und einer stärkeren (ortsfesten) Station (3 m Speigeldurchmesser).

Das Signal besteht aus 4 Tönen: 4-FSK. Digitale Daten werden strukturiert in Paketen mit 72 Informationsbits, wie bei JT65. Die Informationsbits werden kodiert mit einem Faltungscode der Rate r=1/2 und Einflusslänge K=32. Dies führt zu codierten Nachrichten der Länge $(72+31) \times 2 = 206$ Bit. Die Datenrate entspricht 4.375 baud. Der wirksame Durchsatz ist etwa 0.25 Buchstaben pro Sekunde (characters per second, cps).

Es gibt mehrere experimentelle Varianten ("submodes") von JT4, die sich unterscheiden im Frequenzabstand der vier Einzeltöne: Submode JT4A, JT4B, ..., JT4G. Der JT4A Submode hat 4,375 Hz Tonabstand und daher 17,5 Hz Gesamtbandbreite. Die gemessene Kurve der Blockfehlerrate ist um etwa 0,5 bis 1 dB verschoben zu schlechteren Signal- zu Störleistungsverhältnissen gegenüber JT65. Am anderen Ende der Bandbreitenskala findet man JT4G mit 315 Hz Tonabstand und 1260 Hz Gesamtbandbreite. Die breiteren JT4 Submodes wurden entworfen für EME-Verbindungen in den höheren Mikrowellenbändern, und für Streuverbindungen an Regentropfen bei 10 GHz.

Die PC-Uhr muss auf 2 Sekunden genau sein In einer Aussendung werden maximal 13 ASCII Zeichen übertragen. Es werden nur folgende Informationen übertragen: Rufzeichen, Rapport in dB und LOC (4 Stellen).

Die Decodierung von JT4 Nachrichten verhält sich in etwa so, wie die von JT65: Entweder der Decoder dekodiert erfolgreich oder der Decoder erkennt, dass eine erfolgreiche Dekodierung nicht möglich ist.

Weitere Informationen: WSJT (Wikipedia), WSJT, AC4M Digital Radio Site und WSJT-X.

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 27. November 2015, 17:11 Uhr (Quelltext anzeigen)

OE1VMC (Diskussion | Beiträge)
← Zum vorherigen Versionsunterschied

Zeile 23:

Submode JT4A, JT4B, ..., JT4G.

Der JT4A Submode hat 4,375 Hz Tonabstand und daher 17,5 Hz Gesamtbandbreite.

Die gemessene Blockfehlerrate ist etwa 0,5 bis 1 dB schlechter als JT65.

Am anderen Ende der Bandbreitenskala findet man JT4G mit 315 Hz Tonabstand

und 1260 Hz Gesamtbandbreite. Die breiteren JT4 Submodes wurden entworfen für EME-Verbindungen in den höheren Mikrowellenbändern,

Version vom 27. November 2015, 17:18 Uhr (Quelltext anzeigen)

OE1VMC (Diskussion | Beiträge)
Zum nächsten Versionsunterschied →

Zeile 23:

Submode JT4A, JT4B, ..., JT4G.

Der JT4A Submode hat 4,375 Hz Tonabstand und daher 17,5 Hz Gesamtbandbreite.

Die gemessene Kurve der Blockfehlerrate ist um etwa 0,5 bis 1 dB verschoben zu schlechteren Signal- zu Störleistungsverhältnissen gegenüber JT65.

Am anderen Ende der Bandbreitenskala findet man JT4G mit 315 Hz Tonabstand

und 1260 Hz Gesamtbandbreite. Die breiteren JT4 Submodes wurden entworfen für EME-Verbindungen in den höheren Mikrowellenbändern,

Version vom 27. November 2015, 17:18 Uhr

Digitale Betriebsarten im Detail\: JT4

JT4 ist eine digitale Betriebsart, die sehr geeignet ist für für Erde-Mond-Erde Verbindungen auf den Mikrowellenbändern. Implementiert wird diese digitale Betriebsart über die Soundkarte eines PC.

