

## **Inhaltsverzeichnis**

| 1. Kategorie:HAM-loT | 2 |
|----------------------|---|
|                      |   |
| 2. Hauptseite        | 3 |



## Kategorie: HAM-IoT

Das Inhaltsformat pdf wird vom Inhaltsmodell Wikitext nicht unterstützt.

Zurück zur Seite Hauptseite.



Ausgabe: 21.05.2024

## Quelltext der Seite Hauptseite

Sie sind nicht berechtigt, die Seite zu bearbeiten. Gründe:

- Die Aktion, welche Sie beantragt haben, ist auf Benutzer beschränkt, welche einer der Gruppen "Administratoren, Sichter, Prüfer" angehören.
- Die Aktion, welche Sie beantragt haben, ist auf Benutzer beschränkt, welche der Gruppe "editor" angehören.
- Diese Seite wurde geschützt, um Bearbeitungen sowie andere Aktionen zu verhindern.

Sie können den Quelltext dieser Seite betrachten und kopieren.



Ausgabe: 21.05.2024

=HAM-IoT= APRS und Telemetrie über LORA -Experimente mit Internet of Things Technologie \*"HAM" - die bekannte Kurzform für FunkamateurInnen.<br /> \*""IoT"" - ""I""nternet ""o""f ""T""hings oder Internet der Dinge<br /> === Was ist HAM-IoT === Schon früh wurde erkannt dass die Vernetzung von "intelligenten Gegenständen" unserer Aufmerksamkeit bedürfen.<br/>
-br /><br />"Was sind diese "intelligenten Gegenstände"?"'<br/>
br />Wir kennen diesen Begriff von den unzähligen Sensoren und Aktoren welche die Erfassung von Zuständen zur weiteren Verarbeitung bzw. Auswertung weiter geben/bekommen oder aber auch einzelne ganz gezielte Aktionen ausführen. All diese Aktionen werden durch das Internet getragen. <br/>
- br /> Aber nicht nur Internet und da kommen wir schon zu HAM-IoT. Wir Funkamateure tragen diese Art von Informationen in dem von uns selbst geschaffenen HAMNET. \*Wir Fragen ab, \*Wir steuern, \*Wir regeln<br/>or /> <br/> <br/> /> Also warum nicht auch diese Micro-Module dazu verwenden und "Dinge" wie zum Beispiel via GPS erfasste Geodaten im APRS-Format mit HAM-IoT-Modulen und HAMNET transportieren.<br/>
-br />
-wir können natürlich nicht zu jedem "'HAM-loT" den "'[[:Kategorie:HAMNET | HAMNET]]"'-Backbone anbinden und darum überbrücken wir die "lastmile", so wie es viele IoTs als "Zubringer" zum Internet machen, und transportieren die Informationen und Schaltzustände mit dem sehr geeigneten Protokoll - mit LoRa.<br/>br />LoRa - Wide Area Network for IoT oder genauer gesagt LoRaWAN. Die LoRaWAN Technologie lässt sich ideal für batteriebetriebene Sensoren und Aktoren einsetzen da LoRaWAN auf ein sehr niedriges Energiekonzept setzt und doch Übertragungs-Reichweiten von 5-10 km und mehr erreicht. Also optimal geeignet um die letzte Meile zu überbrücken.<br/>sch /> "LoRa (Longe Range) wird von Funkamateuren u.a. für die Übertagung von Position- und Telemetriedatent im [[:Kategorie:APRS | APRS]] Format verwendet."" ==""LoRa Sender für HAM""== Mit diese Konzept, waren wir auch auf der "'HAMRADIO 2017". Einen kurzen Beitrag dazu gibt es hier [https://www.youtube.com/watch? v=4xWwXSFv-0g] zu sehen. =="'Einstiegsmöglichkeit ARDUINO Pro Mini"== Als eine der einfachsten Einstiegsmöglichkeiten zu diesen Thema hat sich die Verwendung eines ARDUINO Pro Mini 3,3 Volt in Zusammenschaltung mir einen Transeivermodul RFM98W [http://www.hoperf.com/rf\_transceiver/lora/RFM98W. html] der Firma HOPERF und einen GPS Moduls bewährt. Eine Schaltung dazu findet man bei Klaus DJ7OO [http://www.kh-gps.de/lora.htm]. Das faszinierende an LoRa ist die sehr geringe Sendeleistung. Wir sprechen hier von -4 dBm bis 14dBm (0,40mW bis 25mW) beim RFM98W und den geringen Anschaffungskosten. Der Preis der Sendeeinheit inkl.GPS liegt bei ca. € 25,--. Das ist ein sehr günstiger APRS Einstieg. =="'Einstiegsmöglichkeit LoRa32u4"'== Mit ZWEI Baugruppen und DREI Drähten kann man innerhalb von wenigen Minuten in LoRaAPRS QRV sein! Dazu benötigt man das LoRa32u4 Board [https://www.ebay.com/itm /1KM-433MHz-LoRa32u4-Board-LoRa-Ra02-Atmega32u4-Wireless-Transceiver-Module-/172647057429] (auf Arduino Basis) ein GPS Modul und die entsprechende Software. Auch hier ist der Preis um die € 25,00 [[Datei: LoRaAPRS.jpg|mini|links|alt=Alternativer Text|LoRa Empfänger LoRa32u4 mit angeschlossenen GPS Modul auf Testboard]] == "'Einstiegsmöglichkeit DRAGINO" == Eine weitere Möglichkeit, jedoch ohne Lötkolbeneinsatz, ist die auf Stefans (OE1SCS) Homepage [https://stefan.schultheis.at/2017/aprs-dragino-loragps-shield-70-cm-433-mhz/] beschriebene Lösung, mit einen DRAGINO GPS/LoRa Shield. Die Inbetriebnahme dauert keine 15 Minuten und danach ist man in APRS via LoRa grv. [[Datei: Lora gps shield dragino aprs 70cm 433 detail-150x150.png]] ==""LoRa Empfänger für HAM""== Klaus DJ700 hat auf seiner Homepage [http://www.kh-gps.de/lora.htm] auch eine Schaltung für einen Empfänger mit Display, dessen Nachbau sehr einfach ist, gepostet. [[Datei:LoRa RX Handy.jpg|mini|links|alt=Alternativer Text|LoRa Empfänger mit angeschlossenen Handy mit Positionsanzeige via W2APRS]] ==Arduino library== "Das" von Klaus angeführte Library des Senders wurde an die Anforderungen der HAM´s angepasst und mit der Möglichkeit für den Eintrag des "Rufzeichen", der "SSID" und den "Symbol" versehen. Des Weiteren wurde die Übertragung an das APRS-Mic Protokoll angepasst, um die on Air Time zu verkürzen. =="'LoRa Einstellungen Tracker"== Um eine Übertragung zwischen Sender und Empfänger/Gateway möglich zu machen, ist es bei LoRa erforderlich, die selben Parameter zu verwenden. In Absprache mit den Dachverband des ÖVSV hat man für OE folgende Einstellungen gewählt. QRG TX: 433,775 MHz QRG RX: 433,900 MHz BW: 125K SF: 12 CR: 4/5 Sync Word: 18 (0x12) Lora Explizit Modus Protokoll Beschreibung OE-Lora Format: 3 Byte Header "<\xFF\x01" + APRS Protokoll (Header: < = Typ, 255=Destination, 1=Source) [http://www.aprs.



