

Inhaltsverzeichnis

1. JT4	17
2. Benutzer:OE1VMC	5
3. FSK441	8
4. FT8	11
5. Grundlagen Digitale Betriebsarten	14
6. JT65	20
7. JT6M	23
8. JT9	26
9. MSK144	29
10. QRA64	32
11. WSPR	35

JT4

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 29. September 2018, 11:24 Uhr (Quelltext anzeigen)

OE1VMC (Diskussion | Beiträge)

Κ

Version vom 29. September 2018, 11:26 Uhr (Quelltext anzeigen)

OE1VMC (Diskussion | Beiträge)

K (→Digitale Betriebsarten im Detail: JT4)

	← Zum vorherigen Versionsunterschied		Zum nächsten Versionsunterschied →
Zε	ile 36:	Ze	eile 36:
	!JT4A		!JT4A
	4,375		4,375
-	17, 5	+	17, <mark>500</mark>
	-		-
	!JT4B		!JT4B
-	8, <mark>75</mark>	+	8, 750
-	35	+	35 ,00
	-		-
	!JT4C		!JT4C
-	17, <mark>5</mark>	+	17, <mark>500</mark>
-	70	+	70 ,000
	-		-
	!JT4D		!JT4D
	39,375		39,375
-	158	+	158 ,000
	-		-
	!JT4E		!JT4E
-	78, <mark>75</mark>	+	78, 750
-	315	+	315 ,000
	-		-
	!JT4F		!JT4F
	157, <mark>5</mark>	+	157, 500

- [630	+	630 ,000
	-		-
	!JT4G		!JT4G
- [315	+	315 ,000
- [1260	+	1260 ,000
	}		}

Digitale Betriebsarten im Detail\: JT4

JT4 ist eine digitale Betriebsart, die sehr geeignet ist für für Erde-Mond-Erde Verbindungen auf den Mikrowellenbändern. Implementiert wird diese digitale Betriebsart über die Soundkarte eines PC.

Synchronisierung mit Hilfe von GPS und automatischer Dopplerkorrektur im JT4 Decoder ermöglichen Erde-Mond-Erde Verbindungen im 10 GHz Band zwischen portablen Stationen (40 W Sendeleistung mit einem Parabolspiegel von 80 cm Durchmesser) und einer stärkeren (ortsfesten) Station (3 m Speigeldurchmesser).

Zuerst eingeführt wurde JT4 mit Hilfe der Implementierung als Open Source Software WSJT von Joe Taylor (K1JT).

JT4 hat viele Gemeinsamkeiten mit JT65 und JT9. Diese digitalen Modi verwenden fast identische Nachrichtenstruktur und Quellencodierung. Details zur Quellencodierung wurden veröffentlicht im Artikel "The JT65 Communications Protocol", der in der Zeitschrift QEX während 2005 veröffentlicht wurde.

Das Signal besteht aus 4 Tönen: 4-FSK. Digitale Daten werden strukturiert in Paketen mit 72 Informationsbits, wie bei JT65. Die Informationsbits werden kodiert mit einem Faltungscode der Rate r=1/2 und Einflusslänge K=32. Dies führt zu codierten Nachrichten der Länge (72+31) \times 2 = 206 Bit. Die Datenrate entspricht 4.375 baud. Der wirksame Durchsatz ist etwa 0.25 Buchstaben pro Sekunde (characters per second, cps).

Mode	Tonabstand (Hz)	Bandbreite (Hz)
JT4A	4,375	17,500
JT4B	8,750	35,00
JT4C	17,500	70,000
JT4D	39,375	158,000
JT4E	78,750	315,000
JT4F	157,500	630,000
JT4G	315,000	1260,000

Die Decodierung von JT4 Nachrichten verhält sich in etwa so, wie die von JT65: Entweder der Decoder dekodiert erfolgreich oder der Decoder erkennt, dass eine erfolgreiche Dekodierung nicht möglich ist.

Weitere Informationen: WSJT (Wikipedia), WSJT, AC4M Digital Radio Site und WSJT-X.

JT4: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 29. September 2018, 11:24 Version vom 29. September 2018, 11:26 **Uhr (Quelltext anzeigen) Uhr (Quelltext anzeigen)** OE1VMC (Diskussion | Beiträge) OE1VMC (Diskussion | Beiträge) K (→Digitale Betriebsarten im Detail: JT4) ← Zum vorherigen Versionsunterschied Zum nächsten Versionsunterschied → Zeile 36: Zeile 36: !JT4A !JT4A |4,375 |4,375 + |17,**500** |17,**5** |-|-!JT4B !JT4B |8,**75** + |8,750 |35 + |35,00 |-|-!JT4C !JT4C |17,**500** |17,**5** |70**,000** 170 |-|-!JT4D !JT4D |39,375 |39,375 |158 |158**,000** |-|-!JT4E !JT4E + |78,**750** |78,**75** + |315,000 |315 |-!JT4F !JT4F |157,**5** |157,**500**

- [630	+	630 ,000
	-		-
	!JT4G		!JT4G
- [315	+	315 ,000
- [1260	+	1260 ,000
]}		}

Digitale Betriebsarten im Detail\: JT4

JT4 ist eine digitale Betriebsart, die sehr geeignet ist für für Erde-Mond-Erde Verbindungen auf den Mikrowellenbändern. Implementiert wird diese digitale Betriebsart über die Soundkarte eines PC.