Synchronisierung mit Hilfe von GPS und automatischer Dopplerkorrektur im JT4 Decoder ermöglichen Erde-Mond-Erde Verbindungen im 10 GHz Band zwischen portablen Stationen (40 W Sendeleistung mit einem Parabolspiegel von 80 cm Durchmesser) und einer stärkeren (ortsfesten) Station (3 m Speigeldurchmesser).

Das Signal besteht aus 4 Tönen: 4-FSK. Digitale Daten werden strukturiert in Paketen mit 72 Informationsbits, wie bei JT65. Die Informationsbits werden kodiert mit einem Faltungscode der Rate r=1/2 und Einflusslänge K=32. Dies führt zu codierten Nachrichten der Länge $(72+31) \times 2 = 206$ Bit. Die Datenrate entspricht 4.375 baud. Der wirksame Durchsatz ist etwa 0.25 Buchstaben pro Sekunde (characters per second, cps).

Es gibt mehrere experimentelle Varianten ("submodes") von JT4, die sich unterscheiden im Frequenzabstand der vier Einzeltöne: Submode JT4A, JT4B, ..., JT4G. Der JT4A Submode hat 4,375 Hz Tonabstand und daher 17,5 Hz Gesamtbandbreite. Die gemessene Kurve der Blockfehlerrate ist um etwa 0,5 bis 1 dB verschoben zu schlechteren Signal- zu Störleistungsverhältnissen gegenüber JT65. Am anderen Ende der Bandbreitenskala findet man JT4G mit 315 Hz Tonabstand und 1260 Hz Gesamtbandbreite. Die breiteren JT4 Submodes wurden entworfen für EME-Verbindungen in den höheren Mikrowellenbändern, und für Streuverbindungen an Regentropfen bei 10 GHz.

Die PC-Uhr muss auf 2 Sekunden genau sein In einer Aussendung werden maximal 13 ASCII Zeichen übertragen. Es werden nur folgende Informationen übertragen: Rufzeichen, Rapport in dB und LOC (4 Stellen).

Die Decodierung von JT4 Nachrichten verhält sich in etwa so, wie die von JT65: Entweder der Decoder dekodiert erfolgreich oder der Decoder erkennt, dass eine erfolgreiche Dekodierung nicht möglich ist.

Weitere Informationen: WSJT (Wikipedia), WSJT, AC4M Digital Radio Site und WSJT-X.

Siehe auch: JT65, JT9, WSPR und JT6M.

Ausgabe: 19.05.2024

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 27. November 2015, 17:11 Uhr (Quelltext anzeigen)

OE1VMC (Diskussion | Beiträge)
← Zum vorherigen Versionsunterschied

Zeile 23:

Submode JT4A, JT4B, ..., JT4G.

Der JT4A Submode hat 4,375 Hz Tonabstand und daher 17,5 Hz Gesamtbandbreite.

Die gemessene Blockfehlerrate ist etwa 0,5 bis 1 dB **schlechter als** JT65.

Am anderen Ende der Bandbreitenskala findet man JT4G mit 315 Hz Tonabstand

und 1260 Hz Gesamtbandbreite. Die breiteren JT4 Submodes wurden entworfen für EME-Verbindungen in den höheren Mikrowellenbändern,

Version vom 27. November 2015, 17:18 Uhr (Quelltext anzeigen)

OE1VMC (Diskussion | Beiträge)
Zum nächsten Versionsunterschied →

Zeile 23:

Submode JT4A, JT4B, ..., JT4G.

Der JT4A Submode hat 4,375 Hz Tonabstand und daher 17,5 Hz Gesamtbandbreite.

Die gemessene Kurve der Blockfehlerrate ist um etwa 0,5 bis 1 dB verschoben zu schlechteren Signal- zu Störleistungsverhältnissen gegenüber JT65.

