

Inhaltsverzeichnis

1. Kategorie:NOTFUNK	48
2. Benutzer:Anonym	18
3. Benutzer:OE1FEA	33
4. Lawinenunglück in Galtür	64
5. Notfunk Checkliste	79
6. Notfunk Frequenzen	94
7. Notfunk Seminar Stream	
8. Notfunk in den USA	124
9. Notfunk in der Deutschland	139
10. Notfunk in der Schweiz	154
11. Notfunk in Österreich	169
12. Notfunkaktionen	184
13. SSTV	199
14. Tsunami in Südostasien	214
15. WARN- und ALARMSIGNALE	229
16. Überschwemmung in Bezau	244

Kategorie: NOTFUNK

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 1. Oktober 2010, 20:20 Uhr (Quelltext anzeigen)

OE1FEA (Diskussion | Beiträge)

K (→Partnerorganisationen)

← Zum vorherigen Versionsunterschied

Zeile 5:

ARENA - The Amateur Radio Emergency
Network Austria is a national voluntary
service that is provided to the community
by licensed radio amateurs. ARENA is part
of the OEVSV and IARU - the national and
international amateur radio associations.
Our focus is to support the public in the
event of crises when conventional
communication systems fail. Many of our
members are volunteers in organizations
such as the Austrian Red Cross, Civil
Defense, fire brigades, military and related
institutions.

Unique EmComm support is provided by use of the HF, VHF and UHF frequency spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink and APRS. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Version vom 1. Januar 2011, 12:19 Uhr (Quelltext anzeigen)

Anonym (Diskussion | Beiträge)
Zum nächsten Versionsunterschied →

Zeile 5:

ARENA - The Amateur Radio Emergency
Network Austria is a national voluntary
service that is provided to the community
by licensed radio amateurs. ARENA is part
of the OEVSV and IARU - the national and
international amateur radio associations.
Our focus is to support the public in the
event of crises when conventional
communication systems fail. Many of our
members are volunteers in organizations
such as the Austrian Red Cross, Civil
Defense, fire brigades, military and related
institutions.

use of the HF, VHF and UHF frequency spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink, APRS and HAM NET. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Unique EmComm support is provided by

-

Version vom 1. Januar 2011, 12:19 Uhr

NOTFUNK-OE

AMATEUR RADIO EMERGENCY NETWORK AUSTRIA

English Summary

ARENA - The Amateur Radio Emergency Network Austria is a national voluntary service that is provided to the community by licensed radio amateurs. ARENA is part of the OEVSV and IARU - the national and international amateur radio associations. Our focus is to support the public in the event of crises when conventional communication systems fail. Many of our members are volunteers in organizations such as the Austrian Red Cross, Civil Defense, fire brigades, military and related institutions. Unique EmComm support is provided by use of the HF, VHF and UHF frequency spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink, APRS and HAMNET. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Inhaltsverzeichnis

1 Allgemeines	. 51
2 Kompetenz der Funkamateure	. 52
3 Richtlinien	. 52
3.1 Aufnehmen und Weiterleiten einer Notfallmeldung	. 52
3.2 Richtlinien für den Not- und Katastrophenfunk	. 52
4 Alarm- und Warnsignale, Notruf	. 56

5 Frequenzen	57
6 Betriebsarten	57
7 Globale Netzwerke	58
7.1 Winlink	58
7.2 Echolink	58
7.3 APRS	59
8 Partnerorganisationen	59
9 Übungen, Seminare, Weiterbildung, Schulungen usw	
10 Ansprechpartner in den Landesverbänden	61
11 Notfunkrunde	62
12 IARU und Notfunk in anderen Ländern	62
13 Links	62
14 Kontakt	62

Allgemeines

Katastrophenfunkverkehr

Katastrophenfunkverkehr ist die Übermittlung von Nachrichten, die den nationalen oder internationalen Hilfeleistungsverkehr betreffen, zwischen Funkstellen innerhalb eines Katastrophengebietes sowie zwischen einer Funkstelle im Katastrophengebiet und Hilfe leistenden Organisationen.

Notfunkverkehr

Notfunkverkehr ist die Übermittlung von Nachrichten zwischen einer Funkstelle, die selbst in Not ist oder an einem Notfall beteiligt oder Zeuge des Notfalles ist, und einer oder mehreren Hilfe leistenden Funkstellen.

Unsere Aufgaben als Funkamateure

Funkamateure unterstützen Hilfsorganisationen und andere Behörden und Organisationen mit Sicherheitsaufgaben, oder leiten empfangene Notrufe an diese weiter.

Von jeher haben Funkamateure weltweit ihre Gerätschaften und ihr Wissen für Hilfeleistungen zur Verfügung gestellt. Für Notrufe, bei Naturkatastrophen, in Entwicklungsländern, bei Kriegen, dringend benötigten Medikamenten, Seenotfällen, etc. Egal bei welcher Krisenlage, Funkamateure sind bei einem Ausfall der kommerziellen Telekommunikationsnetze weltweit oft die ersten, die wieder Kontakt zur Außenwelt herstellen können.

Funkamateure als Kommunikationsspezialisten

Um z.B. eine interkontinentale Funkverbindung auf Kurzwelle aufzubauen reichen neben den nötigen Kenntnissen über die Ausbreitungsbedingungen, einige Meter Draht als Antenne notfalls zwischen Trümmern und Bäumen gespannt, eine (Auto-) Batterie/ Solarzelle, und ein (selbstgebautes) Funkgerät mit rund 1–5 Watt Sendeleistung und eine Morsetaste bzw. Mikrofon aus. Bei über zwei Millionen Funkamateuren weltweit, die dank der Zeitverschiebung rund um die Uhr aktiv sind, erreicht man immer jemanden.

Hochwasser, Erdbeben, Stürme, Großfeuer und andere schwere Katastrophen zerstören und beschädigen fast immer Telekommunikationseinrichtungen. Dabei ist es irrelevant, ob die Technik neu oder alt ist. Ohne die entsprechende Infrastruktur und ohne Strom- und Telefonleitungen funktioniert sie nicht mehr. Besonders hier zeigt sich die Stärke des Amateurfunks. Funkamateure betreiben ihre Station unabhängig von einer Infrastruktur. Sie verfügen regional und länderübergreifend über zahlreiche Kontakte und leisten damit eine der wichtigsten Beiträge bei der Unterstützung von Behörden und Hilfsorganisationen in der Notfallkommunikation.

Ein großer Vorteil des Amateurfunkdienstes sind hierbei weltweit zugewiesene Frequenzbereiche. Somit ist eine unkomplizierte grenzüberschreitende Kommunikation jederzeit möglich, während es bei der Zusammenarbeit verschiedener Hilfskräfte wie z.B. BOS, Bundesheer, örtliche Energieversorger, etc. schon bei regionalen/ nationalen Großschadenslagen immer wieder an den unterschiedlichen Funkdiensten und Frequenzen scheitert. Ein weiterer Vorteil besteht darin, dass der Funkamateur seine Geräte bestens kennt, da er durch den laufenden Betrieb praktisch immer am Üben ist.

Ausgabe: 26.04.2024 Dieses Dokument wurde erzeugt mit BlueSpice

Erinnern Sie sich noch?

• 12. Jänner 2010 - Erdbebenkatastrophe in Haiti

BH-Einsatz

- April 2009 Erdbebenkatastrophe in l'Aquila, Italien
- 1. Jänner 2005 Tsunami in Südostasien
- 23. August 2005 Überschwemmung in Bezau
- 23. Februar 1999 Lawinenunglück in Galtür
- Weitere Notfunkaktionen der Funkamateure [1]

Kompetenz der Funkamateure

Diese ist von der Internationalen Fernmeldeunion (ITU) in zwei Bereichen festgelegt:

- Alarmierung Empfangen und Verteilen von Alarmmeldungen
- Entlastung bzw. Unterstützung von Einsatzorganisationen (bei der Organisation von Hilfe in Gebieten, in denen andere [Telekom] Dienste noch nicht verfügbar sind).

Siehe ITU-EmComm: [2]

Richtlinien

Aufnehmen und Weiterleiten einer Notfallmeldung

- Wer? Name und Standort des Melders
- Wo? Orts des Notfalls
- Was? Was ist passiert, was ist zu tun, welche Hilfe wird angefordert und ist erforderlich?
- Wieviele? Verletze, Betroffene, etc.
- Welche? Art der vermutlichen Verletzung, Erkrankung und eingetretene Schäden
- Die Notrufzentrale, die Funkleitstation oder die den Notruf aufnehmende Station beendet die Verbindung erst dann, wenn sie alle Informationen bekommen hat, die für eine Hilfeleistung erforderlich sind.

Notfallkarte [3]

Richtlinien für den Not- und Katastrophenfunk

Am Beispiel Niederösterreich:

Teil 1 Allgemeiner Teil

Not- und Katastrophenfunk Referat des Landesverband Niederösterreich des ÖVSV

Not- und Katastrophenfunk-Konzept Version 1.1 vom 18.5.2007

Not- und Katastrophenfunk Referat des Landesverbandes Niederösterreich des ÖVSV

OE- Richtlinie

Not- und Katastrophenfunk

Teil 1

Allgemeines

Revisionshistorie:

Ausgabe	Datum	Änderung	Autor
1.0	3.4.2007	Initialversion	G. Scholz
1.1	18.05.2007	Überarbeitet für OE-Version	M.Maringer

Ausgabe 1.1 vom 18.5.2007

Seite 1 von 14

Teil 2 Niederösterreich

Not- und Katastrophenfunk Referat des Landesverband Niederösterreich des ÖVSV

Not- und Katastrophenfunk-Konzept Version 2.5 vom 17.7.2009

Not- und Katastrophenfunk Referat des Landesverbandes Niederösterreich des ÖVSV

Richtlinie

Not- und Katastrophenfunk

Teil 2

NIEDERÖSTERREICH

Revisionshistorie:

Ausgabe	Datum	Änderung	Autor
1.0	3.4.2007	Initialversion	G. Scholz
2.0	27.8.2007	Ergänzung Pager-Alarmierung	G. Scholz
2.1	9.1.2008	Korrektur Tel.Nummer	G. Scholz
2.2	5.9.2008	Ergänzung ADL 324, div. Korrekturen	G. Scholz
2.3	20.12.2008	Adressänderung OE3CJB	G. Scholz
2.4	29.1.2009	Korrektur Notruf144	G. Scholz
2.5	17.7.2009	kleinere Korrekturen	G. Scholz

Ausgabe 2.5 vom17.7.2009

Seite 1 von 7

Für einige weitere Bundesländer bestehen bereits angepasste Versionen (z.B. Tirol) in denen länderspezifische Besonderheiten (z.B. Ansprechpartner, Adressen, technische Ausstattung usw.) eingearbeitet wurden. Bei Bedarf werden diese Richtlinien ergänzt oder überarbeitet!

IARU Notfunk Prozedur (Deutsch)

IARU

INTERNATIONALE NOTFUNK PROZEDUR FÜR KURZWELLE

Wie von allen 3 Regionen angenommen

Alarm- und Warnsignale, Notruf

DER NOTRUF [4]

Frequenzen

Für die weltweite 'Kompatibilität' wurden von der IARU-Konferenz Frequenzen beschlossen, die von allen Regionen benutzt werden können. Sprechfunkbetrieb findet auf der Kurzwelle nicht auf einer Frequenz (Kanal) statt, sondern rund um die 'Center of Activity'-Frequenzen (CoA). Im Regelfall bewegt man sich +/-5kHz um CoA - je nach Belegung und/oder Störungen.

Selbstverständlich kann jede passende Frequenz im Bedarfsfall zur Katfunkfrequenz ernannt werden.