Synchronisierung mit Hilfe von GPS und automatischer Dopplerkorrektur im JT4 Decoder ermöglichen Erde-Mond-Erde Verbindungen im 10 GHz Band zwischen portablen Stationen (40 W Sendeleistung mit einem Parabolspiegel von 80 cm Durchmesser) und einer stärkeren (ortsfesten) Station (3 m Speigeldurchmesser).

Zuerst eingeführt wurde JT4 mit Hilfe der Implementierung als Open Source Software WSJT von Joe Taylor (K1JT).

JT4 hat viele Gemeinsamkeiten mit JT65 und JT9. Diese digitalen Modi verwenden fast identische Nachrichtenstruktur und Quellencodierung. Details zur Quellencodierung wurden veröffentlicht im Artikel "The JT65 Communications Protocol", der in der Zeitschrift QEX während 2005 veröffentlicht wurde.

Das Signal besteht aus 4 Tönen: 4-FSK. Digitale Daten werden strukturiert in Paketen mit 72 Informationsbits, wie bei JT65. Die Informationsbits werden kodiert mit einem Faltungscode der Rate r=1/2 und Einflusslänge K=32. Dies führt zu codierten Nachrichten der Länge (72+31) \times 2 = 206 Bit. Die Datenrate entspricht 4.375 baud. Der wirksame Durchsatz ist etwa 0.25 Buchstaben pro Sekunde (characters per second, cps).

Mode (Hz) (Hz)	
JT4A 4,375 17,500	
JT4B 8,750 35,00	
JT4C 17,500 70,000	
JT4D 39,375 158,000	
JT4E 78,750 315,000	
JT4F 157,500 630,000	
JT4G 315,000 1260,000	

Die Decodierung von JT4 Nachrichten verhält sich in etwa so, wie die von JT65: Entweder der Decoder dekodiert erfolgreich oder der Decoder erkennt, dass eine erfolgreiche Dekodierung nicht möglich ist.

Weitere Informationen: WSJT (Wikipedia), WSJT, AC4M Digital Radio Site und WSJT-X.

JT4: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 29. September 2018, 11:24

Uhr (Quelltext anzeigen) Uhr (Quelltext anzeigen) OE1VMC (Diskussion | Beiträge) OE1VMC (Diskussion | Beiträge) K (→Digitale Betriebsarten im Detail: JT4) ← Zum vorherigen Versionsunterschied Zum nächsten Versionsunterschied → Zeile 36: Zeile 36: !JT4A !JT4A |4,375 |4,375 |17,**5** + |17,500 |-|-!JT4B !JT4B |8,**75** + |8,750 |35 + |35,00 |-|-!JT4C !JT4C |17,**500** |17,**5** |70**,000** 170 |-|-!JT4D !JT4D |39,375 |39,375 |158 |158**,000** |-|-!JT4E !JT4E + |78,**750** |78,**75** + |315,000 |315 |-!JT4F !JT4F |157,**5** |157,**500**

- [630	+	630 ,000
	-		-
	!JT4G		!JT4G
- [315	+	315 ,000
- [1260	+	1260 ,000
]}		}

Digitale Betriebsarten im Detail\: JT4

JT4 ist eine digitale Betriebsart, die sehr geeignet ist für für Erde-Mond-Erde Verbindungen auf den Mikrowellenbändern. Implementiert wird diese digitale Betriebsart über die Soundkarte eines PC.

Synchronisierung mit Hilfe von GPS und automatischer Dopplerkorrektur im JT4 Decoder ermöglichen Erde-Mond-Erde Verbindungen im 10 GHz Band zwischen portablen Stationen (40 W Sendeleistung mit einem Parabolspiegel von 80 cm Durchmesser) und einer stärkeren (ortsfesten) Station (3 m Speigeldurchmesser).

Zuerst eingeführt wurde JT4 mit Hilfe der Implementierung als Open Source Software WSJT von Joe Taylor (K1JT).

JT4 hat viele Gemeinsamkeiten mit JT65 und JT9. Diese digitalen Modi verwenden fast identische Nachrichtenstruktur und Quellencodierung. Details zur Quellencodierung wurden veröffentlicht im Artikel "The JT65 Communications Protocol", der in der Zeitschrift QEX während 2005 veröffentlicht wurde.

Das Signal besteht aus 4 Tönen: 4-FSK. Digitale Daten werden strukturiert in Paketen mit 72 Informationsbits, wie bei JT65. Die Informationsbits werden kodiert mit einem Faltungscode der Rate r=1/2 und Einflusslänge K=32. Dies führt zu codierten Nachrichten der Länge (72+31) \times 2 = 206 Bit. Die Datenrate entspricht 4.375 baud. Der wirksame Durchsatz ist etwa 0.25 Buchstaben pro Sekunde (characters per second, cps).