Am anderen Ende der Bandbreitenskala findet man JT4G mit 315 Hz Tonabstand

und 1260 Hz Gesamtbandbreite. Die breiteren JT4 Submodes wurden entworfen für EME-Verbindungen in den höheren Mikrowellenbändern,

Version vom 27. November 2015, 17:18 Uhr

Digitale Betriebsarten im Detail\: JT4

JT4 ist eine digitale Betriebsart, die sehr geeignet ist für Erde-Mond-Erde Verbindungen auf den Mikrowellenbändern. Implementiert wird diese digitale Betriebsart über die Soundkarte eines PC.

Synchronisierung mit Hilfe von GPS und automatischer Dopplerkorrektur im JT4 Decoder ermöglichen Erde-Mond-Erde Verbindungen im 10 GHz Band zwischen portablen Stationen (40 W Sendeleistung mit einem Parabolspiegel von 80 cm Durchmesser) und einer stärkeren (ortsfesten) Station (3 m Speigeldurchmesser).

Das Signal besteht aus 4 Tönen: 4-FSK. Digitale Daten werden strukturiert in Paketen mit 72 Informationsbits, wie bei JT65. Die Informationsbits werden kodiert mit einem Faltungscode der Rate r=1/2 und Einflusslänge K=32. Dies führt zu codierten Nachrichten der Länge $(72+31) \times 2 = 206$ Bit. Die Datenrate entspricht 4.375 baud. Der wirksame Durchsatz ist etwa 0.25 Buchstaben pro Sekunde (characters per second, cps).

Es gibt mehrere experimentelle Varianten ("submodes") von JT4, die sich unterscheiden im Frequenzabstand der vier Einzeltöne: Submode JT4A, JT4B, ..., JT4G. Der JT4A Submode hat 4,375 Hz Tonabstand und daher 17,5 Hz Gesamtbandbreite. Die gemessene Kurve der Blockfehlerrate ist um etwa 0,5 bis 1 dB verschoben zu schlechteren Signal- zu Störleistungsverhältnissen gegenüber JT65. Am anderen Ende der Bandbreitenskala findet man JT4G mit 315 Hz Tonabstand und 1260 Hz Gesamtbandbreite. Die breiteren JT4 Submodes wurden entworfen für EME-Verbindungen in den höheren Mikrowellenbändern, und für Streuverbindungen an Regentropfen bei 10 GHz.

Die PC-Uhr muss auf 2 Sekunden genau sein In einer Aussendung werden maximal 13 ASCII Zeichen übertragen. Es werden nur folgende Informationen übertragen: Rufzeichen, Rapport in dB und LOC (4 Stellen).

Die Decodierung von JT4 Nachrichten verhält sich in etwa so, wie die von JT65: Entweder der Decoder dekodiert erfolgreich oder der Decoder erkennt, dass eine erfolgreiche Dekodierung nicht möglich ist.

Weitere Informationen: WSJT (Wikipedia), WSJT, AC4M Digital Radio Site und WSJT-X.

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 27. November 2015, 17:11 Uhr (Quelltext anzeigen)

OE1VMC (Diskussion | Beiträge)
← Zum vorherigen Versionsunterschied

Zeile 23:

Submode JT4A, JT4B, ..., JT4G.

Der JT4A Submode hat 4,375 Hz Tonabstand und daher 17,5 Hz Gesamtbandbreite.

Die gemessene Blockfehlerrate ist etwa 0,5 bis 1 dB schlechter als JT65.

Am anderen Ende der Bandbreitenskala findet man JT4G mit 315 Hz Tonabstand

und 1260 Hz Gesamtbandbreite. Die breiteren JT4 Submodes wurden entworfen für EME-Verbindungen in den höheren Mikrowellenbändern,

Version vom 27. November 2015, 17:18 Uhr (Quelltext anzeigen)

OE1VMC (Diskussion | Beiträge)
Zum nächsten Versionsunterschied →

Zeile 23:

Submode JT4A, JT4B, ..., JT4G.