Auflistung der Notfunkfrequenzen > Notfunk Frequenzen

Betriebsarten

Im Katfunk kommt in der ersten Phase einer Katlage die Verbindungsaufnahme meist per **Sprache** zu stande. In weiterer Folge ist die Übermittlung von schriftlichen und bildlichen Informationen per **Email** via Kurzwelle/Ultrakurzwelle[5] ein essentieller Teil einer sicheren und stabilen Krisentelekommunikation.

Andere Betriebsarten spielen nur am Rande oder bei besonderen Lagen eine Rolle: In den Betriebsarten **CW**[6] und **PSK31**[7] sind bei Bedarf mit Minimalequipment und geringen Sendeleistungen weltweite Verbindungen möglich. Leider fehlt hier die Möglichkeit der fehlerfreien Informationsübertragung. SSTV oder **ATV** [8] zur Bildübertragung wird immer mehr ein wichtiges Element in der Führungsunterstützung für Einsatzleitungen, die durch den Amateurfunkdienst unterstützt werden.

Globale Netzwerke

Winlink

Winlink 2000 (WL2K) [9] ist ein weltweites "Email via Funk" System welches ausschließlich von lizensierten Funkamateuren auf nicht kommerzieller Basis betrieben wird. Das Winlink-System liefert wertvolle Dienste für die Not- und Krisenkommunikation, nämlich überall dort wo es keinen Internet Zugang (mehr) gibt. Mit Hilfe moderner Computer- und Netzwerktechnik und unter strikter Beachtung der Internet RFC-Empfehlungen ist das Winlink Development Team (WDT) um eine ständige Verbesserung für lokale, regionale und internationale Anwendungen bemüht. Um das WL2K System zu verwenden, müssen Sie eine Amateur-Funklizenz besitzen. Die Nutzung des Systems und aller Software ist kostenlos. [10] WL2K ist ein Non-Profit-Projekt der Amateur Radio Safety Foundation,Inc. [11]

WL2K Zugänge in OE:

Betriebsart **Pactor** OE3XEC[12] - Betriebsart AX.25 Packet Radio OE7XLR-13 und OE3XAR-10[13]

In der Betriebsart **Winmor** sind in EU meist nur 2-4 Stationen aktiv. Es ist jedoch anzunehmen, daß die gegenüber Pactor kostengünstigere Betriebsart (eine Soundkarte, wie bei PSK31 oder RTTY eingesetzt, genügt) eine rasche Verbreitung finden wird. Derzeit (Stand 1.10.2010) sind halbwegs sicher erreichbar: OE5XCL-5 in Wels (Dial 3612 kHz USB) und DA5UHR-5 in Frankfurt (Dial 7048,4 kHz USB), gelegentlich auch PD4U-5 in Apeldoorn (Dial 14109 kHz USB) und LA3F-5 in Sofiemyr (Dial 3596 kHz USB). Aber auch User-zu-User Verbindungen (Peer-to-Peer) sind im Notfunk, wenn keine Email-Vermittlung über Internet verfügbar, möglich. Als Client Software kann derzeit nur **RMS Express** [14] eingesetzt werden.

Zeitweise sind noch bemannte Stationen QRV, die ein Gateway zum WL2K-Netzwerk in RobustPacketRadio (RPR) zur Verfügung stellen. Zur Zeit sind das Versuche wobei kein 24/7 Betrieb gewährleistet werden kann. Bei Erfolg, könnte die eine oder andere Station als unbemannte Station dauerhaft onair gehen.

Echolink

Seit Inkrafttreten der neuen Amateurfunkverordnung ist es gestattet, Amateurfunkgeräte mit dem Internet zu verbinden.

EchoLink ist ein Internetprogramm, mithilfe dessen sich lizensierte Funkamateure der ganzen Welt mittels Computer über das Internet miteinander unterhalten können. Wie oben erwähnt, können nun auch Amateurfunkgeräte mit EchoLink verbunden werden. Jeder EchoLink-Station wird beim erstmaligen Einloggen eine sogenannte (nur einmalig vergebene) Node-Nummer zugewiesen (meistens vier- bis sechsstellig). Mittels DTMF-Tönen sind diese Stationen dann bei Betrieb über Funk durch Eingabe der Node-Nummer oder des Rufzeichens erreichbar. Weitere Informationen [15] und [16]

APRS

Im Amateurfunk wird APRS (Automatic Packet Reporting System) dazu verwendet, um Informationen und Meßdaten, egal welcher Art, weltweit zu übertragen. Die Verbreitung (Digipeating) der APRS-Daten erfolgt auf der europaweit einheitlichen Frequenz 144.800 MHz im 2m-Amateurfunkband mit 1200 Baud. [17]

Partnerorganisationen

Unter Partnerorganisationen sind jene zu verstehen, die entweder die Unterstützung des Amateurfunkdienstes in Anspruch nehmen und/oder selber Funkamateure mit entsprechenden Funktionen beschäftigen.

Beim Österreichischen Roten Kreuz[18] sind in allen Bundesländern Telekomeinheiten mit lizensierten Funkamateuren integriert, die im Katfall auch auf den Amateurfunkdienst als Rückfallebene zurückgreifen können. Damit ist bei Bedarf die Kommunikation mit externen Funkamateuren sichergestellt.

Die **Landeswarnzentralen (LWZ)** der Landesregierungen (z.B. Tirol[19]) bzw. in der **Katastrophenleitzentrale** der Gemeinde Wien (KLZ) sind im Katfall für die Krisentelekommunikation innerhalb des jeweiligen Bundeslandes und mit der Bundeswarnzentrale (BWZ[20]) beim BMI zuständig. Auch in den LWZ's und der KLZ wird Schritt für Schritt oder ist bereits der Amateurfunkdienst als unterstützendes Führungsmittel integriert.

Das **österreichische Bundesheer** hat schon seit vielen Jahren eine eigene Amateurfunkgruppierung AMRS[21] die aus Heeresangehörigen mit Amateurfunklizenz besteht und ebenfalls im Katfall über den Amateurfunkdienst auf die große Anzahl externer Funkamateure weltweit zugreifen kann!

Allen Partnerorganisationen wurden durch die oberste Fernmeldbehörde (OFMB[22]) Rufzeichen (z.B. OEH, OEK, OEY) als sog. Staatsfunkstellen zugewiesen. Diese Staatsfunkstellen betreiben abseits des Amateurfunkdienstes Kurzwellenbetrieb auf eigenen Frequenzen innerhalb Österreichs.


Im Krisenfall sind diese Staatsfunkstellen befugt mit Funkamateuren auf Amateurfunkfrequenzen Funkbetrieb abzuwickeln.

Übungen, Seminare, Weiterbildung, Schulungen usw.

Funkamateure sind durch die regelmäßige Ausübung ihres Hobbys

in der Bedienung ihrer Ausrüstung bestens geschult. Jedoch erfordert die Abwicklung von Not- und Katfunkbetrieb spezielle Kenntnisse über Abläufe, über die Organisation der BOS [23] und deren Notwendigkeiten, sowie auch den Umgang mit Meldungen. Auch der Betrieb der eigenen Ausrüstung weicht oftmals vom Üblichen ab.

an der Katastrophentelekommunikation beteiligten Funkamateure ein wichtiger Punkt. Einerseits wird das theoretische Rüstzeug in Seminaren und Workshops vermittelt und andererseits werden diese Kenntnisse in praktischen Übungen erprobt und verbessert.

AOEC:

Eine - zumindest in Europa - einzigartige Besonderheit stellt der AOEC (All_OE_Contest) jeweils am 1. Mai jeden Jahres dar. Dabei ist es den Funkamateuren und den OP's der Staatsfunkstellen erlaubt, miteinander auf Amateurfunkfrequenzen Verbindungen aufzunehmen. Diese Katfunkübung - die zwar als Contest ausgeschrieben ist - soll den 'nicht_lizensierten' OP's der Staatsfunkstellen die Möglichkeit geben, sich mit den Eigenheiten des Amateurfunkbetriebes vertraut zu machen. Umgekehrt natürlich ebenso!

Mittlerweile sind bei diesen Organisationen ebenfalls zahlreiche Funkamateure im Einsatz, die den Betrieb abwickeln und dann auch für allfällige Realeinsätze zur Verfügung stehen.

Vergleichbar mit dem AOEC ist der sog. 'X-Test' - ein Crossbandtest in den USA, bei dem die Funkamateure auf Amateurfunkfrequenzen senden und auf kommerziellen Frequenzen der Partner hören. Die Partner (z.B. MARS) senden auf deren zugewiesenen Frequenzen und hören auf Amateurfunkfrequenzen. Somit entstehen Crossbandverbindungen, bei denen jeder Beteiligte Sendebetrieb nur entsprechend seiner Lizenz durchführt.

GSET:

GSET heisst 'Global Simulated Emcomm Test' und bedeutet soviel wie globaler simulierter Katfunktest. Im Rahmen dieses von Greg Mossup, G0DUB ins Leben gerufenen Tests verfassen und versenden die teilnehmenden Emcomm Stationen aus allen drei IARU-Regionen standardisierte Meldungen. Die Kette der Weiterleitung von Sprachmeldungen und die Abgabe von digitalen Meldungen endet in einer Emailadresse an der die einlangenen Nachrichten nach Laufzeit und Vollständigleit ausgewertet werden.

Eine der wichtigsten Erkenntnisse der letzten Tests haben gezeigt, dass die Übermittlung von Emails über Kurzwelle über das Winlinknetzwerk die Weiterleitung und Aufnahme von Sprachnachrichten an Sicherheit, Vollständigkeit und Geschwindigkeit bei Weitem übertrifft!

Regionale Übungen:

In vielen Bundesländern werden sog. Katfielddays abgehalten. Dabei wird über eine Dauer von einigen Stunden bis zu einigen Tagen von Orten ohne Infrastruktur katfunkmässiger Betrieb abgewickelt. Die eingesetzte Ausrüstung wie Stromerzeuger, Solarpanele, speziell gefertigte Katfunkkoffer, einfache Drahtantennen, sowie Laptops und Software werden auf Einsatztauglichkeit getestet.

Dabei wurden schon einige Erkenntnisse gewonnen, die zu Verbesserungen oder Änderungen der eigenen oder fremden Ausrüstung oder Betriebsabwicklung geführt haben.

Notfunk Checkliste

Integrierte Übungen mit BOS:

Vereinzelt haben bereits regionale Katschutzbehörden wie z.B. die Bezirkshauptmannschaft Gmünd oder einige Gemeinden den Amateurfunkdienst bei sog. Stabsrahmenübungen in die Kommunikationsabläufe integriert. Das erhöhnt natürlich das Vertrauen in die Verlässlichkeit und in die Kompetenz der Funkamateure bei den Teilnehmern.

Seminare:

Seminare und Workshops vermitteln vertiefende Kenntnisse in Spezialbereichen. Beispielsweise wird die Theorie, der Aufbau und Betrieb von einfachen Drahtantennen in Katlagen erarbeitet.

Auch die im Katfunk eingesetzten Verfahren der Nachrichtenübermittlung über Pactor oder Packet Radio mit evt. Weiterleitung über das Winlinknetzwerk wird bei solchen Veranstaltungen den interessierten Katfunkern in Theorie und Praxis näher gebracht.

Präsentationen:

Die Veranstalter von Sicherheitstagen (österreichweit), Tag der offenen Türen (z.B. Bundesheer), Messen (z.B. Rettermesse Wels), Leistungsschauen (z.B. Rotes Kreuz) bieten dem Amateurfunkdienst eine Plattform, seine Möglichkeiten in der Krisentelekommunikation einem breiteren Publikum zu präsentieren. Hier werden die Emcomm-Ausrüstungen in Betrieb genommen und die damit möglichen Varianten der Verbindungsaufnahmen demonstriert.

Ansprechpartner in den Landesverbänden

Grundsätzlich sind die Ansprechpartner in den Landesverbänden unter der Adresse 'notfunk. oex@oevsv.at' zu erreichen!

