

Kategorie:Kurzwelle

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

uelltext anzeigen)

Oe1mcu (Diskussion | Beiträge) (→SWL - Kurzwellenhörer)

← Zum vorherigen Versionsunterschied

Version vom 24. April 2010, 14:21 Uhr (Q Version vom 24. April 2010, 14:23 Uhr (Q uelltext anzeigen)

Oe1mcu (Diskussion | Beiträge) (→Modulations- und Betriebsarten) Zum nächsten Versionsunterschied →

7ail	_	12:		

"(Wer kann die AKTUELLEN "HF Frequency Allocations" der ITU liefern ??)"

=== Modulations- und Betriebsarten ---

Amplitudenmodulation. Einseitenbandmodulation. CW (Morsefunk) und diverse digitale Betriebsarten (z.B. DRM) sind häufig im Kurzwellenbereich zu finden.

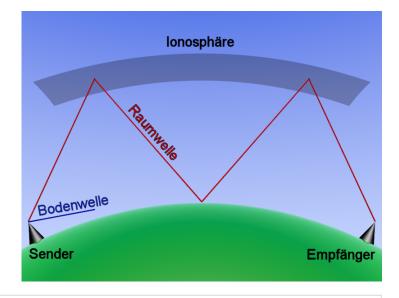
AM: Amplitudenmodulation wird für den Kurzwellenrundrundfunk benutzt.

SSB: Single Sideband (Einseitenband) wird für Sprachübertragung von Schiffen, Flugzeugen im Weitverkehr und im Amateurfunkdienst genutzt.

NBFM: Narrow-Band-Frequency-Modulation wird auf höheren **Kurzwellenfrequenzen (> 20 MHz)** vom Militär und im Amateurfunkdienst verwendet.

Zeile 12:

"(Wer kann die AKTUELLEN "HF Frequency Allocations" der ITU liefern ??)"



DRM: Digital Radio Mondiale eine moderne, hochqualitative Alternative zu AM für den Kurzwellenrundfunk.	
Spezielle Modulationsarten wie	
Radioteletype (RTTY), FAX, Slow-Scan-	
TV (SSTV) und PACTOR, die spezielle	
Zusatzgeräte oder Software für die	
Decodierung benötigen.	

Version vom 24. April 2010, 14:23 Uhr

AKTUELLE SONNENAKTIVITÄT

Inhaltsverzeichnis

1 Allgemeines	4
1.1 Geschichte	4
1.2 Frequenzplan und Verwendung	4
1.3 Vor- und Nachteile	
2 Rundfunk	5
3 Amateurfunk	5
4 Nicht öffentliche Funkdienste	5
5 Geheimnisvolle Signale	5
6 Die Zukunft der Kurzwelle	5

Allgemeines

Geschichte

Funkamateure waren die Entdecker der Kurzwellenausbreitung über große Entfernungen. Sie haben die ersten erfolgreichen transatlantischen Tests im Dezember 1921 im 200-m-Band durchgeführt. Ab 1923 wurden die Funkamateure gezwungen ihre Versuche auf immer kürzere Wellenlängen zu verschieben. Fälschlicherweise glaubten die Behörden, dass höhere Frequenzen für kommerzielle oder militärische Zwecke nutzlos seien. Nun begannen sie mit den neu verfügbaren Wellenlängen mit Hilfe von Vakuumröhren zu experimentieren. Transatlantische Funkkontakte wurden zur Routine. Am 19. Oktober 1924 gelang es Funkamateuren in Neuseeland und England eine 90-minütige Funkverbindung zu halten. Rund um die halbe Welt - damals eine Sensation.

Frequenzplan und Verwendung

(Wer kann die AKTUELLEN "HF Frequency Allocations" der ITU liefern ??)

Vor- und Nachteile

Die Kurzwelle besitzt eine Reihe von Vorteilen gegenüber neueren Technologien. Im Gegensatz zum Internet und dem staatlichen Rundfunk können Kurzwellensendungen aus anderen Ländern von den Behörden nicht zensuriert werden. Beispiel: Während des Putsches gegen Präsident Gorbatschow wurde sein Zugriff auf die Kommunikation beschränkt, Gorbatschow war in der Lage, mit Hilfe des BBC World Service auf Kurzwelle informiert zu bleiben. Außer in Ländern mit repressiven Regierungen sind Kurzwellenradios überall verfügbar. Da Kurzwellenradios meist portabel und batteriebetrieben sind, bleiben sie auch in Krisen- und Katastrophensituationen betriebsfähig, wenn der regionale Rundfunk, Fernsehen und Internet ausgefallen sind. Kurzwellensendungen werden über mehrere tausend Kilometer zuverlässig empfangen.