Der JT4A Submode hat 4,375 Hz Tonabstand und daher 17,5 Hz Gesamtbandbreite.

Die gemessene Kurve der Blockfehlerrate ist um etwa 0,5 bis 1 dB verschoben zu schlechteren Signal- zu Störleistungsverhältnissen gegenüber JT65.

Am anderen Ende der Bandbreitenskala findet man JT4G mit 315 Hz Tonabstand

und 1260 Hz Gesamtbandbreite. Die breiteren JT4 Submodes wurden entworfen für EME-Verbindungen in den höheren Mikrowellenbändern,

Version vom 27. November 2015, 17:18 Uhr

Digitale Betriebsarten im Detail\: JT4

JT4 ist eine digitale Betriebsart, die sehr geeignet ist für Erde-Mond-Erde Verbindungen auf den Mikrowellenbändern. Implementiert wird diese digitale Betriebsart über die Soundkarte eines PC.

Synchronisierung mit Hilfe von GPS und automatischer Dopplerkorrektur im JT4 Decoder ermöglichen Erde-Mond-Erde Verbindungen im 10 GHz Band zwischen portablen Stationen (40 W Sendeleistung mit einem Parabolspiegel von 80 cm Durchmesser) und einer stärkeren (ortsfesten) Station (3 m Speigeldurchmesser).

Das Signal besteht aus 4 Tönen: 4-FSK. Digitale Daten werden strukturiert in Paketen mit 72 Informationsbits, wie bei JT65. Die Informationsbits werden kodiert mit einem Faltungscode der Rate r=1/2 und Einflusslänge K=32. Dies führt zu codierten Nachrichten der Länge $(72+31) \times 2 = 206$ Bit. Die Datenrate entspricht 4.375 baud. Der wirksame Durchsatz ist etwa 0.25 Buchstaben pro Sekunde (characters per second, cps).

Es gibt mehrere experimentelle Varianten ("submodes") von JT4, die sich unterscheiden im Frequenzabstand der vier Einzeltöne: Submode JT4A, JT4B, ..., JT4G. Der JT4A Submode hat 4,375 Hz Tonabstand und daher 17,5 Hz Gesamtbandbreite. Die gemessene Kurve der Blockfehlerrate ist um etwa 0,5 bis 1 dB verschoben zu schlechteren Signal- zu Störleistungsverhältnissen gegenüber JT65. Am anderen Ende der Bandbreitenskala findet man JT4G mit 315 Hz Tonabstand und 1260 Hz Gesamtbandbreite. Die breiteren JT4 Submodes wurden entworfen für EME-Verbindungen in den höheren Mikrowellenbändern, und für Streuverbindungen an Regentropfen bei 10 GHz.

Die PC-Uhr muss auf 2 Sekunden genau sein In einer Aussendung werden maximal 13 ASCII Zeichen übertragen. Es werden nur folgende Informationen übertragen: Rufzeichen, Rapport in dB und LOC (4 Stellen).

Die Decodierung von JT4 Nachrichten verhält sich in etwa so, wie die von JT65: Entweder der Decoder dekodiert erfolgreich oder der Decoder erkennt, dass eine erfolgreiche Dekodierung nicht möglich ist.

Weitere Informationen: WSJT (Wikipedia), WSJT, AC4M Digital Radio Site und WSJT-X.

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 27. November 2015, 17:11 Uhr (Quelltext anzeigen)

OE1VMC (Diskussion | Beiträge)
← Zum vorherigen Versionsunterschied

Zeile 23:

Submode JT4A, JT4B, ..., JT4G.

Der JT4A Submode hat 4,375 Hz Tonabstand und daher 17,5 Hz Gesamtbandbreite.