Das 'oex' steht für den jeweiligen LV, z.B. OE1

Notfunkrunde

jeden ersten Mittwoch im Monat 19:45 Uhr Lokalzeit auf 3.643 KHz (+/- QRM)

IARU und Notfunk in anderen Ländern

- Amateur Radio Emergency Communications International [24]
- IARU-Region 1 Emergency Communication [25]
- Deutschland DARC Notfunk-Referat [26]
- Schweiz IG Notfunk [27]
- Holland DARES [28] & [29]
- ARRL Emergency Radio [30] Amateur Radio Today Youtube Video [31]
- England RAYNET [32]
- IRESC International Radio Emergency Support Coalition [33]
- Italien RNRE [34]
- Frankreich F.N.R.A.S.E.C. [35]
- Australien WICEN [36]
- Vereinigte Staaten von Amerika ARES [37]

Links

Amateurfunkstationen in Österreich [38]

Unwetterwarnungen für Österreich - Skywarn [39]

Unwetterwarnungen für Österreich - Unwetterzentrale [40]

Alarm-Pagernetz in Ost-Österreich [41]

Kontakt

Not- und Katfunkreferat im DV: Michael Maringer, OE1MMU oe1mmu@oevsv.at

Seiten in der Kategorie "NOTFUNK"

Folgende 12 Seiten sind in dieser Kategorie, von 12 insgesamt.

L

Lawinenunglück in Galtür

Ν

Notfunk Checkliste

- Notfunk Frequenzen
- Notfunk in den USA
- Notfunk in der Deutschland
- Notfunk in der Schweiz
- Notfunk in Österreich
- Notfunk Seminar Stream
- Notfunkaktionen

Т

Tsunami in Südostasien

W

WARN- und ALARMSIGNALE

Ü

• Überschwemmung in Bezau

Kategorie: NOTFUNK: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 1. Oktober 2010, 20:20 Uhr (Quelltext anzeigen)

OE1FEA (Diskussion | Beiträge)

K (→Partnerorganisationen)

← Zum vorherigen Versionsunterschied

Zeile 5:		7

ARENA - The Amateur Radio Emergency
Network Austria is a national voluntary
service that is provided to the community
by licensed radio amateurs. ARENA is part
of the OEVSV and IARU - the national and
international amateur radio associations.
Our focus is to support the public in the
event of crises when conventional
communication systems fail. Many of our
members are volunteers in organizations
such as the Austrian Red Cross, Civil
Defense, fire brigades, military and related
institutions.

Unique EmComm support is provided by use of the HF, VHF and UHF frequency spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink and APRS. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Ausgabe: 26.04.2024

Version vom 1. Januar 2011, 12:19 Uhr (Quelltext anzeigen)

Anonym (Diskussion | Beiträge)
Zum nächsten Versionsunterschied →

Zeile 5:

ARENA - The Amateur Radio Emergency
Network Austria is a national voluntary
service that is provided to the community
by licensed radio amateurs. ARENA is part
of the OEVSV and IARU - the national and
international amateur radio associations.
Our focus is to support the public in the
event of crises when conventional
communication systems fail. Many of our
members are volunteers in organizations
such as the Austrian Red Cross, Civil
Defense, fire brigades, military and related
institutions.

spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink, APRS and HAM NET. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Unique EmComm support is provided by

use of the HF, VHF and UHF frequency

Version vom 1. Januar 2011, 12:19 Uhr

NOTFUNK-OE

AMATEUR RADIO EMERGENCY NETWORK AUSTRIA

English Summary

ARENA - The Amateur Radio Emergency Network Austria is a national voluntary service that is provided to the community by licensed radio amateurs. ARENA is part of the OEVSV and IARU - the national and international amateur radio associations. Our focus is to support the public in the event of crises when conventional communication systems fail. Many of our members are volunteers in organizations such as the Austrian Red Cross, Civil Defense, fire brigades, military and related institutions. Unique EmComm support is provided by use of the HF, VHF and UHF frequency spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink, APRS and HAMNET. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Inhaltsverzeichnis

1 Allgemeines	21
2 Kompetenz der Funkamateure	22
3 Richtlinien	22
3.1 Aufnehmen und Weiterleiten einer Notfallmeldung	22
3.2 Richtlinien für den Not- und Katastrophenfunk	22
4 Alarm- und Warnsignale, Notruf	26

5 Frequenzen	27
6 Betriebsarten	27
7 Globale Netzwerke	28
7.1 Winlink	28
7.2 Echolink	28
7.3 APRS	29
8 Partnerorganisationen	29
9 Übungen, Seminare, Weiterbildung, Schulungen usw	29
10 Ansprechpartner in den Landesverbänden	31
11 Notfunkrunde	32
12 IARU und Notfunk in anderen Ländern	32
13 Links	32
14 Kontakt	32

Allgemeines

Katastrophenfunkverkehr

Katastrophenfunkverkehr ist die Übermittlung von Nachrichten, die den nationalen oder internationalen Hilfeleistungsverkehr betreffen, zwischen Funkstellen innerhalb eines Katastrophengebietes sowie zwischen einer Funkstelle im Katastrophengebiet und Hilfe leistenden Organisationen.

Notfunkverkehr

Notfunkverkehr ist die Übermittlung von Nachrichten zwischen einer Funkstelle, die selbst in Not ist oder an einem Notfall beteiligt oder Zeuge des Notfalles ist, und einer oder mehreren Hilfe leistenden Funkstellen.

Unsere Aufgaben als Funkamateure

Funkamateure unterstützen Hilfsorganisationen und andere Behörden und Organisationen mit Sicherheitsaufgaben, oder leiten empfangene Notrufe an diese weiter.

Von jeher haben Funkamateure weltweit ihre Gerätschaften und ihr Wissen für Hilfeleistungen zur Verfügung gestellt. Für Notrufe, bei Naturkatastrophen, in Entwicklungsländern, bei Kriegen, dringend benötigten Medikamenten, Seenotfällen, etc. Egal bei welcher Krisenlage, Funkamateure sind bei einem Ausfall der kommerziellen Telekommunikationsnetze weltweit oft die ersten, die wieder Kontakt zur Außenwelt herstellen können.

Funkamateure als Kommunikationsspezialisten

Um z.B. eine interkontinentale Funkverbindung auf Kurzwelle aufzubauen reichen neben den nötigen Kenntnissen über die Ausbreitungsbedingungen, einige Meter Draht als Antenne notfalls zwischen Trümmern und Bäumen gespannt, eine (Auto-) Batterie/ Solarzelle, und ein (selbstgebautes) Funkgerät mit rund 1–5 Watt Sendeleistung und eine Morsetaste bzw. Mikrofon aus. Bei über zwei Millionen Funkamateuren weltweit, die dank der Zeitverschiebung rund um die Uhr aktiv sind, erreicht man immer jemanden.

Hochwasser, Erdbeben, Stürme, Großfeuer und andere schwere Katastrophen zerstören und beschädigen fast immer Telekommunikationseinrichtungen. Dabei ist es irrelevant, ob die Technik neu oder alt ist. Ohne die entsprechende Infrastruktur und ohne Strom- und Telefonleitungen funktioniert sie nicht mehr. Besonders hier zeigt sich die Stärke des Amateurfunks. Funkamateure betreiben ihre Station unabhängig von einer Infrastruktur. Sie verfügen regional und länderübergreifend über zahlreiche Kontakte und leisten damit eine der wichtigsten Beiträge bei der Unterstützung von Behörden und Hilfsorganisationen in der Notfallkommunikation.

Ein großer Vorteil des Amateurfunkdienstes sind hierbei weltweit zugewiesene Frequenzbereiche. Somit ist eine unkomplizierte grenzüberschreitende Kommunikation jederzeit möglich, während es bei der Zusammenarbeit verschiedener Hilfskräfte wie z.B. BOS, Bundesheer, örtliche Energieversorger, etc. schon bei regionalen/ nationalen Großschadenslagen immer wieder an den unterschiedlichen Funkdiensten und Frequenzen scheitert. Ein weiterer Vorteil besteht darin, dass der Funkamateur seine Geräte bestens kennt, da er durch den laufenden Betrieb praktisch immer am Üben ist.

Ausgabe: 26.04.2024 Dieses Dokument wurde erzeugt mit BlueSpice

Erinnern Sie sich noch?

• 12. Jänner 2010 - Erdbebenkatastrophe in Haiti

BH-Einsatz

- April 2009 Erdbebenkatastrophe in l'Aquila, Italien
- 1. Jänner 2005 Tsunami in Südostasien
- 23. August 2005 Überschwemmung in Bezau
- 23. Februar 1999 Lawinenunglück in Galtür
- Weitere Notfunkaktionen der Funkamateure [1]

Kompetenz der Funkamateure

Diese ist von der Internationalen Fernmeldeunion (ITU) in zwei Bereichen festgelegt:

- Alarmierung Empfangen und Verteilen von Alarmmeldungen
- Entlastung bzw. Unterstützung von Einsatzorganisationen (bei der Organisation von Hilfe in Gebieten, in denen andere [Telekom] Dienste noch nicht verfügbar sind).

Siehe ITU-EmComm: [2]

Richtlinien

Aufnehmen und Weiterleiten einer Notfallmeldung

- Wer? Name und Standort des Melders
- Wo? Orts des Notfalls
- Was? Was ist passiert, was ist zu tun, welche Hilfe wird angefordert und ist erforderlich?
- Wieviele? Verletze, Betroffene, etc.
- Welche? Art der vermutlichen Verletzung, Erkrankung und eingetretene Schäden
- Die Notrufzentrale, die Funkleitstation oder die den Notruf aufnehmende Station beendet die Verbindung erst dann, wenn sie alle Informationen bekommen hat, die für eine Hilfeleistung erforderlich sind.

Notfallkarte [3]

Richtlinien für den Not- und Katastrophenfunk

Am Beispiel Niederösterreich:

Teil 1 Allgemeiner Teil

Not- und Katastrophenfunk Referat des Landesverband Niederösterreich des ÖVSV

Not- und Katastrophenfunk-Konzept Version 1.1 vom 18.5.2007

Not- und Katastrophenfunk Referat des Landesverbandes Niederösterreich des ÖVSV

OE- Richtlinie

Not- und Katastrophenfunk

Teil 1

Allgemeines

Revisionshistorie:

Ausgabe	Datum	Änderung	Autor
1.0	3.4.2007	Initialversion	G. Scholz
1.1	18.05.2007	Überarbeitet für OE-Version	M.Maringer

Ausgabe 1.1 vom 18.5.2007

Seite 1 von 14

Teil 2 Niederösterreich

Not- und Katastrophenfunk Referat des Landesverband Niederösterreich des ÖVSV

Not- und Katastrophenfunk-Konzept Version 2.5 vom 17.7.2009

Not- und Katastrophenfunk Referat des Landesverbandes Niederösterreich des ÖVSV

Richtlinie

Not- und Katastrophenfunk

Teil 2

NIEDERÖSTERREICH

Revisionshistorie:

Ausgabe	Datum	Änderung	Autor
1.0	3.4.2007	Initialversion	G. Scholz
2.0	27.8.2007	Ergänzung Pager-Alarmierung	G. Scholz
2.1	9.1.2008	Korrektur Tel.Nummer	G. Scholz
2.2	5.9.2008	Ergänzung ADL 324, div. Korrekturen	G. Scholz
2.3	20.12.2008	Adressänderung OE3CJB	G. Scholz
2.4	29.1.2009	Korrektur Notruf144	G. Scholz
2.5	17.7.2009	kleinere Korrekturen	G. Scholz

Ausgabe 2.5 vom17.7.2009

Seite 1 von 7

Für einige weitere Bundesländer bestehen bereits angepasste Versionen (z.B. Tirol) in denen länderspezifische Besonderheiten (z.B. Ansprechpartner, Adressen, technische Ausstattung usw.) eingearbeitet wurden. Bei Bedarf werden diese Richtlinien ergänzt oder überarbeitet!