Den Vorteilen stehen auch einige Nachteile gegenüber.

Der Kurzwellenempfang unterliegt Störungen, atmosphärischer und elektrischer Art. Vor allem in dicht besiedelten Gebieten können schlecht konzipierte Fernsehgeräte, Computer, Haushaltgeräte und minderwertige Elektroinstallationen den Empfang empfindlich stören. Richtig dimensionierte Antennen können diesen Nachteilen entgegenwirken, aber selbst unter idealen Empfangsbedingungen wird die Audio-Qualität einer Kurzwellensendung in der Regel gering sein. Da immer mehr Menschen auf der Welt Zugang zu Fernsehen und Internet haben, gerät die alte Technik der Kurzwelle langsam aber zu Unrecht in Vergessenheit.

Rundfunk

Amateurfunk

Der Amateurfunkdienst (kurz: Amateurfunk, englisch: ham radio oder amateur radio) ist ein Funkdienst gemäß dem Internationalen Fernmeldevertrag. In vielen Ländern sind die internationalen Regelungen in nationalen Amateurfunkgesetzen umgesetzt und die Details in Amateurfunkverordnungen sowie zwischenstaatlichen Verträgen präzisiert. Ein Teilnehmer am Amateurfunkdienst wird Funkamateur genannt und bekommt von der zuständigen Fernmeldebehörde eine Lizenz und es wird ihm ein eindeutiges Rufzeichen zugewiesen.

Nicht öffentliche Funkdienste

"Utility-Stations" [1] strahlen Kurzwellensendungen aus, die nicht für die breite Öffentlichkeit bestimmt sind. Es gibt Kurzwellenbereiche die für die Handelsschifffahrt, wie z.B. Seewetterdienst und Küstenfunk zugeordnet sind. Ebenso für die Luftfahrt, Wetter und der Luft-Boden-Kommunikation (Weitverkehr) sowie für das internationale Rote-Kreuz, Botschaftsfunk, Geheimdienste und für die militärische Kommunikation.

Geheimnisvolle Signale

Zahlenstationen sind Kurzwellensender ungewisser Herkunft, sie senden Zahlen- oder Wörtercodes. Es gibt offiziell keinen Hinweis auf ihren Ursprung. Kurzwellenhörer haben herausgefunden, dass diese Stationen von Nachrichtendiensten als Ein-Weg-Kommunikation mit Agenten in anderen Ländern verwendet werden. Weitere Beispiele sind unter "The Conet Project" [2] und "Shortwave Espionage" [3] zu finden.

Die Zukunft der Kurzwelle

Direkte Satelliten-Übertragungen und das Internet haben die Nachfrage nach Kurzwellenempfänger reduziert, aber es gibt noch eine große Anzahl von Kurzwellen-Sendern. Von der neuen Digital-Radio-Technologie, Digital Radio Mondiale (DRM) wird erwartet, dass mit einer wesentlich verbesserten Audio-Qualität, das Interesse am Kurzwellenempfang wieder steigt. Allerdings wird die Zukunft durch "Verschmutzung" der Kurzwellenbereiche durch elektronische Geräte wie Power Line Communications (PLC) und Plasma Fernseher bedroht, weil durch diese Geräte starke breitbandige Störungen entstehen. Der Kurzwellenfunk ist nach wie vor ein billiges, wirksames und providerunabhängiges Mittel, um in Ländern mit schlechter Infrastruktur, als auch in Katastrophen- und Krisensituationen, sowie für militärische Zwecke, die Kommunikation aufrecht zu erhalten. Der Amateurfunk ist immer noch die treibende Kraft, die es ermöglicht, die vielfältigen Möglichkeiten der Kurzwelle zu nutzen.

Seiten in der Kategorie "Kurzwelle"

Folgende 22 Seiten sind in dieser Kategorie, von 22 insgesamt.

Α

- Antenne
- Antennenkabel

В

- Bandplan
- Bandwacht

D

DX-Cluster

Ε

Elecraft KX1

F

- FST4
- FT4
- FT8

Н

Hamclock

K

- KeyChainQRP
- KiwiSDR
- Kurzwellenausbreitung

L

• Lima-SDR

Μ

- MDSR und DADP
- Modulationsarten

Ρ

- Pixie 2
- Portable, endgespeiste KW Antenne

Q

QCX

R

- Radar auf Kurzwelle
- Rechner Mini dB

S

SWL - Kurzwellenhörer