Mode (Hz) (Hz)	
JT4A 4,375 17,500	
JT4B 8,750 35,00	
JT4C 17,500 70,000	
JT4D 39,375 158,000	
JT4E 78,750 315,000	
JT4F 157,500 630,000	
JT4G 315,000 1260,000	

Die Decodierung von JT4 Nachrichten verhält sich in etwa so, wie die von JT65: Entweder der Decoder dekodiert erfolgreich oder der Decoder erkennt, dass eine erfolgreiche Dekodierung nicht möglich ist.

Weitere Informationen: WSJT (Wikipedia), WSJT, AC4M Digital Radio Site und WSJT-X.

JT4: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 29. September 2018, 11:24 Version vom 29. September 2018, 11:26 **Uhr (Quelltext anzeigen) Uhr (Quelltext anzeigen)** OE1VMC (Diskussion | Beiträge) OE1VMC (Diskussion | Beiträge) K (→Digitale Betriebsarten im Detail: JT4) ← Zum vorherigen Versionsunterschied Zum nächsten Versionsunterschied → Zeile 36: Zeile 36: !JT4A !JT4A |4,375 |4,375 |17,**5** + |17,500 |-|-!JT4B !JT4B |8,**75** + |8,750 |35 + |35,00 |-|-!JT4C !JT4C |17,**500** |17,**5** |70**,000** 170 |-|-!JT4D !JT4D |39,375 |39,375 |158 |158**,000** |-|-!JT4E !JT4E + |78,**750** |78,**75** + |315,000 |315 |-!JT4F !JT4F |157,**5** |157,**500**

- [630	+	630 ,000
	-		-
	!JT4G		!JT4G
- [315	+	315 ,000
- [1260	+	1260 ,000
]}		}

Digitale Betriebsarten im Detail\: JT4

JT4 ist eine digitale Betriebsart, die sehr geeignet ist für für Erde-Mond-Erde Verbindungen auf den Mikrowellenbändern. Implementiert wird diese digitale Betriebsart über die Soundkarte eines PC.

Synchronisierung mit Hilfe von GPS und automatischer Dopplerkorrektur im JT4 Decoder ermöglichen Erde-Mond-Erde Verbindungen im 10 GHz Band zwischen portablen Stationen (40 W Sendeleistung mit einem Parabolspiegel von 80 cm Durchmesser) und einer stärkeren (ortsfesten) Station (3 m Speigeldurchmesser).

Zuerst eingeführt wurde JT4 mit Hilfe der Implementierung als Open Source Software WSJT von Joe Taylor (K1JT).

JT4 hat viele Gemeinsamkeiten mit JT65 und JT9. Diese digitalen Modi verwenden fast identische Nachrichtenstruktur und Quellencodierung. Details zur Quellencodierung wurden veröffentlicht im Artikel "The JT65 Communications Protocol", der in der Zeitschrift QEX während 2005 veröffentlicht wurde.

Das Signal besteht aus 4 Tönen: 4-FSK. Digitale Daten werden strukturiert in Paketen mit 72 Informationsbits, wie bei JT65. Die Informationsbits werden kodiert mit einem Faltungscode der Rate r=1/2 und Einflusslänge K=32. Dies führt zu codierten Nachrichten der Länge (72+31) \times 2 = 206 Bit. Die Datenrate entspricht 4.375 baud. Der wirksame Durchsatz ist etwa 0.25 Buchstaben pro Sekunde (characters per second, cps).

Mode	Tonabstand (Hz)	Bandbreite (Hz)
JT4A	4,375	17,500
JT4B	8,750	35,00
JT4C	17,500	70,000
JT4D	39,375	158,000
JT4E	78,750	315,000
JT4F	157,500	630,000
JT4G	315,000	1260,000

Die Decodierung von JT4 Nachrichten verhält sich in etwa so, wie die von JT65: Entweder der Decoder dekodiert erfolgreich oder der Decoder erkennt, dass eine erfolgreiche Dekodierung nicht möglich ist.

Weitere Informationen: WSJT (Wikipedia), WSJT, AC4M Digital Radio Site und WSJT-X.

JT4: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 29. September 2018, 11:24

Uhr (Quelltext anzeigen) Uhr (Quelltext anzeigen) OE1VMC (Diskussion | Beiträge) OE1VMC (Diskussion | Beiträge) K (→Digitale Betriebsarten im Detail: JT4) ← Zum vorherigen Versionsunterschied Zum nächsten Versionsunterschied → Zeile 36: Zeile 36: !JT4A !JT4A |4,375 |4,375 |17,**5** + |17,500 |-|-!JT4B !JT4B |8,**75** + |8,750 |35 + |35,00 |-|-!JT4C !JT4C |17,**500** |17,**5** |70**,000** 170 |-|-!JT4D !JT4D |39,375 |39,375 |158 |158**,000** |-|-!JT4E !JT4E + |78,**750** |78,**75** + |315,000 |315 |-!JT4F !JT4F |157,**5** |157,**500**

- [630	+	630 ,000
	-		-
	!JT4G		!JT4G
- [315	+	315 ,000
- [1260	+	1260 ,000
]}		}

Digitale Betriebsarten im Detail\: JT4

JT4 ist eine digitale Betriebsart, die sehr geeignet ist für für Erde-Mond-Erde Verbindungen auf den Mikrowellenbändern. Implementiert wird diese digitale Betriebsart über die Soundkarte eines PC.