IARU Notfunk Prozedur (Deutsch)

IARU

INTERNATIONALE NOTFUNK PROZEDUR FÜR KURZWELLE

Wie von allen 3 Regionen angenommen

Alarm- und Warnsignale, Notruf

DER NOTRUF [4]

Frequenzen

Für die weltweite 'Kompatibilität' wurden von der IARU-Konferenz Frequenzen beschlossen, die von allen Regionen benutzt werden können. Sprechfunkbetrieb findet auf der Kurzwelle nicht auf einer Frequenz (Kanal) statt, sondern rund um die 'Center of Activity'-Frequenzen (CoA). Im Regelfall bewegt man sich +/-5kHz um CoA - je nach Belegung und/oder Störungen.

Selbstverständlich kann jede passende Frequenz im Bedarfsfall zur Katfunkfrequenz ernannt werden.

Auflistung der Notfunkfrequenzen > Notfunk Frequenzen

Betriebsarten

Im Katfunk kommt in der ersten Phase einer Katlage die Verbindungsaufnahme meist per **Sprache** zu stande. In weiterer Folge ist die Übermittlung von schriftlichen und bildlichen Informationen per **Email** via Kurzwelle/Ultrakurzwelle[5] ein essentieller Teil einer sicheren und stabilen Krisentelekommunikation.

Andere Betriebsarten spielen nur am Rande oder bei besonderen Lagen eine Rolle: In den Betriebsarten **CW**[6] und **PSK31**[7] sind bei Bedarf mit Minimalequipment und geringen Sendeleistungen weltweite Verbindungen möglich. Leider fehlt hier die Möglichkeit der fehlerfreien Informationsübertragung. SSTV oder **ATV** [8] zur Bildübertragung wird immer mehr ein wichtiges Element in der Führungsunterstützung für Einsatzleitungen, die durch den Amateurfunkdienst unterstützt werden.

Globale Netzwerke

Winlink

Winlink 2000 (WL2K) [9] ist ein weltweites "Email via Funk" System welches ausschließlich von lizensierten Funkamateuren auf nicht kommerzieller Basis betrieben wird. Das Winlink-System liefert wertvolle Dienste für die Not- und Krisenkommunikation, nämlich überall dort wo es keinen Internet Zugang (mehr) gibt. Mit Hilfe moderner Computer- und Netzwerktechnik und unter strikter Beachtung der Internet RFC-Empfehlungen ist das Winlink Development Team (WDT) um eine ständige Verbesserung für lokale, regionale und internationale Anwendungen bemüht. Um das WL2K System zu verwenden, müssen Sie eine Amateur-Funklizenz besitzen. Die Nutzung des Systems und aller Software ist kostenlos. [10] WL2K ist ein Non-Profit-Projekt der Amateur Radio Safety Foundation,Inc. [11]

WL2K Zugänge in OE:

Betriebsart **Pactor** OE3XEC[12] - Betriebsart AX.25 Packet Radio OE7XLR-13 und OE3XAR-10[13]

In der Betriebsart **Winmor** sind in EU meist nur 2-4 Stationen aktiv. Es ist jedoch anzunehmen, daß die gegenüber Pactor kostengünstigere Betriebsart (eine Soundkarte, wie bei PSK31 oder RTTY eingesetzt, genügt) eine rasche Verbreitung finden wird. Derzeit (Stand 1.10.2010) sind halbwegs sicher erreichbar: OE5XCL-5 in Wels (Dial 3612 kHz USB) und DA5UHR-5 in Frankfurt (Dial 7048,4 kHz USB), gelegentlich auch PD4U-5 in Apeldoorn (Dial 14109 kHz USB) und LA3F-5 in Sofiemyr (Dial 3596 kHz USB). Aber auch User-zu-User Verbindungen (Peer-to-Peer) sind im Notfunk, wenn keine Email-Vermittlung über Internet verfügbar, möglich. Als Client Software kann derzeit nur **RMS Express** [14] eingesetzt werden.

Zeitweise sind noch bemannte Stationen QRV, die ein Gateway zum WL2K-Netzwerk in RobustPacketRadio (RPR) zur Verfügung stellen. Zur Zeit sind das Versuche wobei kein 24/7 Betrieb gewährleistet werden kann. Bei Erfolg, könnte die eine oder andere Station als unbemannte Station dauerhaft onair gehen.

Echolink

Seit Inkrafttreten der neuen Amateurfunkverordnung ist es gestattet, Amateurfunkgeräte mit dem Internet zu verbinden.

EchoLink ist ein Internetprogramm, mithilfe dessen sich lizensierte Funkamateure der ganzen Welt mittels Computer über das Internet miteinander unterhalten können. Wie oben erwähnt, können nun auch Amateurfunkgeräte mit EchoLink verbunden werden. Jeder EchoLink-Station wird beim erstmaligen Einloggen eine sogenannte (nur einmalig vergebene) Node-Nummer zugewiesen (meistens vier- bis sechsstellig). Mittels DTMF-Tönen sind diese Stationen dann bei Betrieb über Funk durch Eingabe der Node-Nummer oder des Rufzeichens erreichbar. Weitere Informationen [15] und [16]

APRS

Im Amateurfunk wird APRS (Automatic Packet Reporting System) dazu verwendet, um Informationen und Meßdaten, egal welcher Art, weltweit zu übertragen. Die Verbreitung (Digipeating) der APRS-Daten erfolgt auf der europaweit einheitlichen Frequenz 144.800 MHz im 2m-Amateurfunkband mit 1200 Baud. [17]

Partnerorganisationen

Unter Partnerorganisationen sind jene zu verstehen, die entweder die Unterstützung des Amateurfunkdienstes in Anspruch nehmen und/oder selber Funkamateure mit entsprechenden Funktionen beschäftigen.

Beim Österreichischen Roten Kreuz[18] sind in allen Bundesländern Telekomeinheiten mit lizensierten Funkamateuren integriert, die im Katfall auch auf den Amateurfunkdienst als Rückfallebene zurückgreifen können. Damit ist bei Bedarf die Kommunikation mit externen Funkamateuren sichergestellt.

Die **Landeswarnzentralen (LWZ)** der Landesregierungen (z.B. Tirol[19]) bzw. in der **Katastrophenleitzentrale** der Gemeinde Wien (KLZ) sind im Katfall für die Krisentelekommunikation innerhalb des jeweiligen Bundeslandes und mit der Bundeswarnzentrale (BWZ[20]) beim BMI zuständig. Auch in den LWZ's und der KLZ wird Schritt für Schritt oder ist bereits der Amateurfunkdienst als unterstützendes Führungsmittel integriert.

Das **österreichische Bundesheer** hat schon seit vielen Jahren eine eigene Amateurfunkgruppierung AMRS[21] die aus Heeresangehörigen mit Amateurfunklizenz besteht und ebenfalls im Katfall über den Amateurfunkdienst auf die große Anzahl externer Funkamateure weltweit zugreifen kann!

Allen Partnerorganisationen wurden durch die oberste Fernmeldbehörde (OFMB[22]) Rufzeichen (z.B. OEH, OEK, OEY) als sog. Staatsfunkstellen zugewiesen. Diese Staatsfunkstellen betreiben abseits des Amateurfunkdienstes Kurzwellenbetrieb auf eigenen Frequenzen innerhalb Österreichs.

Im Krisenfall sind diese Staatsfunkstellen befugt mit Funkamateuren auf Amateurfunkfrequenzen Funkbetrieb abzuwickeln.

Übungen, Seminare, Weiterbildung, Schulungen usw.

Funkamateure sind durch die regelmäßige Ausübung ihres Hobbys

in der Bedienung ihrer Ausrüstung bestens geschult. Jedoch erfordert die Abwicklung von Not- und Katfunkbetrieb spezielle Kenntnisse über Abläufe, über die Organisation der BOS [23] und deren Notwendigkeiten, sowie auch den Umgang mit Meldungen. Auch der Betrieb der eigenen Ausrüstung weicht oftmals vom Üblichen ab.

Daher ist die Schulung und Weiterbildung der

an der Katastrophentelekommunikation beteiligten Funkamateure ein wichtiger Punkt. Einerseits wird das theoretische Rüstzeug in Seminaren und Workshops vermittelt und andererseits werden diese Kenntnisse in praktischen Übungen erprobt und verbessert.

AOEC:

Eine - zumindest in Europa - einzigartige Besonderheit stellt der AOEC (All_OE_Contest) jeweils am 1. Mai jeden Jahres dar. Dabei ist es den Funkamateuren und den OP's der Staatsfunkstellen erlaubt, miteinander auf Amateurfunkfrequenzen Verbindungen aufzunehmen. Diese Katfunkübung - die zwar als Contest ausgeschrieben ist - soll den 'nicht_lizensierten' OP's der Staatsfunkstellen die Möglichkeit geben, sich mit den Eigenheiten des Amateurfunkbetriebes vertraut zu machen. Umgekehrt natürlich ebenso!

Mittlerweile sind bei diesen Organisationen ebenfalls zahlreiche Funkamateure im Einsatz, die den Betrieb abwickeln und dann auch für allfällige Realeinsätze zur Verfügung stehen.

Vergleichbar mit dem AOEC ist der sog. 'X-Test' - ein Crossbandtest in den USA, bei dem die Funkamateure auf Amateurfunkfrequenzen senden und auf kommerziellen Frequenzen der Partner hören. Die Partner (z.B. MARS) senden auf deren zugewiesenen Frequenzen und hören auf Amateurfunkfrequenzen. Somit entstehen Crossbandverbindungen, bei denen jeder Beteiligte Sendebetrieb nur entsprechend seiner Lizenz durchführt.

GSET:

Ausgabe: 26.04.2024

GSET heisst 'Global Simulated Emcomm Test' und bedeutet soviel wie globaler simulierter Katfunktest. Im Rahmen dieses von Greg Mossup, G0DUB ins Leben gerufenen Tests verfassen und versenden die teilnehmenden Emcomm Stationen aus allen drei IARU-Regionen standardisierte Meldungen. Die Kette der Weiterleitung von Sprachmeldungen und die Abgabe von digitalen Meldungen endet in einer Emailadresse an der die einlangenen Nachrichten nach Laufzeit und Vollständigleit ausgewertet werden.

Eine der wichtigsten Erkenntnisse der letzten Tests haben gezeigt, dass die Übermittlung von Emails über Kurzwelle über das Winlinknetzwerk die Weiterleitung und Aufnahme von Sprachnachrichten an Sicherheit, Vollständigkeit und Geschwindigkeit bei Weitem übertrifft!

Regionale Übungen:

In vielen Bundesländern werden sog. Katfielddays abgehalten. Dabei wird über eine Dauer von einigen Stunden bis zu einigen Tagen von Orten ohne Infrastruktur katfunkmässiger Betrieb abgewickelt. Die eingesetzte Ausrüstung wie Stromerzeuger, Solarpanele, speziell gefertigte Katfunkkoffer, einfache Drahtantennen, sowie Laptops und Software werden auf Einsatztauglichkeit getestet.

Dabei wurden schon einige Erkenntnisse gewonnen, die zu Verbesserungen oder Änderungen der eigenen oder fremden Ausrüstung oder Betriebsabwicklung geführt haben.

Notfunk Checkliste

Integrierte Übungen mit BOS:

Vereinzelt haben bereits regionale Katschutzbehörden wie z.B. die Bezirkshauptmannschaft Gmünd oder einige Gemeinden den Amateurfunkdienst bei sog. Stabsrahmenübungen in die Kommunikationsabläufe integriert. Das erhöhnt natürlich das Vertrauen in die Verlässlichkeit und in die Kompetenz der Funkamateure bei den Teilnehmern.

