Inhaltsverzeichnis

1. JT65	2
2. Hauptseite	3

JT65

Das Inhaltsformat pdf wird vom Inhaltsmodell Wikitext nicht unterstützt.

Zurück zur Seite Hauptseite.

Quelltext der Seite Hauptseite

Sie sind nicht berechtigt, die Seite zu bearbeiten. Gründe:

- Die Aktion, welche Sie beantragt haben, ist auf Benutzer beschränkt, welche einer der Gruppen "Administratoren, Sichter, Prüfer" angehören.
- Die Aktion, welche Sie beantragt haben, ist auf Benutzer beschränkt, welche der Gruppe "editor" angehören.
- Diese Seite wurde geschützt, um Bearbeitungen sowie andere Aktionen zu verhindern.

Sie können den Quelltext dieser Seite betrachten und kopieren.

[[Kategorie:Digitale_Betriebsarten]] == Digitale Betriebsarten im Detail: JT65 == JT65 ist eine digitale Betriebsart, die sehr geeignet ist für niedrige Sendeleistung ("QRP-Betrieb") und für Stationen mit Antennendefiziten. Diese Betriebsart wurde ursprünglich entwickelt für Erde-Mond-Erde (EME) Verbindungen und für Verbindungen mit sehr geringer Sendeleistung auf den VHF und UHF Bändern. Diese Betriebsart wird inzwischen aber zunehmend populär auf den Lang-, Mittel- und Kurzwellenbändern. Implementiert wird diese digitale Betriebsart über die Soundkarte eines PC. Zuerst eingeführt wurde JT65 mit Hilfe der Implementierung als Open Source Software [http://en.wikipedia.org/wiki/WSJT_(Amateur_radio_software) WSJT] durch [http://en.wikipedia.org/wiki/Joseph_Hooton_Taylor,_Jr. Joe Taylor] ([http://www.grz.com/db/K1JT K1JT]). JT65 hat viele Gemeinsamkeiten mit [[JT9]] und [[JT4]]. Diese digitalen Modi verwenden fast identische Nachrichtenstruktur und Quellencodierung. Details zur Quellencodierung wurden veröffentlicht im Artikel [[http://physics.princeton.edu/pulsar/K1JT/JT65.pdf The JT65 Communications Protocol]", der in der Zeitschrift [http://www.arrl.org/qex QEX] während 2005 veröffentlicht wurde. Das Signal besteht aus 65 Tönen: Ein Synchronisationston und 64 weitere Töne, die die Information transportieren: [http://de.wikipedia.org/wiki /Frequenzumtastung 65-FSK]. Digitale Daten werden strukturiert in Paketen mit 72 Informationsbits, wie bei [[JT9]]. (Eine typische Nachricht besteht aus zwei Rufzeichen, die jeweils mit 28 bit dargestellt werden, einem Grid-Locator, dargestellt durch 15 bit, und einem Signalisierungsbit, dass den Nachrichtentyp festlegt) Die Informationsbits werden kodiert mit einem [http://de.wikipedia.org/wiki/Reed-Solomon-Code Reed-Solomon (63,12) Code]. Diese Kodierung fügt zu den 72 Informationsbits noch 306 redundante Bits hinzu. Dies ergibt einen Kodeblock bestehend aus 378 bit und eine Code Rate r = 72/378 = 1/5,25 = 0,19. Diese 378 bit werden gruppiert zu 63 Kanalsymbolen zu je 6 bit (also: 6 x 63 = 378). Bis WSJT-X Version 1.6.0 wird mit dem <i>Algebraic Soft-Decision</i> Algorithmus von [https://www.lnt.ei.tum.de/mitarbeiter/ehemalige-mitarbeiter</i> /koetter/ Ralf Koetter] und [http://www.jacobsschool.ucsd.edu/faculty/faculty_bios/index.sfe?fmp_recid=76 Alexander Vardy] [http://dx.doi.org/10.1109/TIT.2003.819332 (2003)] dekodiert. Dieser Dekoder ist patentiert und nicht im Public Domain. Beginnend mit WSJT-X Version 1.7.0 wird mit dem neuen soft-output <i>Franke-Taylor</i> Algorithmus dekodiert, der von Steven J. Franke, K9AN, und Joseph H. Taylor, K1JT in [http://physics.princeton.edu/pulsar/K1JT/FrankeTaylor QEX 2016.pdf QEX-2016] veröffentlicht wurde. Dieser Dekoder ist besser als der bisherige und nicht patentiert. Jede Aussendung dauert exakt 46,8 Sekunden, die in 126 Symbole zu je etwa 0,372 Sekunden Symboldauer aufgeteilt werden. Ein Symbol wird abgetastet mit etwa 11025 Abtastwerten pro Sekunde, was 4096 digitalen Abtastwerten pro Symbol entspricht. Die Datenrate entspricht 2.69 baud. Wirksamer Durchsatz ist etwa 0.25 Buchstaben pro Sekunde (characters per second, cps). Die Varianten JT65A, JT65B und JT65C unterscheiden sich in den Frequenzabständen zwischen den 65 Tönen: 5,4 Hz, 10,8 Hz und 21,6 Hz. JT65A belegt 177,6 Hz Bandbreite, daher passen rund zehn JT65 Signale nebeneinander in ein Spektrum mit 2kHz Bandbreite. Entsprechend belegt JT65B die doppelte Bandbreite (= 355,2 Hz) und JT65C die vierfache (= 710,4 Hz). Die PC-Uhr muss auf 2 Sekunden genau sein In einer Aussendung werden maximal 13 ASCII Zeichen übertragen. Es werden nur folgende Informationen übertragen: Rufzeichen, Rapport in dB und LOC (4 Stellen). Der JT65 Signalrapport für das S/N ist beschränkt auf den Bereich zwischen -30 und -1 dB. In aktuellen JT65 Dekodern (Stand: WSJT-X 1.6.0) ist die S/N Skala nichtlinear verzerrt oberhalb von -10 dB. JT65 wurde entwickelt und vorgestellt während 2003 für sehr schwache und langsam veränderliche Funkverbindungen, wie sie beispielsweise vorkommen im Zusammenhang mit Troposcatter und Erde-Mond-Erde Verbindungen. Die Empfangssignale sind erfolgreich dekodierbar bei Signal- zu Rauschverhältnissen bis ca. -25 dB. Dies erlaubt das Arbeiten von Stationen, deren Signale mit dem menschlichen Ohr nicht mehr wahrgenommen werden können. Weitere Informationen: [http://en.wikipedia.org/wiki/WSJT_(Amateur_radio_software) WSJT (Wikipedia)], [http://physics.princeton.edu /pulsar/k1jt/wsjt.html WSJT], [http://ac4m.us/jt65.html AC4M Digital Radio Site] und [http://physics.princeton.edu /pulsar/k1jt/wsjtx.html WSJT-X]. Siehe auch: [[JT4]], [[JT9]], [[WSPR]] und [[JT6M]].

Die folgende Vorlage wird auf dieser Seite verwendet:

Vorlage:Box Note (Quelltext anzeigen) (schreibgeschützt)

Zurück zur Seite Hauptseite.