Synchronisierung mit Hilfe von GPS und automatischer Dopplerkorrektur im JT4 Decoder ermöglichen Erde-Mond-Erde Verbindungen im 10 GHz Band zwischen portablen Stationen (40 W Sendeleistung mit einem Parabolspiegel von 80 cm Durchmesser) und einer stärkeren (ortsfesten) Station (3 m Speigeldurchmesser).

Zuerst eingeführt wurde JT4 mit Hilfe der Implementierung als Open Source Software WSJT von Joe Taylor (K1JT).

JT4 hat viele Gemeinsamkeiten mit JT65 und JT9. Diese digitalen Modi verwenden fast identische Nachrichtenstruktur und Quellencodierung. Details zur Quellencodierung wurden veröffentlicht im Artikel "The JT65 Communications Protocol", der in der Zeitschrift QEX während 2005 veröffentlicht wurde.

Das Signal besteht aus 4 Tönen: 4-FSK. Digitale Daten werden strukturiert in Paketen mit 72 Informationsbits, wie bei JT65. Die Informationsbits werden kodiert mit einem Faltungscode der Rate r=1/2 und Einflusslänge K=32. Dies führt zu codierten Nachrichten der Länge (72+31) \times 2 = 206 Bit. Die Datenrate entspricht 4.375 baud. Der wirksame Durchsatz ist etwa 0.25 Buchstaben pro Sekunde (characters per second, cps).

Mode	Tonabstand (Hz)	Bandbreite (Hz)
JT4A	4,375	17,500
JT4B	8,750	35,00
JT4C	17,500	70,000
JT4D	39,375	158,000
JT4E	78,750	315,000
JT4F	157,500	630,000
JT4G	315,000	1260,000

Die Decodierung von JT4 Nachrichten verhält sich in etwa so, wie die von JT65: Entweder der Decoder dekodiert erfolgreich oder der Decoder erkennt, dass eine erfolgreiche Dekodierung nicht möglich ist.

Weitere Informationen: WSJT (Wikipedia), WSJT, AC4M Digital Radio Site und WSJT-X.

JT4: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 29. September 2018, 11:24

Uhr (Quelltext anzeigen) Uhr (Quelltext anzeigen) OE1VMC (Diskussion | Beiträge) OE1VMC (Diskussion | Beiträge) K (→Digitale Betriebsarten im Detail: JT4) ← Zum vorherigen Versionsunterschied Zum nächsten Versionsunterschied → Zeile 36: Zeile 36: !JT4A !JT4A |4,375 |4,375 |17,**5** + |17,500 |-|-!JT4B !JT4B |8,**75** + |8,750 |35 + |35,00 |-|-!JT4C !JT4C |17,**500** |17,**5** |70**,000** 170 |-|-!JT4D !JT4D |39,375 |39,375 |158 |158**,000** |-|-!JT4E !JT4E + |78,**750** |78,**75** + |315,000 |315 |-!JT4F !JT4F |157,**5** |157,**500**

- [630	+	630 ,000
	-		-
	!JT4G		!JT4G
- [315	+	315 ,000
- [1260	+	1260 ,000
]}		}

Digitale Betriebsarten im Detail\: JT4

JT4 ist eine digitale Betriebsart, die sehr geeignet ist für für Erde-Mond-Erde Verbindungen auf den Mikrowellenbändern. Implementiert wird diese digitale Betriebsart über die Soundkarte eines PC.

Synchronisierung mit Hilfe von GPS und automatischer Dopplerkorrektur im JT4 Decoder ermöglichen Erde-Mond-Erde Verbindungen im 10 GHz Band zwischen portablen Stationen (40 W Sendeleistung mit einem Parabolspiegel von 80 cm Durchmesser) und einer stärkeren (ortsfesten) Station (3 m Speigeldurchmesser).

Zuerst eingeführt wurde JT4 mit Hilfe der Implementierung als Open Source Software WSJT von Joe Taylor (K1JT).

JT4 hat viele Gemeinsamkeiten mit JT65 und JT9. Diese digitalen Modi verwenden fast identische Nachrichtenstruktur und Quellencodierung. Details zur Quellencodierung wurden veröffentlicht im Artikel "The JT65 Communications Protocol", der in der Zeitschrift QEX während 2005 veröffentlicht wurde.

Das Signal besteht aus 4 Tönen: 4-FSK. Digitale Daten werden strukturiert in Paketen mit 72 Informationsbits, wie bei JT65. Die Informationsbits werden kodiert mit einem Faltungscode der Rate r=1/2 und Einflusslänge K=32. Dies führt zu codierten Nachrichten der Länge (72+31) \times 2 = 206 Bit. Die Datenrate entspricht 4.375 baud. Der wirksame Durchsatz ist etwa 0.25 Buchstaben pro Sekunde (characters per second, cps).

Mode (Hz) (Hz)	
JT4A 4,375 17,500	
JT4B 8,750 35,00	
JT4C 17,500 70,000	
JT4D 39,375 158,000	
JT4E 78,750 315,000	
JT4F 157,500 630,000	
JT4G 315,000 1260,000	

Die Decodierung von JT4 Nachrichten verhält sich in etwa so, wie die von JT65: Entweder der Decoder dekodiert erfolgreich oder der Decoder erkennt, dass eine erfolgreiche Dekodierung nicht möglich ist.