Seminare:

Seminare und Workshops vermitteln vertiefende Kenntnisse in Spezialbereichen. Beispielsweise wird die Theorie, der Aufbau und Betrieb von einfachen Drahtantennen in Katlagen erarbeitet.

Auch die im Katfunk eingesetzten Verfahren der Nachrichtenübermittlung über Pactor oder Packet Radio mit evt. Weiterleitung über das Winlinknetzwerk wird bei solchen Veranstaltungen den interessierten Katfunkern in Theorie und Praxis näher gebracht.

Präsentationen:

Die Veranstalter von Sicherheitstagen (österreichweit), Tag der offenen Türen (z.B. Bundesheer), Messen (z.B. Rettermesse Wels), Leistungsschauen (z.B. Rotes Kreuz) bieten dem Amateurfunkdienst eine Plattform, seine Möglichkeiten in der Krisentelekommunikation einem breiteren Publikum zu präsentieren. Hier werden die Emcomm-Ausrüstungen in Betrieb genommen und die damit möglichen Varianten der Verbindungsaufnahmen demonstriert.

Ansprechpartner in den Landesverbänden

Grundsätzlich sind die Ansprechpartner in den Landesverbänden unter der Adresse 'notfunk. oex@oevsv.at' zu erreichen!

Das 'oex' steht für den jeweiligen LV, z.B. OE1

Notfunkrunde

jeden ersten Mittwoch im Monat 19:45 Uhr Lokalzeit auf 3.643 KHz (+/- QRM)

IARU und Notfunk in anderen Ländern

- Amateur Radio Emergency Communications International [24]
- IARU-Region 1 Emergency Communication [25]
- Deutschland DARC Notfunk-Referat [26]
- Schweiz IG Notfunk [27]
- Holland DARES [28] & [29]
- ARRL Emergency Radio [30] Amateur Radio Today Youtube Video [31]
- England RAYNET [32]
- IRESC International Radio Emergency Support Coalition [33]
- Italien RNRE [34]
- Frankreich F.N.R.A.S.E.C. [35]
- Australien WICEN [36]
- Vereinigte Staaten von Amerika ARES [37]

Links

Amateurfunkstationen in Österreich [38]

Unwetterwarnungen für Österreich - Skywarn [39]

Unwetterwarnungen für Österreich - Unwetterzentrale [40]

Alarm-Pagernetz in Ost-Österreich [41]

Kontakt

Not- und Katfunkreferat im DV: Michael Maringer, OE1MMU oe1mmu@oevsv.at

Kategorie: NOTFUNK: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 1. Oktober 2010, 20:20 Uhr (Quelltext anzeigen)

OE1FEA (Diskussion | Beiträge)

K (→Partnerorganisationen)

← Zum vorherigen Versionsunterschied

Zeile 5:	Zeile 5:

ARENA - The Amateur Radio Emergency
Network Austria is a national voluntary
service that is provided to the community
by licensed radio amateurs. ARENA is part
of the OEVSV and IARU - the national and
international amateur radio associations.
Our focus is to support the public in the
event of crises when conventional
communication systems fail. Many of our
members are volunteers in organizations
such as the Austrian Red Cross, Civil
Defense, fire brigades, military and related
institutions.

Unique EmComm support is provided by use of the HF, VHF and UHF frequency spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink and APRS. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Version vom 1. Januar 2011, 12:19 Uhr (Quelltext anzeigen)

Anonym (Diskussion | Beiträge)
Zum nächsten Versionsunterschied →

ARENA - The Amateur Radio Emergency
Network Austria is a national voluntary
service that is provided to the community
by licensed radio amateurs. ARENA is part
of the OEVSV and IARU - the national and
international amateur radio associations.
Our focus is to support the public in the
event of crises when conventional
communication systems fail. Many of our
members are volunteers in organizations
such as the Austrian Red Cross, Civil
Defense, fire brigades, military and related
institutions.

spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink, APRS and HAM NET. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Unique EmComm support is provided by

use of the HF, VHF and UHF frequency

Version vom 1. Januar 2011, 12:19 Uhr

NOTFUNK-OE

AMATEUR RADIO EMERGENCY NETWORK AUSTRIA

English Summary

ARENA - The Amateur Radio Emergency Network Austria is a national voluntary service that is provided to the community by licensed radio amateurs. ARENA is part of the OEVSV and IARU - the national and international amateur radio associations. Our focus is to support the public in the event of crises when conventional communication systems fail. Many of our members are volunteers in organizations such as the Austrian Red Cross, Civil Defense, fire brigades, military and related institutions. Unique EmComm support is provided by use of the HF, VHF and UHF frequency spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink, APRS and HAMNET. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Inhaltsverzeichnis

1 Allgemeines	36
2 Kompetenz der Funkamateure	37
3 Richtlinien	37
3.1 Aufnehmen und Weiterleiten einer Notfallmeldung	. 37
3.2 Richtlinien für den Not- und Katastrophenfunk	37
4 Alarm- und Warnsignale, Notruf	41

5 Frequenzen	
6 Betriebsarten	
7 Globale Netzwerke	
7.1 Winlink	
7.2 Echolink	
7.3 APRS	
8 Partnerorganisationen	
9 Übungen, Seminare, Weiterbildung, Schulungen usw	
10 Ansprechpartner in den Landesverbänden	
11 Notfunkrunde	
12 IARU und Notfunk in anderen Ländern	
13 Links	
14 Kontakt	

Allgemeines

Katastrophenfunkverkehr

Katastrophenfunkverkehr ist die Übermittlung von Nachrichten, die den nationalen oder internationalen Hilfeleistungsverkehr betreffen, zwischen Funkstellen innerhalb eines Katastrophengebietes sowie zwischen einer Funkstelle im Katastrophengebiet und Hilfe leistenden Organisationen.

Notfunkverkehr

Notfunkverkehr ist die Übermittlung von Nachrichten zwischen einer Funkstelle, die selbst in Not ist oder an einem Notfall beteiligt oder Zeuge des Notfalles ist, und einer oder mehreren Hilfe leistenden Funkstellen.

Unsere Aufgaben als Funkamateure

Funkamateure unterstützen Hilfsorganisationen und andere Behörden und Organisationen mit Sicherheitsaufgaben, oder leiten empfangene Notrufe an diese weiter.

Von jeher haben Funkamateure weltweit ihre Gerätschaften und ihr Wissen für Hilfeleistungen zur Verfügung gestellt. Für Notrufe, bei Naturkatastrophen, in Entwicklungsländern, bei Kriegen, dringend benötigten Medikamenten, Seenotfällen, etc. Egal bei welcher Krisenlage, Funkamateure sind bei einem Ausfall der kommerziellen Telekommunikationsnetze weltweit oft die ersten, die wieder Kontakt zur Außenwelt herstellen können.

Funkamateure als Kommunikationsspezialisten

Um z.B. eine interkontinentale Funkverbindung auf Kurzwelle aufzubauen reichen neben den nötigen Kenntnissen über die Ausbreitungsbedingungen, einige Meter Draht als Antenne notfalls zwischen Trümmern und Bäumen gespannt, eine (Auto-) Batterie/ Solarzelle, und ein (selbstgebautes) Funkgerät mit rund 1–5 Watt Sendeleistung und eine Morsetaste bzw. Mikrofon aus. Bei über zwei Millionen Funkamateuren weltweit, die dank der Zeitverschiebung rund um die Uhr aktiv sind, erreicht man immer jemanden.

Hochwasser, Erdbeben, Stürme, Großfeuer und andere schwere Katastrophen zerstören und beschädigen fast immer Telekommunikationseinrichtungen. Dabei ist es irrelevant, ob die Technik neu oder alt ist. Ohne die entsprechende Infrastruktur und ohne Strom- und Telefonleitungen funktioniert sie nicht mehr. Besonders hier zeigt sich die Stärke des Amateurfunks. Funkamateure betreiben ihre Station unabhängig von einer Infrastruktur. Sie verfügen regional und länderübergreifend über zahlreiche Kontakte und leisten damit eine der wichtigsten Beiträge bei der Unterstützung von Behörden und Hilfsorganisationen in der Notfallkommunikation.

Ein großer Vorteil des Amateurfunkdienstes sind hierbei weltweit zugewiesene Frequenzbereiche. Somit ist eine unkomplizierte grenzüberschreitende Kommunikation jederzeit möglich, während es bei der Zusammenarbeit verschiedener Hilfskräfte wie z.B. BOS, Bundesheer, örtliche Energieversorger, etc. schon bei regionalen/ nationalen Großschadenslagen immer wieder an den unterschiedlichen Funkdiensten und Frequenzen scheitert. Ein weiterer Vorteil besteht darin, dass der Funkamateur seine Geräte bestens kennt, da er durch den laufenden Betrieb praktisch immer am Üben ist.

Ausgabe: 26.04.2024 Dieses Dokument wurde erzeugt mit BlueSpice

Erinnern Sie sich noch?

12. Jänner 2010 - Erdbebenkatastrophe in Haiti

BH-Einsatz

- April 2009 Erdbebenkatastrophe in l'Aquila, Italien
- 1. Jänner 2005 Tsunami in Südostasien
- 23. August 2005 Überschwemmung in Bezau
- 23. Februar 1999 Lawinenunglück in Galtür
- Weitere Notfunkaktionen der Funkamateure [1]

Kompetenz der Funkamateure

Diese ist von der Internationalen Fernmeldeunion (ITU) in zwei Bereichen festgelegt:

- Alarmierung Empfangen und Verteilen von Alarmmeldungen
- Entlastung bzw. Unterstützung von Einsatzorganisationen (bei der Organisation von Hilfe in Gebieten, in denen andere [Telekom] Dienste noch nicht verfügbar sind).

Siehe ITU-EmComm: [2]

Richtlinien

Aufnehmen und Weiterleiten einer Notfallmeldung

- Wer? Name und Standort des Melders
- Wo? Orts des Notfalls
- Was? Was ist passiert, was ist zu tun, welche Hilfe wird angefordert und ist erforderlich?
- Wieviele? Verletze, Betroffene, etc.
- Welche? Art der vermutlichen Verletzung, Erkrankung und eingetretene Schäden
- Die Notrufzentrale, die Funkleitstation oder die den Notruf aufnehmende Station beendet die Verbindung erst dann, wenn sie alle Informationen bekommen hat, die für eine Hilfeleistung erforderlich sind.

Notfallkarte [3]

Richtlinien für den Not- und Katastrophenfunk

Am Beispiel Niederösterreich:

Teil 1 Allgemeiner Teil

Not- und Katastrophenfunk Referat des Landesverband Niederösterreich des ÖVSV

Not- und Katastrophenfunk-Konzept Version 1.1 vom 18.5.2007

Not- und Katastrophenfunk Referat des Landesverbandes Niederösterreich des ÖVSV

OE- Richtlinie

Not- und Katastrophenfunk

Teil 1

Allgemeines

Revisionshistorie:

Ausgabe	Datum	Änderung	Autor
1.0	3.4.2007	Initialversion	G. Scholz
1.1	18.05.2007	Überarbeitet für OE-Version	M.Maringer

Ausgabe 1.1 vom 18.5.2007

Seite 1 von 14

Teil 2 Niederösterreich

Not- und Katastrophenfunk Referat des Landesverband Niederösterreich des ÖVSV

Not- und Katastrophenfunk-Konzept Version 2.5 vom 17.7.2009

Not- und Katastrophenfunk Referat des Landesverbandes Niederösterreich des ÖVSV

Richtlinie

Not- und Katastrophenfunk

Teil 2

NIEDERÖSTERREICH

Revisionshistorie:

Ausgabe	Datum	Änderung	Autor
1.0	3.4.2007	Initialversion	G. Scholz
2.0	27.8.2007	Ergänzung Pager-Alarmierung	G. Scholz
2.1	9.1.2008	Korrektur Tel.Nummer	G. Scholz
2.2	5.9.2008	Ergänzung ADL 324, div. Korrekturen	G. Scholz
2.3	20.12.2008	Adressänderung OE3CJB	G. Scholz
2.4	29.1.2009	Korrektur Notruf144	G. Scholz
2.5	17.7.2009	kleinere Korrekturen	G. Scholz

Ausgabe 2.5 vom17.7.2009

Seite 1 von 7

Für einige weitere Bundesländer bestehen bereits angepasste Versionen (z.B. Tirol) in denen länderspezifische Besonderheiten (z.B. Ansprechpartner, Adressen, technische Ausstattung usw.) eingearbeitet wurden. Bei Bedarf werden diese Richtlinien ergänzt oder überarbeitet!