Die gemessene Blockfehlerrate ist etwa 0,5 bis 1 dB schlechter als JT65.

Am anderen Ende der Bandbreitenskala findet man JT4G mit 315 Hz Tonabstand

und 1260 Hz Gesamtbandbreite. Die breiteren JT4 Submodes wurden entworfen für EME-Verbindungen in den höheren Mikrowellenbändern,

Version vom 27. November 2015, 17:18 Uhr (Quelltext anzeigen)

OE1VMC (Diskussion | Beiträge)
Zum nächsten Versionsunterschied →

Zeile 23:

Submode JT4A, JT4B, ..., JT4G.

Der JT4A Submode hat 4,375 Hz Tonabstand und daher 17,5 Hz Gesamtbandbreite.

Die gemessene Kurve der Blockfehlerrate ist um etwa 0,5 bis 1 dB verschoben zu schlechteren Signal- zu Störleistungsverhältnissen gegenüber JT65.

Am anderen Ende der Bandbreitenskala findet man JT4G mit 315 Hz Tonabstand

und 1260 Hz Gesamtbandbreite. Die breiteren JT4 Submodes wurden entworfen für EME-Verbindungen in den höheren Mikrowellenbändern,

Version vom 27. November 2015, 17:18 Uhr

Digitale Betriebsarten im Detail\: JT4

JT4 ist eine digitale Betriebsart, die sehr geeignet ist für Erde-Mond-Erde Verbindungen auf den Mikrowellenbändern. Implementiert wird diese digitale Betriebsart über die Soundkarte eines PC.

Synchronisierung mit Hilfe von GPS und automatischer Dopplerkorrektur im JT4 Decoder ermöglichen Erde-Mond-Erde Verbindungen im 10 GHz Band zwischen portablen Stationen (40 W Sendeleistung mit einem Parabolspiegel von 80 cm Durchmesser) und einer stärkeren (ortsfesten) Station (3 m Speigeldurchmesser).

Das Signal besteht aus 4 Tönen: 4-FSK. Digitale Daten werden strukturiert in Paketen mit 72 Informationsbits, wie bei JT65. Die Informationsbits werden kodiert mit einem Faltungscode der Rate r=1/2 und Einflusslänge K=32. Dies führt zu codierten Nachrichten der Länge $(72+31) \times 2 = 206$ Bit. Die Datenrate entspricht 4.375 baud. Der wirksame Durchsatz ist etwa 0.25 Buchstaben pro Sekunde (characters per second, cps).

Es gibt mehrere experimentelle Varianten ("submodes") von JT4, die sich unterscheiden im Frequenzabstand der vier Einzeltöne: Submode JT4A, JT4B, ..., JT4G. Der JT4A Submode hat 4,375 Hz Tonabstand und daher 17,5 Hz Gesamtbandbreite. Die gemessene Kurve der Blockfehlerrate ist um etwa 0,5 bis 1 dB verschoben zu schlechteren Signal- zu Störleistungsverhältnissen gegenüber JT65. Am anderen Ende der Bandbreitenskala findet man JT4G mit 315 Hz Tonabstand und 1260 Hz Gesamtbandbreite. Die breiteren JT4 Submodes wurden entworfen für EME-Verbindungen in den höheren Mikrowellenbändern, und für Streuverbindungen an Regentropfen bei 10 GHz.

Die PC-Uhr muss auf 2 Sekunden genau sein In einer Aussendung werden maximal 13 ASCII Zeichen übertragen. Es werden nur folgende Informationen übertragen: Rufzeichen, Rapport in dB und LOC (4 Stellen).

Die Decodierung von JT4 Nachrichten verhält sich in etwa so, wie die von JT65: Entweder der Decoder dekodiert erfolgreich oder der Decoder erkennt, dass eine erfolgreiche Dekodierung nicht möglich ist.

Weitere Informationen: WSJT (Wikipedia), WSJT, AC4M Digital Radio Site und WSJT-X.