Weitere Informationen: WSJT (Wikipedia), WSJT, AC4M Digital Radio Site und WSJT-X.

JT4: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 29. September 2018, 11:24

Uhr (Quelltext anzeigen) Uhr (Quelltext anzeigen) OE1VMC (Diskussion | Beiträge) OE1VMC (Diskussion | Beiträge) K (→Digitale Betriebsarten im Detail: JT4) ← Zum vorherigen Versionsunterschied Zum nächsten Versionsunterschied → Zeile 36: Zeile 36: !JT4A !JT4A |4,375 |4,375 |17,**5** + |17,500 |-|-!JT4B !JT4B |8,**75** + |8,750 |35 + |35,00 |-|-!JT4C !JT4C |17,**500** |17,**5** |70**,000** 170 |-|-!JT4D !JT4D |39,375 |39,375 |158 |158**,000** |-|-!JT4E !JT4E + |78,**750** |78,**75** + |315,000 |315 |-!JT4F !JT4F |157,**5** |157,**500**

-	630	+	630 ,000
	 -		 -
	!JT4G		!JT4G
-	315	+	315 <mark>,000</mark>
-	1260	+	1260 ,000
	}		}

Digitale Betriebsarten im Detail\: JT4

JT4 ist eine digitale Betriebsart, die sehr geeignet ist für für Erde-Mond-Erde Verbindungen auf den Mikrowellenbändern. Implementiert wird diese digitale Betriebsart über die Soundkarte eines PC.

Synchronisierung mit Hilfe von GPS und automatischer Dopplerkorrektur im JT4 Decoder ermöglichen Erde-Mond-Erde Verbindungen im 10 GHz Band zwischen portablen Stationen (40 W Sendeleistung mit einem Parabolspiegel von 80 cm Durchmesser) und einer stärkeren (ortsfesten) Station (3 m Speigeldurchmesser).

Zuerst eingeführt wurde JT4 mit Hilfe der Implementierung als Open Source Software WSJT von Joe Taylor (K1JT).

JT4 hat viele Gemeinsamkeiten mit JT65 und JT9. Diese digitalen Modi verwenden fast identische Nachrichtenstruktur und Quellencodierung. Details zur Quellencodierung wurden veröffentlicht im Artikel "The JT65 Communications Protocol", der in der Zeitschrift QEX während 2005 veröffentlicht wurde.

Das Signal besteht aus 4 Tönen: 4-FSK. Digitale Daten werden strukturiert in Paketen mit 72 Informationsbits, wie bei JT65. Die Informationsbits werden kodiert mit einem Faltungscode der Rate r=1/2 und Einflusslänge K=32. Dies führt zu codierten Nachrichten der Länge (72+31) \times 2 = 206 Bit. Die Datenrate entspricht 4.375 baud. Der wirksame Durchsatz ist etwa 0.25 Buchstaben pro Sekunde (characters per second, cps).

Mode	Tonabstand (Hz)	Bandbreite (Hz)
JT4A	4,375	17,500
JT4B	8,750	35,00
JT4C	17,500	70,000
JT4D	39,375	158,000
JT4E	78,750	315,000
JT4F	157,500	630,000
JT4G	315,000	1260,000

Die Decodierung von JT4 Nachrichten verhält sich in etwa so, wie die von JT65: Entweder der Decoder dekodiert erfolgreich oder der Decoder erkennt, dass eine erfolgreiche Dekodierung nicht möglich ist.

Weitere Informationen: WSJT (Wikipedia), WSJT, AC4M Digital Radio Site und WSJT-X.

JT4: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 29. September 2018, 11:24

Uhr (Quelltext anzeigen) Uhr (Quelltext anzeigen) OE1VMC (Diskussion | Beiträge) OE1VMC (Diskussion | Beiträge) K (→Digitale Betriebsarten im Detail: JT4) ← Zum vorherigen Versionsunterschied Zum nächsten Versionsunterschied → Zeile 36: Zeile 36: !JT4A !JT4A |4,375 |4,375 |17,**5** + |17,500 |-|-!JT4B !JT4B |8,**75** + |8,750 |35 + |35,00 |-|-!JT4C !JT4C |17,**500** |17,**5** |70**,000** 170 |-|-!JT4D !JT4D |39,375 |39,375 |158 |158**,000** |-|-!JT4E !JT4E + |78,**750** |78,**75** + |315,000 |315 |-!JT4F !JT4F |157,**5** |157,**500**

- [630	+	630 ,000
	-		-
	!JT4G		!JT4G
- [315	+	315 ,000
- [1260	+	1260 ,000
]}		}

Digitale Betriebsarten im Detail\: JT4

JT4 ist eine digitale Betriebsart, die sehr geeignet ist für für Erde-Mond-Erde Verbindungen auf den Mikrowellenbändern. Implementiert wird diese digitale Betriebsart über die Soundkarte eines PC.