IARU Notfunk Prozedur (Deutsch)

IARU

INTERNATIONALE NOTFUNK PROZEDUR FÜR KURZWELLE

Wie von allen 3 Regionen angenommen

Alarm- und Warnsignale, Notruf

DER NOTRUF [4]

Frequenzen

Für die weltweite 'Kompatibilität' wurden von der IARU-Konferenz Frequenzen beschlossen, die von allen Regionen benutzt werden können. Sprechfunkbetrieb findet auf der Kurzwelle nicht auf einer Frequenz (Kanal) statt, sondern rund um die 'Center of Activity'-Frequenzen (CoA). Im Regelfall bewegt man sich +/-5kHz um CoA - je nach Belegung und/oder Störungen.

Selbstverständlich kann jede passende Frequenz im Bedarfsfall zur Katfunkfrequenz ernannt werden.

Auflistung der Notfunkfrequenzen > Notfunk Frequenzen

Betriebsarten

Im Katfunk kommt in der ersten Phase einer Katlage die Verbindungsaufnahme meist per **Sprache** zu stande. In weiterer Folge ist die Übermittlung von schriftlichen und bildlichen Informationen per **Email** via Kurzwelle/Ultrakurzwelle[5] ein essentieller Teil einer sicheren und stabilen Krisentelekommunikation.

Andere Betriebsarten spielen nur am Rande oder bei besonderen Lagen eine Rolle: In den Betriebsarten **CW**[6] und **PSK31**[7] sind bei Bedarf mit Minimalequipment und geringen Sendeleistungen weltweite Verbindungen möglich. Leider fehlt hier die Möglichkeit der fehlerfreien Informationsübertragung. SSTV oder **ATV** [8] zur Bildübertragung wird immer mehr ein wichtiges Element in der Führungsunterstützung für Einsatzleitungen, die durch den Amateurfunkdienst unterstützt werden.

Globale Netzwerke

Winlink

Winlink 2000 (WL2K) [9] ist ein weltweites "Email via Funk" System welches ausschließlich von lizensierten Funkamateuren auf nicht kommerzieller Basis betrieben wird. Das Winlink-System liefert wertvolle Dienste für die Not- und Krisenkommunikation, nämlich überall dort wo es keinen Internet Zugang (mehr) gibt. Mit Hilfe moderner Computer- und Netzwerktechnik und unter strikter Beachtung der Internet RFC-Empfehlungen ist das Winlink Development Team (WDT) um eine ständige Verbesserung für lokale, regionale und internationale Anwendungen bemüht. Um das WL2K System zu verwenden, müssen Sie eine Amateur-Funklizenz besitzen. Die Nutzung des Systems und aller Software ist kostenlos. [10] WL2K ist ein Non-Profit-Projekt der Amateur Radio Safety Foundation,Inc. [11]

WL2K Zugänge in OE:

Betriebsart **Pactor** OE3XEC[12] - Betriebsart AX.25 Packet Radio OE7XLR-13 und OE3XAR-10[13]

In der Betriebsart **Winmor** sind in EU meist nur 2-4 Stationen aktiv. Es ist jedoch anzunehmen, daß die gegenüber Pactor kostengünstigere Betriebsart (eine Soundkarte, wie bei PSK31 oder RTTY eingesetzt, genügt) eine rasche Verbreitung finden wird. Derzeit (Stand 1.10.2010) sind halbwegs sicher erreichbar: OE5XCL-5 in Wels (Dial 3612 kHz USB) und DA5UHR-5 in Frankfurt (Dial 7048,4 kHz USB), gelegentlich auch PD4U-5 in Apeldoorn (Dial 14109 kHz USB) und LA3F-5 in Sofiemyr (Dial 3596 kHz USB). Aber auch User-zu-User Verbindungen (Peer-to-Peer) sind im Notfunk, wenn keine Email-Vermittlung über Internet verfügbar, möglich. Als Client Software kann derzeit nur **RMS Express** [14] eingesetzt werden.

Zeitweise sind noch bemannte Stationen QRV, die ein Gateway zum WL2K-Netzwerk in RobustPacketRadio (RPR) zur Verfügung stellen. Zur Zeit sind das Versuche wobei kein 24/7 Betrieb gewährleistet werden kann. Bei Erfolg, könnte die eine oder andere Station als unbemannte Station dauerhaft onair gehen.

Echolink

Seit Inkrafttreten der neuen Amateurfunkverordnung ist es gestattet, Amateurfunkgeräte mit dem Internet zu verbinden.

EchoLink ist ein Internetprogramm, mithilfe dessen sich lizensierte Funkamateure der ganzen Welt mittels Computer über das Internet miteinander unterhalten können. Wie oben erwähnt, können nun auch Amateurfunkgeräte mit EchoLink verbunden werden. Jeder EchoLink-Station wird beim erstmaligen Einloggen eine sogenannte (nur einmalig vergebene) Node-Nummer zugewiesen (meistens vier- bis sechsstellig). Mittels DTMF-Tönen sind diese Stationen dann bei Betrieb über Funk durch Eingabe der Node-Nummer oder des Rufzeichens erreichbar. Weitere Informationen [15] und [16]

APRS

Im Amateurfunk wird APRS (Automatic Packet Reporting System) dazu verwendet, um Informationen und Meßdaten, egal welcher Art, weltweit zu übertragen. Die Verbreitung (Digipeating) der APRS-Daten erfolgt auf der europaweit einheitlichen Frequenz 144.800 MHz im 2m-Amateurfunkband mit 1200 Baud. [17]

Partnerorganisationen

Unter Partnerorganisationen sind jene zu verstehen, die entweder die Unterstützung des Amateurfunkdienstes in Anspruch nehmen und/oder selber Funkamateure mit entsprechenden Funktionen beschäftigen.

Beim Österreichischen Roten Kreuz[18] sind in allen Bundesländern Telekomeinheiten mit lizensierten Funkamateuren integriert, die im Katfall auch auf den Amateurfunkdienst als Rückfallebene zurückgreifen können. Damit ist bei Bedarf die Kommunikation mit externen Funkamateuren sichergestellt.

Die **Landeswarnzentralen (LWZ)** der Landesregierungen (z.B. Tirol[19]) bzw. in der **Katastrophenleitzentrale** der Gemeinde Wien (KLZ) sind im Katfall für die Krisentelekommunikation innerhalb des jeweiligen Bundeslandes und mit der Bundeswarnzentrale (BWZ[20]) beim BMI zuständig. Auch in den LWZ's und der KLZ wird Schritt für Schritt oder ist bereits der Amateurfunkdienst als unterstützendes Führungsmittel integriert.

Das **österreichische Bundesheer** hat schon seit vielen Jahren eine eigene Amateurfunkgruppierung AMRS[21] die aus Heeresangehörigen mit Amateurfunklizenz besteht und ebenfalls im Katfall über den Amateurfunkdienst auf die große Anzahl externer Funkamateure weltweit zugreifen kann!

Allen Partnerorganisationen wurden durch die oberste Fernmeldbehörde (OFMB[22]) Rufzeichen (z.B. OEH, OEK, OEY) als sog. Staatsfunkstellen zugewiesen. Diese Staatsfunkstellen betreiben abseits des Amateurfunkdienstes Kurzwellenbetrieb auf eigenen Frequenzen innerhalb Österreichs.

Im Krisenfall sind diese Staatsfunkstellen befugt mit Funkamateuren auf Amateurfunkfrequenzen Funkbetrieb abzuwickeln.

Übungen, Seminare, Weiterbildung, Schulungen usw.

Funkamateure sind durch die regelmäßige Ausübung ihres Hobbys

in der Bedienung ihrer Ausrüstung bestens geschult. Jedoch erfordert die Abwicklung von Not- und Katfunkbetrieb spezielle Kenntnisse über Abläufe, über die Organisation der BOS [23] und deren Notwendigkeiten, sowie auch den Umgang mit Meldungen. Auch der Betrieb der eigenen Ausrüstung weicht oftmals vom Üblichen ab.

an der Katastrophentelekommunikation beteiligten Funkamateure ein wichtiger Punkt. Einerseits wird das theoretische Rüstzeug in Seminaren und Workshops vermittelt und andererseits werden diese Kenntnisse in praktischen Übungen erprobt und verbessert.

AOEC:

Eine - zumindest in Europa - einzigartige Besonderheit stellt der AOEC (All_OE_Contest) jeweils am 1. Mai jeden Jahres dar. Dabei ist es den Funkamateuren und den OP's der Staatsfunkstellen erlaubt, miteinander auf Amateurfunkfrequenzen Verbindungen aufzunehmen. Diese Katfunkübung - die zwar als Contest ausgeschrieben ist - soll den 'nicht_lizensierten' OP's der Staatsfunkstellen die Möglichkeit geben, sich mit den Eigenheiten des Amateurfunkbetriebes vertraut zu machen. Umgekehrt natürlich ebenso!

Mittlerweile sind bei diesen Organisationen ebenfalls zahlreiche Funkamateure im Einsatz, die den Betrieb abwickeln und dann auch für allfällige Realeinsätze zur Verfügung stehen.

Vergleichbar mit dem AOEC ist der sog. 'X-Test' - ein Crossbandtest in den USA, bei dem die Funkamateure auf Amateurfunkfrequenzen senden und auf kommerziellen Frequenzen der Partner hören. Die Partner (z.B. MARS) senden auf deren zugewiesenen Frequenzen und hören auf Amateurfunkfrequenzen. Somit entstehen Crossbandverbindungen, bei denen jeder Beteiligte Sendebetrieb nur entsprechend seiner Lizenz durchführt.

GSET:

Ausgabe: 26.04.2024

GSET heisst 'Global Simulated Emcomm Test' und bedeutet soviel wie globaler simulierter Katfunktest. Im Rahmen dieses von Greg Mossup, G0DUB ins Leben gerufenen Tests verfassen und versenden die teilnehmenden Emcomm Stationen aus allen drei IARU-Regionen standardisierte Meldungen. Die Kette der Weiterleitung von Sprachmeldungen und die Abgabe von digitalen Meldungen endet in einer Emailadresse an der die einlangenen Nachrichten nach Laufzeit und Vollständigleit ausgewertet werden.

Eine der wichtigsten Erkenntnisse der letzten Tests haben gezeigt, dass die Übermittlung von Emails über Kurzwelle über das Winlinknetzwerk die Weiterleitung und Aufnahme von Sprachnachrichten an Sicherheit, Vollständigkeit und Geschwindigkeit bei Weitem übertrifft!

Regionale Übungen:

In vielen Bundesländern werden sog. Katfielddays abgehalten. Dabei wird über eine Dauer von einigen Stunden bis zu einigen Tagen von Orten ohne Infrastruktur katfunkmässiger Betrieb abgewickelt. Die eingesetzte Ausrüstung wie Stromerzeuger, Solarpanele, speziell gefertigte Katfunkkoffer, einfache Drahtantennen, sowie Laptops und Software werden auf Einsatztauglichkeit getestet.