Ausgabe: 21.05.2024

org/doc/APRS101.PDF| http://www.aprs.org/doc/APRS101.PDF Seite 36 Chapter 9: Compressed Position Report Data Formats Dies ermöglicht, das die Aussendungen auch von den LoRa-APRS-Igate empfangen und weitergeleitet werden können. =="'LoRa-APRS-Igate für HAM""== [[Datei:LoRa GW01. ipg|rechts|100px|alt=Alternativer Text|LoRa-APRS-igate für HAM]] Um die ausgesendeten Daten auf APRS.fi anzeigen zu können benötigt man eine entsprechende Schnittstelle. Diese wurde durch ein sg. LoRa-APRSigate [http://www.iot4pi.com/de/raspberry-pi-projekte-software/lora-aprs-gateway/] realisiert. Dieser besteht aus einen Rasperry PI und einen aufgesetzten Shield, auf dem sich ein RFM98W Transeivermodul, ein Oleg Display und einige Tasten befinden. ==Funktion== Das Gateway verbindet sich entweder via LAN oder WLAN mit dem in der "Config" Datei eingetragenen APRS Server und übermittelt die über die angeschlossene Antenne empfangenen Aussendungen. Das Gateway wird auch mit einen "Call" und fixen Positionsdaten versehen und wird ebenso auf APRS.fi [https://aprs.fi/#!mt=roadmap&z=13&call=a% 2FIoT4Pi2&timerange=3600&tail=3600] angezeigt. MIt den Tasten können verschiedenste Funktionen abgerufen werden, um den Zustand des GW eruieren zu können. Diese Funktion wurde für eine rasche Analyse eingefügt. ==""LoRa-APRS-Igate on AIR""== IoT4Pi2 [https://aprs.fi/#lmt=roadmap&z=11&call=a% 2FIoT4Pi2&timerange=3600&tail=3600] OE1XBR-10 [https://aprs.fi/#!mt=roadmap&z=11&call=a%2FOE1XBR-10&timerange=3600&tail=3600] OE1ACM-24 [https://aprs.fi/#!mt=roadmap&z=11&call=a%2FOE1ACM-24&timerange=3600&tail=3600] OE1HAW-10 [https://aprs.fi/#!call=a%2FOE1HAW-10&timerange=3600&tail=3600] OE1SCS-10 [https://aprs.fi/#!mt=roadmap&z=14&call=a%2FOE1SCS-10&timerange=1800&tail=1800] OE1SCS-14 [https://aprs.fi/#!mt=roadmap&z=15&call=a%2FOE1SCS-14&timerange=1800&tail=1800] OE1MCA-10 [https://aprs.fi/#!mt=roadmap&z=14&call=a%2FOE1MCA-10&timerange=1800&tail=1800] OE1NSU-12 [https://aprs.fi/#!mt=roadmap&z=14&call=a%2FOE1NSU-12&timerange=1800&tail=1800] OE3XMC-13 [https://aprs.fi/#!mt=roadmap&z=14&call=a%2FOE3XMC-13&timerange=1800&tail=1800] OE3XLU-12 [https://aprs.fi/#!mt=roadmap&z=11&call=a%2FOE3XLU-12&timerange=3600&tail=3600] OE3ELJ-10 [https://aprs.fi/#!mt=osm&z=13&call=a%2FOE3ELJ-10&timerange=3600&tail=3600] OE3DMB-12 [https://aprs.fi/#!mt=roadmap&z=11&call=a%2FOE3DMB-12&timerange=1800&tail=1800] OE3RVU-12 [https://aprs.fi/#!mt=roadmap&z=13&call=a%2FOE3RVU-12&timerange=1800&tail=1800] OE3FSS-10 [https://aprs.fi/#!mt=roadmap&z=11&call=a%2FOE3FSS-10&timerange=1800&tail=1800] OE3SMA-10 [https://aprs.fi/#!mt=roadmap&z=11&call=a%2FOE3SMA-10&timerange=1800&tail=1800] OE3XKC-10 [https://aprs.fi/#!mt=roadmap&z=10&call=a%2FOE3XKC-10&timerange=1800&tail=1800] OE3XKR-12 [https://aprs.fi/#!mt=osm&z=12&call=a%2FOE3XKR-12&timerange=3600&tail=3600] OE3PQA [https://aprs.fi/#!mt=roadmap&z=15&call=a% 2FOE3PQA&timerange=900&tail=900] OE3XPA-11 [https://aprs.fi/#!mt=roadmap&z=20&call=a%2FOE3XPA-11&timerange=1800&tail=1800] OE3XTR-12 [https://aprs.fi/#!mt=roadmap&z=12&call=a%2FOE3XTR-12&timerange=1800&tail=1800] OE4DNS [https://aprs.fi/#!mt=roadmap&z=12&call=a% 2FOE4DNS&timerange=900&tail=900] OE4KOB-12 [https://aprs.fi/#!mt=roadmap&z=9&call=a%2FOE4KOB-12&timerange=1800&tail=1800] OE7BSH-14 [https://aprs.fi/#!call=a%2FOE7BSH-14&timerange=3600&tail=3600] OE9KBV-27 [https://aprs.fi/#!call=a%2FOE9KBV-27&timerange=3600&tail=3600] DG3YEV-27 [https://aprs.fi/#!mt=roadmap&z=11&call=a%2FDG3YEV-27&timerange=3600&tail=3600] DL1STL-12 [https://aprs.fi/#!call=a%2FDL1STL-15&timerange=3600&tail=3600] VK4VAG-L1 [https://aprs.fi/#!mt=roadmap&z=11&call=a%2FVK4VAG-L1 [https://aprs.fi/#] L1&timerange=3600&tail=3600] "Stand: 21.09.2019" =="LoRa Aplikationen "== Als weiter Aplikationen sind z. B. die Einbindung von WX-Stationen, das Übermitteln von Telemetriedaten oder das Aussenden und Empfangen von Textmeldungen (Paging) [http://www.kh-gps.de/loratext.htm] angedacht. ==""Mögliche Übertragungsentfernungen'''== OM Bernd, OE1ACM gelang bereits die Überbrückung von 83 km mit 300mW vom Hochwechsel nach Wien. OE3KSS hat am 17.10.2018 die 100km Marke mit LORa auf 433 Mhz geknackt und eine Verbindung über 102,3km zum Buschberg geschafft. Ausgestattet mit einen LoRa32u Modul und einer Procom Magnetfussantene am Autodach übertrug er seine Positionsmeldungen erfolgreich zu OE3XKR. Auf 868 MHz wurden Positionsmeldungen eines Ballons über die Entfernung von 702km empfangen. Die



Sendeleistung betrug 25mW. =="'Arbeitsgruppe "'== Für den Austausch von Ideen und zur gemeinsamen Inspiration zu diesen Thema, wurde eine Arbeitsgruppe bei Yahoo gegründet [https://groups.yahoo.com/neo/groups/lora\_aprs/info] Gerne kann auch Kontakt unter OE1KEB.lora@gmail.com aufgenommen werden.
\_\_HIDETITLE\_\_ \_KEIN\_INHALTSVERZEICHNIS\_\_ \_ABSCHNITTE\_NICHT\_BEARBEITEN\_\_

Die folgende Vorlage wird auf dieser Seite verwendet:

Vorlage:Box Note (Quelltext anzeigen) (schreibgeschützt)

Zurück zur Seite Hauptseite.