Synchronisierung mit Hilfe von GPS und automatischer Dopplerkorrektur im JT4 Decoder ermöglichen Erde-Mond-Erde Verbindungen im 10 GHz Band zwischen portablen Stationen (40 W Sendeleistung mit einem Parabolspiegel von 80 cm Durchmesser) und einer stärkeren (ortsfesten) Station (3 m Speigeldurchmesser).

Zuerst eingeführt wurde JT4 mit Hilfe der Implementierung als Open Source Software WSJT von Joe Taylor (K1JT).

JT4 hat viele Gemeinsamkeiten mit JT65 und JT9. Diese digitalen Modi verwenden fast identische Nachrichtenstruktur und Quellencodierung. Details zur Quellencodierung wurden veröffentlicht im Artikel "The JT65 Communications Protocol", der in der Zeitschrift QEX während 2005 veröffentlicht wurde.

Das Signal besteht aus 4 Tönen: 4-FSK. Digitale Daten werden strukturiert in Paketen mit 72 Informationsbits, wie bei JT65. Die Informationsbits werden kodiert mit einem Faltungscode der Rate r=1/2 und Einflusslänge K=32. Dies führt zu codierten Nachrichten der Länge (72+31) \times 2 = 206 Bit. Die Datenrate entspricht 4.375 baud. Der wirksame Durchsatz ist etwa 0.25 Buchstaben pro Sekunde (characters per second, cps).

Mode	Tonabstand (Hz)	Bandbreite (Hz)
JT4A	4,375	17,500
JT4B	8,750	35,00
JT4C	17,500	70,000
JT4D	39,375	158,000
JT4E	78,750	315,000
JT4F	157,500	630,000
JT4G	315,000	1260,000

Die Decodierung von JT4 Nachrichten verhält sich in etwa so, wie die von JT65: Entweder der Decoder dekodiert erfolgreich oder der Decoder erkennt, dass eine erfolgreiche Dekodierung nicht möglich ist.

Weitere Informationen: WSJT (Wikipedia), WSJT, AC4M Digital Radio Site und WSJT-X.

JT4: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 29. September 2018, 11:24

Uhr (Quelltext anzeigen) Uhr (Quelltext anzeigen) OE1VMC (Diskussion | Beiträge) OE1VMC (Diskussion | Beiträge) K (→Digitale Betriebsarten im Detail: JT4) ← Zum vorherigen Versionsunterschied Zum nächsten Versionsunterschied → Zeile 36: Zeile 36: !JT4A !JT4A |4,375 |4,375 |17,**5** + |17,500 |-|-!JT4B !JT4B |8,**75** + |8,750 |35 + |35,00 |-|-!JT4C !JT4C |17,**500** |17,**5** |70**,000** 170 |-|-!JT4D !JT4D |39,375 |39,375 |158 |158**,000** |-|-!JT4E !JT4E + |78,**750** |78,**75** + |315,000 |315 |-!JT4F !JT4F |157,**5** |157,**500**

- [630	+	630 ,000
	-		-
	!JT4G		!JT4G
- [315	+	315 ,000
- [1260	+	1260 ,000
]}		}

Digitale Betriebsarten im Detail\: JT4

JT4 ist eine digitale Betriebsart, die sehr geeignet ist für für Erde-Mond-Erde Verbindungen auf den Mikrowellenbändern. Implementiert wird diese digitale Betriebsart über die Soundkarte eines PC.

Synchronisierung mit Hilfe von GPS und automatischer Dopplerkorrektur im JT4 Decoder ermöglichen Erde-Mond-Erde Verbindungen im 10 GHz Band zwischen portablen Stationen (40 W Sendeleistung mit einem Parabolspiegel von 80 cm Durchmesser) und einer stärkeren (ortsfesten) Station (3 m Speigeldurchmesser).

Zuerst eingeführt wurde JT4 mit Hilfe der Implementierung als Open Source Software WSJT von Joe Taylor (K1JT).

JT4 hat viele Gemeinsamkeiten mit JT65 und JT9. Diese digitalen Modi verwenden fast identische Nachrichtenstruktur und Quellencodierung. Details zur Quellencodierung wurden veröffentlicht im Artikel "The JT65 Communications Protocol", der in der Zeitschrift QEX während 2005 veröffentlicht wurde.

Das Signal besteht aus 4 Tönen: 4-FSK. Digitale Daten werden strukturiert in Paketen mit 72 Informationsbits, wie bei JT65. Die Informationsbits werden kodiert mit einem Faltungscode der Rate r=1/2 und Einflusslänge K=32. Dies führt zu codierten Nachrichten der Länge (72+31) \times 2 = 206 Bit. Die Datenrate entspricht 4.375 baud. Der wirksame Durchsatz ist etwa 0.25 Buchstaben pro Sekunde (characters per second, cps).

Mode	Tonabstand (Hz)	Bandbreite (Hz)
JT4A	4,375	17,500
JT4B	8,750	35,00
JT4C	17,500	70,000
JT4D	39,375	158,000
JT4E	78,750	315,000
JT4F	157,500	630,000
JT4G	315,000	1260,000

Die Decodierung von JT4 Nachrichten verhält sich in etwa so, wie die von JT65: Entweder der Decoder dekodiert erfolgreich oder der Decoder erkennt, dass eine erfolgreiche Dekodierung nicht möglich ist.