Dabei wurden schon einige Erkenntnisse gewonnen, die zu Verbesserungen oder Änderungen der eigenen oder fremden Ausrüstung oder Betriebsabwicklung geführt haben.

Notfunk Checkliste

Integrierte Übungen mit BOS:

Vereinzelt haben bereits regionale Katschutzbehörden wie z.B. die Bezirkshauptmannschaft Gmünd oder einige Gemeinden den Amateurfunkdienst bei sog. Stabsrahmenübungen in die Kommunikationsabläufe integriert. Das erhöhnt natürlich das Vertrauen in die Verlässlichkeit und in die Kompetenz der Funkamateure bei den Teilnehmern.

Seminare:

Seminare und Workshops vermitteln vertiefende Kenntnisse in Spezialbereichen. Beispielsweise wird die Theorie, der Aufbau und Betrieb von einfachen Drahtantennen in Katlagen erarbeitet.

Auch die im Katfunk eingesetzten Verfahren der Nachrichtenübermittlung über Pactor oder Packet Radio mit evt. Weiterleitung über das Winlinknetzwerk wird bei solchen Veranstaltungen den interessierten Katfunkern in Theorie und Praxis näher gebracht.

Präsentationen:

Die Veranstalter von Sicherheitstagen (österreichweit), Tag der offenen Türen (z.B. Bundesheer), Messen (z.B. Rettermesse Wels), Leistungsschauen (z.B. Rotes Kreuz) bieten dem Amateurfunkdienst eine Plattform, seine Möglichkeiten in der Krisentelekommunikation einem breiteren Publikum zu präsentieren. Hier werden die Emcomm-Ausrüstungen in Betrieb genommen und die damit möglichen Varianten der Verbindungsaufnahmen demonstriert.

Ansprechpartner in den Landesverbänden

Grundsätzlich sind die Ansprechpartner in den Landesverbänden unter der Adresse 'notfunk. oex@oevsv.at' zu erreichen!

Das 'oex' steht für den jeweiligen LV, z.B. OE1

Notfunkrunde

jeden ersten Mittwoch im Monat 19:45 Uhr Lokalzeit auf 3.643 KHz (+/- QRM)

IARU und Notfunk in anderen Ländern

- Amateur Radio Emergency Communications International [24]
- IARU-Region 1 Emergency Communication [25]
- Deutschland DARC Notfunk-Referat [26]
- Schweiz IG Notfunk [27]
- Holland DARES [28] & [29]
- ARRL Emergency Radio [30] Amateur Radio Today Youtube Video [31]
- England RAYNET [32]
- IRESC International Radio Emergency Support Coalition [33]
- Italien RNRE [34]
- Frankreich F.N.R.A.S.E.C. [35]
- Australien WICEN [36]
- Vereinigte Staaten von Amerika ARES [37]

Links

Amateurfunkstationen in Österreich [38]

Unwetterwarnungen für Österreich - Skywarn [39]

Unwetterwarnungen für Österreich - Unwetterzentrale [40]

Alarm-Pagernetz in Ost-Österreich [41]

Kontakt

Not- und Katfunkreferat im DV: Michael Maringer, OE1MMU oe1mmu@oevsv.at

Kategorie: NOTFUNK: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 1. Oktober 2010, 20:20 Uhr (Quelltext anzeigen)

OE1FEA (Diskussion | Beiträge) K (→Partnerorganisationen)

← Zum vorherigen Versionsunterschied

Anonym (Diskussion | Beiträge)

Zum nächsten Versionsunterschied →

Version vom 1. Januar 2011, 12:19 Uhr (Q

uelltext anzeigen)

Zeile 5:

ARENA - The Amateur Radio Emergency Network Austria is a national voluntary service that is provided to the community by licensed radio amateurs. ARENA is part of the OEVSV and IARU - the national and international amateur radio associations. Our focus is to support the public in the event of crises when conventional communication systems fail. Many of our members are volunteers in organizations such as the Austrian Red Cross, Civil Defense, fire brigades, military and related institutions.

Unique EmComm support is provided by use of the HF, VHF and UHF frequency spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink and APRS. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non-government organizations is also maintained.

Ausgabe: 26.04.2024

Zeile 5:

ARENA - The Amateur Radio Emergency Network Austria is a national voluntary service that is provided to the community by licensed radio amateurs. ARENA is part of the OEVSV and IARU - the national and international amateur radio associations. Our focus is to support the public in the event of crises when conventional communication systems fail. Many of our members are volunteers in organizations such as the Austrian Red Cross, Civil Defense, fire brigades, military and related institutions.

spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink, APRS and HAM **NET**. For instance, one of the 5 mirrorredundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Unique EmComm support is provided by

use of the HF, VHF and UHF frequency

Version vom 1. Januar 2011, 12:19 Uhr

NOTFUNK-OE

AMATEUR RADIO EMERGENCY NETWORK AUSTRIA

English Summary

ARENA - The Amateur Radio Emergency Network Austria is a national voluntary service that is provided to the community by licensed radio amateurs. ARENA is part of the OEVSV and IARU - the national and international amateur radio associations. Our focus is to support the public in the event of crises when conventional communication systems fail. Many of our members are volunteers in organizations such as the Austrian Red Cross, Civil Defense, fire brigades, military and related institutions. Unique EmComm support is provided by use of the HF, VHF and UHF frequency spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink, APRS and HAMNET. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Inhaltsverzeichnis

1 Allgemeines	. 51
2 Kompetenz der Funkamateure	. 52
3 Richtlinien	. 52
3.1 Aufnehmen und Weiterleiten einer Notfallmeldung	. 52
3.2 Richtlinien für den Not- und Katastrophenfunk	. 52
4 Alarm- und Warnsignale, Notruf	. 56

Ausgabe: 26.04.2024 Dieses Dokument wurde erzeugt mit BlueSpice

5 Frequenzen	57
6 Betriebsarten	57
7 Globale Netzwerke	58
7.1 Winlink	58
7.2 Echolink	58
7.3 APRS	59
8 Partnerorganisationen	59
9 Übungen, Seminare, Weiterbildung, Schulungen usw	
10 Ansprechpartner in den Landesverbänden	61
11 Notfunkrunde	62
12 IARU und Notfunk in anderen Ländern	62
13 Links	62
14 Kontakt	62

Allgemeines

Katastrophenfunkverkehr

Katastrophenfunkverkehr ist die Übermittlung von Nachrichten, die den nationalen oder internationalen Hilfeleistungsverkehr betreffen, zwischen Funkstellen innerhalb eines Katastrophengebietes sowie zwischen einer Funkstelle im Katastrophengebiet und Hilfe leistenden Organisationen.

Notfunkverkehr

Notfunkverkehr ist die Übermittlung von Nachrichten zwischen einer Funkstelle, die selbst in Not ist oder an einem Notfall beteiligt oder Zeuge des Notfalles ist, und einer oder mehreren Hilfe leistenden Funkstellen.

Unsere Aufgaben als Funkamateure

Funkamateure unterstützen Hilfsorganisationen und andere Behörden und Organisationen mit Sicherheitsaufgaben, oder leiten empfangene Notrufe an diese weiter.

Von jeher haben Funkamateure weltweit ihre Gerätschaften und ihr Wissen für Hilfeleistungen zur Verfügung gestellt. Für Notrufe, bei Naturkatastrophen, in Entwicklungsländern, bei Kriegen, dringend benötigten Medikamenten, Seenotfällen, etc. Egal bei welcher Krisenlage, Funkamateure sind bei einem Ausfall der kommerziellen Telekommunikationsnetze weltweit oft die ersten, die wieder Kontakt zur Außenwelt herstellen können.

Funkamateure als Kommunikationsspezialisten

Um z.B. eine interkontinentale Funkverbindung auf Kurzwelle aufzubauen reichen neben den nötigen Kenntnissen über die Ausbreitungsbedingungen, einige Meter Draht als Antenne notfalls zwischen Trümmern und Bäumen gespannt, eine (Auto-) Batterie/ Solarzelle, und ein (selbstgebautes) Funkgerät mit rund 1–5 Watt Sendeleistung und eine Morsetaste bzw. Mikrofon aus. Bei über zwei Millionen Funkamateuren weltweit, die dank der Zeitverschiebung rund um die Uhr aktiv sind, erreicht man immer jemanden.

Hochwasser, Erdbeben, Stürme, Großfeuer und andere schwere Katastrophen zerstören und beschädigen fast immer Telekommunikationseinrichtungen. Dabei ist es irrelevant, ob die Technik neu oder alt ist. Ohne die entsprechende Infrastruktur und ohne Strom- und Telefonleitungen funktioniert sie nicht mehr. Besonders hier zeigt sich die Stärke des Amateurfunks. Funkamateure betreiben ihre Station unabhängig von einer Infrastruktur. Sie verfügen regional und länderübergreifend über zahlreiche Kontakte und leisten damit eine der wichtigsten Beiträge bei der Unterstützung von Behörden und Hilfsorganisationen in der Notfallkommunikation.

Ein großer Vorteil des Amateurfunkdienstes sind hierbei weltweit zugewiesene Frequenzbereiche. Somit ist eine unkomplizierte grenzüberschreitende Kommunikation jederzeit möglich, während es bei der Zusammenarbeit verschiedener Hilfskräfte wie z.B. BOS, Bundesheer, örtliche Energieversorger, etc. schon bei regionalen/ nationalen Großschadenslagen immer wieder an den unterschiedlichen Funkdiensten und Frequenzen scheitert. Ein weiterer Vorteil besteht darin, dass der Funkamateur seine Geräte bestens kennt, da er durch den laufenden Betrieb praktisch immer am Üben ist.

Ausgabe: 26.04.2024 Dieses Dokument wurde erzeugt mit BlueSpice

Erinnern Sie sich noch?

• 12. Jänner 2010 - Erdbebenkatastrophe in Haiti

BH-Einsatz

- April 2009 Erdbebenkatastrophe in l'Aquila, Italien
- 1. Jänner 2005 Tsunami in Südostasien
- 23. August 2005 Überschwemmung in Bezau
- 23. Februar 1999 Lawinenunglück in Galtür
- Weitere Notfunkaktionen der Funkamateure [1]

Kompetenz der Funkamateure

Diese ist von der Internationalen Fernmeldeunion (ITU) in zwei Bereichen festgelegt:

- Alarmierung Empfangen und Verteilen von Alarmmeldungen
- Entlastung bzw. Unterstützung von Einsatzorganisationen (bei der Organisation von Hilfe in Gebieten, in denen andere [Telekom] Dienste noch nicht verfügbar sind).

Siehe ITU-EmComm: [2]

Richtlinien

Aufnehmen und Weiterleiten einer Notfallmeldung

- Wer? Name und Standort des Melders
- Wo? Orts des Notfalls
- Was? Was ist passiert, was ist zu tun, welche Hilfe wird angefordert und ist erforderlich?
- Wieviele? Verletze, Betroffene, etc.
- Welche? Art der vermutlichen Verletzung, Erkrankung und eingetretene Schäden
- Die Notrufzentrale, die Funkleitstation oder die den Notruf aufnehmende Station beendet die Verbindung erst dann, wenn sie alle Informationen bekommen hat, die für eine Hilfeleistung erforderlich sind.