Weitere Informationen: WSJT (Wikipedia), WSJT, AC4M Digital Radio Site und WSJT-X.

JT4: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 29. September 2018, 11:24 Version vom 29. September 2018, 11:26 **Uhr (Quelltext anzeigen) Uhr (Quelltext anzeigen)** OE1VMC (Diskussion | Beiträge) OE1VMC (Diskussion | Beiträge) K (→Digitale Betriebsarten im Detail: JT4) ← Zum vorherigen Versionsunterschied Zum nächsten Versionsunterschied → Zeile 36: Zeile 36: !JT4A !JT4A |4,375 |4,375 |17,**5** + |17,500 |-|-!JT4B !JT4B |8,**75** + |8,750 |35 + |35,00 |-|-!JT4C !JT4C |17,**500** |17,**5** |70**,000** 170 |-|-!JT4D !JT4D |39,375 |39,375 |158 |158**,000** |-|-!JT4E !JT4E + |78,**750** |78,**75** + |315,000 |315 |-!JT4F !JT4F |157,**5** |157,**500**

- [630	+	630 ,000
	-		-
	!JT4G		!JT4G
- [315	+	315 ,000
- [1260	+	1260 ,000
]}		}

Digitale Betriebsarten im Detail\: JT4

JT4 ist eine digitale Betriebsart, die sehr geeignet ist für für Erde-Mond-Erde Verbindungen auf den Mikrowellenbändern. Implementiert wird diese digitale Betriebsart über die Soundkarte eines PC.

Synchronisierung mit Hilfe von GPS und automatischer Dopplerkorrektur im JT4 Decoder ermöglichen Erde-Mond-Erde Verbindungen im 10 GHz Band zwischen portablen Stationen (40 W Sendeleistung mit einem Parabolspiegel von 80 cm Durchmesser) und einer stärkeren (ortsfesten) Station (3 m Speigeldurchmesser).

Zuerst eingeführt wurde JT4 mit Hilfe der Implementierung als Open Source Software WSJT von Joe Taylor (K1JT).

JT4 hat viele Gemeinsamkeiten mit JT65 und JT9. Diese digitalen Modi verwenden fast identische Nachrichtenstruktur und Quellencodierung. Details zur Quellencodierung wurden veröffentlicht im Artikel "The JT65 Communications Protocol", der in der Zeitschrift QEX während 2005 veröffentlicht wurde.

Das Signal besteht aus 4 Tönen: 4-FSK. Digitale Daten werden strukturiert in Paketen mit 72 Informationsbits, wie bei JT65. Die Informationsbits werden kodiert mit einem Faltungscode der Rate r=1/2 und Einflusslänge K=32. Dies führt zu codierten Nachrichten der Länge $(72+31) \times 2 = 206$ Bit. Die Datenrate entspricht 4.375 baud. Der wirksame Durchsatz ist etwa 0.25 Buchstaben pro Sekunde (characters per second, cps).

Mode	Tonabstand (Hz)	Bandbreite (Hz)
JT4A	4,375	17,500
JT4B	8,750	35,00
JT4C	17,500	70,000
JT4D	39,375	158,000
JT4E	78,750	315,000
JT4F	157,500	630,000
JT4G	315,000	1260,000

Die Decodierung von JT4 Nachrichten verhält sich in etwa so, wie die von JT65: Entweder der Decoder dekodiert erfolgreich oder der Decoder erkennt, dass eine erfolgreiche Dekodierung nicht möglich ist.

Weitere Informationen: WSJT (Wikipedia), WSJT, AC4M Digital Radio Site und WSJT-X.

JT4: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 29. September 2018, 11:24

Uhr (Quelltext anzeigen) Uhr (Quelltext anzeigen) OE1VMC (Diskussion | Beiträge) OE1VMC (Diskussion | Beiträge) K (→Digitale Betriebsarten im Detail: JT4) ← Zum vorherigen Versionsunterschied Zum nächsten Versionsunterschied → Zeile 36: Zeile 36: !JT4A !JT4A |4,375 |4,375 |17,**5** + |17,500 |-|-!JT4B !JT4B |8,**75** + |8,750 |35 + |35,00 |-|-!JT4C !JT4C |17,**500** |17,**5** |70**,000** 170 |-|-!JT4D !JT4D |39,375 |39,375 |158 |158**,000** |-|-!JT4E !JT4E + |78,**750** |78,**75** + |315,000 |315 |-!JT4F !JT4F |157,**5** |157,**500**

- [630	+	630 ,000
	-		-
	!JT4G		!JT4G
- [315	+	315 ,000
- [1260	+	1260 ,000
]}		}

Digitale Betriebsarten im Detail\: JT4

JT4 ist eine digitale Betriebsart, die sehr geeignet ist für für Erde-Mond-Erde Verbindungen auf den Mikrowellenbändern. Implementiert wird diese digitale Betriebsart über die Soundkarte eines PC.

Synchronisierung mit Hilfe von GPS und automatischer Dopplerkorrektur im JT4 Decoder ermöglichen Erde-Mond-Erde Verbindungen im 10 GHz Band zwischen portablen Stationen (40 W Sendeleistung mit einem Parabolspiegel von 80 cm Durchmesser) und einer stärkeren (ortsfesten) Station (3 m Speigeldurchmesser).

Zuerst eingeführt wurde JT4 mit Hilfe der Implementierung als Open Source Software WSJT von Joe Taylor (K1JT).

JT4 hat viele Gemeinsamkeiten mit JT65 und JT9. Diese digitalen Modi verwenden fast identische Nachrichtenstruktur und Quellencodierung. Details zur Quellencodierung wurden veröffentlicht im Artikel "The JT65 Communications Protocol", der in der Zeitschrift QEX während 2005 veröffentlicht wurde.

Das Signal besteht aus 4 Tönen: 4-FSK. Digitale Daten werden strukturiert in Paketen mit 72 Informationsbits, wie bei JT65. Die Informationsbits werden kodiert mit einem Faltungscode der Rate r=1/2 und Einflusslänge K=32. Dies führt zu codierten Nachrichten der Länge (72+31) \times 2 = 206 Bit. Die Datenrate entspricht 4.375 baud. Der wirksame Durchsatz ist etwa 0.25 Buchstaben pro Sekunde (characters per second, cps).

Mode	Tonabstand (Hz)	Bandbreite (Hz)
JT4A	4,375	17,500
JT4B	8,750	35,00
JT4C	17,500	70,000
JT4D	39,375	158,000
JT4E	78,750	315,000
JT4F	157,500	630,000
JT4G	315,000	1260,000

Die Decodierung von JT4 Nachrichten verhält sich in etwa so, wie die von JT65: Entweder der Decoder dekodiert erfolgreich oder der Decoder erkennt, dass eine erfolgreiche Dekodierung nicht möglich ist.

Weitere Informationen: WSJT (Wikipedia), WSJT, AC4M Digital Radio Site und WSJT-X.

JT4: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 29. September 2018, 11:24 Version vom 29. September 2018, 11:26 **Uhr (Quelltext anzeigen) Uhr (Quelltext anzeigen)** OE1VMC (Diskussion | Beiträge) OE1VMC (Diskussion | Beiträge) K (→Digitale Betriebsarten im Detail: JT4) ← Zum vorherigen Versionsunterschied Zum nächsten Versionsunterschied → Zeile 36: Zeile 36: !JT4A !JT4A |4,375 |4,375 |17,**5** + |17,500 |-|-!JT4B !JT4B |8,**75** + |8,750 |35 + |35,00 |-|-!JT4C !JT4C |17,**500** |17,**5** |70**,000** 170 |-|-!JT4D !JT4D |39,375 |39,375 |158 |158**,000** |-|-!JT4E !JT4E + |78,**750** |78,**75** + |315,000 |315 |-!JT4F !JT4F |157,**5** |157,**500**

- [630	+	630 ,000
	-		-
	!JT4G		!JT4G
- [315	+	315 ,000
- [1260	+	1260 ,000
]}		}

Digitale Betriebsarten im Detail\: JT4

JT4 ist eine digitale Betriebsart, die sehr geeignet ist für für Erde-Mond-Erde Verbindungen auf den Mikrowellenbändern. Implementiert wird diese digitale Betriebsart über die Soundkarte eines PC.

Synchronisierung mit Hilfe von GPS und automatischer Dopplerkorrektur im JT4 Decoder ermöglichen Erde-Mond-Erde Verbindungen im 10 GHz Band zwischen portablen Stationen (40 W Sendeleistung mit einem Parabolspiegel von 80 cm Durchmesser) und einer stärkeren (ortsfesten) Station (3 m Speigeldurchmesser).

Zuerst eingeführt wurde JT4 mit Hilfe der Implementierung als Open Source Software WSJT von Joe Taylor (K1JT).

JT4 hat viele Gemeinsamkeiten mit JT65 und JT9. Diese digitalen Modi verwenden fast identische Nachrichtenstruktur und Quellencodierung. Details zur Quellencodierung wurden veröffentlicht im Artikel "The JT65 Communications Protocol", der in der Zeitschrift QEX während 2005 veröffentlicht wurde.

Das Signal besteht aus 4 Tönen: 4-FSK. Digitale Daten werden strukturiert in Paketen mit 72 Informationsbits, wie bei JT65. Die Informationsbits werden kodiert mit einem Faltungscode der Rate r=1/2 und Einflusslänge K=32. Dies führt zu codierten Nachrichten der Länge (72+31) \times 2 = 206 Bit. Die Datenrate entspricht 4.375 baud. Der wirksame Durchsatz ist etwa 0.25 Buchstaben pro Sekunde (characters per second, cps).

Mode	Tonabstand (Hz)	Bandbreite (Hz)
JT4A	4,375	17,500
JT4B	8,750	35,00
JT4C	17,500	70,000
JT4D	39,375	158,000
JT4E	78,750	315,000
JT4F	157,500	630,000
JT4G	315,000	1260,000

Die Decodierung von JT4 Nachrichten verhält sich in etwa so, wie die von JT65: Entweder der Decoder dekodiert erfolgreich oder der Decoder erkennt, dass eine erfolgreiche Dekodierung nicht möglich ist.

Weitere Informationen: WSJT (Wikipedia), WSJT, AC4M Digital Radio Site und WSJT-X.