Notfallkarte [3]

Richtlinien für den Not- und Katastrophenfunk

Am Beispiel Niederösterreich:

Teil 1 Allgemeiner Teil

Not- und Katastrophenfunk Referat des Landesverband Niederösterreich des ÖVSV

Not- und Katastrophenfunk-Konzept Version 1.1 vom 18.5.2007

Not- und Katastrophenfunk Referat des Landesverbandes Niederösterreich des ÖVSV

OE- Richtlinie

Not- und Katastrophenfunk

Teil 1

Allgemeines

Revisionshistorie:

Ausgabe	Datum	Änderung	Autor
1.0	3.4.2007	Initialversion	G. Scholz
1.1	18.05.2007	Überarbeitet für OE-Version	M.Maringer

Ausgabe 1.1 vom 18.5.2007

Seite 1 von 14

Teil 2 Niederösterreich

Not- und Katastrophenfunk Referat des Landesverband Niederösterreich des ÖVSV

Not- und Katastrophenfunk-Konzept Version 2.5 vom 17.7.2009

Not- und Katastrophenfunk Referat des Landesverbandes Niederösterreich des ÖVSV

Richtlinie

Not- und Katastrophenfunk

Teil 2

NIEDERÖSTERREICH

Revisionshistorie:

Ausgabe	Datum	Änderung	Autor
1.0	3.4.2007	Initialversion	G. Scholz
2.0	27.8.2007	Ergänzung Pager-Alarmierung	G. Scholz
2.1	9.1.2008	Korrektur Tel.Nummer	G. Scholz
2.2	5.9.2008	Ergänzung ADL 324, div. Korrekturen	G. Scholz
2.3	20.12.2008	Adressänderung OE3CJB	G. Scholz
2.4	29.1.2009	Korrektur Notruf144	G. Scholz
2.5	17.7.2009	kleinere Korrekturen	G. Scholz

Ausgabe 2.5 vom17.7.2009

Seite 1 von 7

Für einige weitere Bundesländer bestehen bereits angepasste Versionen (z.B. Tirol) in denen länderspezifische Besonderheiten (z.B. Ansprechpartner, Adressen, technische Ausstattung usw.) eingearbeitet wurden. Bei Bedarf werden diese Richtlinien ergänzt oder überarbeitet!

IARU Notfunk Prozedur (Deutsch)

IARU

INTERNATIONALE NOTFUNK PROZEDUR FÜR KURZWELLE

Wie von allen 3 Regionen angenommen

Alarm- und Warnsignale, Notruf

DER NOTRUF [4]

Frequenzen

Für die weltweite 'Kompatibilität' wurden von der IARU-Konferenz Frequenzen beschlossen, die von allen Regionen benutzt werden können. Sprechfunkbetrieb findet auf der Kurzwelle nicht auf einer Frequenz (Kanal) statt, sondern rund um die 'Center of Activity'-Frequenzen (CoA). Im Regelfall bewegt man sich +/-5kHz um CoA - je nach Belegung und/oder Störungen.

Selbstverständlich kann jede passende Frequenz im Bedarfsfall zur Katfunkfrequenz ernannt werden.

Auflistung der Notfunkfrequenzen > Notfunk Frequenzen

Betriebsarten

Im Katfunk kommt in der ersten Phase einer Katlage die Verbindungsaufnahme meist per **Sprache** zu stande. In weiterer Folge ist die Übermittlung von schriftlichen und bildlichen Informationen per **Email** via Kurzwelle/Ultrakurzwelle[5] ein essentieller Teil einer sicheren und stabilen Krisentelekommunikation.

Andere Betriebsarten spielen nur am Rande oder bei besonderen Lagen eine Rolle: In den Betriebsarten **CW**[6] und **PSK31**[7] sind bei Bedarf mit Minimalequipment und geringen Sendeleistungen weltweite Verbindungen möglich. Leider fehlt hier die Möglichkeit der fehlerfreien Informationsübertragung. SSTV oder **ATV** [8] zur Bildübertragung wird immer mehr ein wichtiges Element in der Führungsunterstützung für Einsatzleitungen, die durch den Amateurfunkdienst unterstützt werden.

Globale Netzwerke

Winlink

Winlink 2000 (WL2K) [9] ist ein weltweites "Email via Funk" System welches ausschließlich von lizensierten Funkamateuren auf nicht kommerzieller Basis betrieben wird. Das Winlink-System liefert wertvolle Dienste für die Not- und Krisenkommunikation, nämlich überall dort wo es keinen Internet Zugang (mehr) gibt. Mit Hilfe moderner Computer- und Netzwerktechnik und unter strikter Beachtung der Internet RFC-Empfehlungen ist das Winlink Development Team (WDT) um eine ständige Verbesserung für lokale, regionale und internationale Anwendungen bemüht. Um das WL2K System zu verwenden, müssen Sie eine Amateur-Funklizenz besitzen. Die Nutzung des Systems und aller Software ist kostenlos. [10] WL2K ist ein Non-Profit-Projekt der Amateur Radio Safety Foundation,Inc. [11]

WL2K Zugänge in OE:

Betriebsart **Pactor** OE3XEC[12] - Betriebsart AX.25 Packet Radio OE7XLR-13 und OE3XAR-10[13]

In der Betriebsart **Winmor** sind in EU meist nur 2-4 Stationen aktiv. Es ist jedoch anzunehmen, daß die gegenüber Pactor kostengünstigere Betriebsart (eine Soundkarte, wie bei PSK31 oder RTTY eingesetzt, genügt) eine rasche Verbreitung finden wird. Derzeit (Stand 1.10.2010) sind halbwegs sicher erreichbar: OE5XCL-5 in Wels (Dial 3612 kHz USB) und DA5UHR-5 in Frankfurt (Dial 7048,4 kHz USB), gelegentlich auch PD4U-5 in Apeldoorn (Dial 14109 kHz USB) und LA3F-5 in Sofiemyr (Dial 3596 kHz USB). Aber auch User-zu-User Verbindungen (Peer-to-Peer) sind im Notfunk, wenn keine Email-Vermittlung über Internet verfügbar, möglich. Als Client Software kann derzeit nur **RMS Express** [14] eingesetzt werden.

Zeitweise sind noch bemannte Stationen QRV, die ein Gateway zum WL2K-Netzwerk in RobustPacketRadio (RPR) zur Verfügung stellen. Zur Zeit sind das Versuche wobei kein 24/7 Betrieb gewährleistet werden kann. Bei Erfolg, könnte die eine oder andere Station als unbemannte Station dauerhaft onair gehen.

Echolink

Seit Inkrafttreten der neuen Amateurfunkverordnung ist es gestattet, Amateurfunkgeräte mit dem Internet zu verbinden.

EchoLink ist ein Internetprogramm, mithilfe dessen sich lizensierte Funkamateure der ganzen Welt mittels Computer über das Internet miteinander unterhalten können. Wie oben erwähnt, können nun auch Amateurfunkgeräte mit EchoLink verbunden werden. Jeder EchoLink-Station wird beim erstmaligen Einloggen eine sogenannte (nur einmalig vergebene) Node-Nummer zugewiesen (meistens vier- bis sechsstellig). Mittels DTMF-Tönen sind diese Stationen dann bei Betrieb über Funk durch Eingabe der Node-Nummer oder des Rufzeichens erreichbar. Weitere Informationen [15] und [16]

APRS

Im Amateurfunk wird APRS (Automatic Packet Reporting System) dazu verwendet, um Informationen und Meßdaten, egal welcher Art, weltweit zu übertragen. Die Verbreitung (Digipeating) der APRS-Daten erfolgt auf der europaweit einheitlichen Frequenz 144.800 MHz im 2m-Amateurfunkband mit 1200 Baud. [17]

Partnerorganisationen

Unter Partnerorganisationen sind jene zu verstehen, die entweder die Unterstützung des Amateurfunkdienstes in Anspruch nehmen und/oder selber Funkamateure mit entsprechenden Funktionen beschäftigen.

Beim Österreichischen Roten Kreuz[18] sind in allen Bundesländern Telekomeinheiten mit lizensierten Funkamateuren integriert, die im Katfall auch auf den Amateurfunkdienst als Rückfallebene zurückgreifen können. Damit ist bei Bedarf die Kommunikation mit externen Funkamateuren sichergestellt.

Die **Landeswarnzentralen (LWZ)** der Landesregierungen (z.B. Tirol[19]) bzw. in der **Katastrophenleitzentrale** der Gemeinde Wien (KLZ) sind im Katfall für die Krisentelekommunikation innerhalb des jeweiligen Bundeslandes und mit der Bundeswarnzentrale (BWZ[20]) beim BMI zuständig. Auch in den LWZ's und der KLZ wird Schritt für Schritt oder ist bereits der Amateurfunkdienst als unterstützendes Führungsmittel integriert.

Das **österreichische Bundesheer** hat schon seit vielen Jahren eine eigene Amateurfunkgruppierung AMRS[21] die aus Heeresangehörigen mit Amateurfunklizenz besteht und ebenfalls im Katfall über den Amateurfunkdienst auf die große Anzahl externer Funkamateure weltweit zugreifen kann!

Allen Partnerorganisationen wurden durch die oberste Fernmeldbehörde (OFMB[22]) Rufzeichen (z.B. OEH, OEK, OEY) als sog. Staatsfunkstellen zugewiesen. Diese Staatsfunkstellen betreiben abseits des Amateurfunkdienstes Kurzwellenbetrieb auf eigenen Frequenzen innerhalb Österreichs.

Im Krisenfall sind diese Staatsfunkstellen befugt mit Funkamateuren auf Amateurfunkfrequenzen Funkbetrieb abzuwickeln.


Übungen, Seminare, Weiterbildung, Schulungen usw.

Funkamateure sind durch die regelmäßige Ausübung ihres Hobbys

in der Bedienung ihrer Ausrüstung bestens geschult. Jedoch erfordert die Abwicklung von Not- und Katfunkbetrieb spezielle Kenntnisse über Abläufe, über die Organisation der BOS [23] und deren Notwendigkeiten, sowie auch den Umgang mit Meldungen. Auch der Betrieb der eigenen Ausrüstung weicht oftmals vom Üblichen ab.

an der Katastrophentelekommunikation beteiligten Funkamateure ein wichtiger Punkt. Einerseits wird das theoretische Rüstzeug in Seminaren und Workshops vermittelt und andererseits werden diese Kenntnisse in praktischen Übungen erprobt und verbessert.

AOEC:

Eine - zumindest in Europa - einzigartige Besonderheit stellt der AOEC (All_OE_Contest) jeweils am 1. Mai jeden Jahres dar. Dabei ist es den Funkamateuren und den OP's der Staatsfunkstellen erlaubt, miteinander auf Amateurfunkfrequenzen Verbindungen aufzunehmen. Diese Katfunkübung - die zwar als Contest ausgeschrieben ist - soll den 'nicht_lizensierten' OP's der Staatsfunkstellen die Möglichkeit geben, sich mit den Eigenheiten des Amateurfunkbetriebes vertraut zu machen. Umgekehrt natürlich ebenso!

Mittlerweile sind bei diesen Organisationen ebenfalls zahlreiche Funkamateure im Einsatz, die den Betrieb abwickeln und dann auch für allfällige Realeinsätze zur Verfügung stehen.

Vergleichbar mit dem AOEC ist der sog. 'X-Test' - ein Crossbandtest in den USA, bei dem die Funkamateure auf Amateurfunkfrequenzen senden und auf kommerziellen Frequenzen der Partner hören. Die Partner (z.B. MARS) senden auf deren zugewiesenen Frequenzen und hören auf Amateurfunkfrequenzen. Somit entstehen Crossbandverbindungen, bei denen jeder Beteiligte Sendebetrieb nur entsprechend seiner Lizenz durchführt.

GSET:

Ausgabe: 26.04.2024

GSET heisst 'Global Simulated Emcomm Test' und bedeutet soviel wie globaler simulierter Katfunktest. Im Rahmen dieses von Greg Mossup, G0DUB ins Leben gerufenen Tests verfassen und versenden die teilnehmenden Emcomm Stationen aus allen drei IARU-Regionen standardisierte Meldungen. Die Kette der Weiterleitung von Sprachmeldungen und die Abgabe von digitalen Meldungen endet in einer Emailadresse an der die einlangenen Nachrichten nach Laufzeit und Vollständigleit ausgewertet werden.

Eine der wichtigsten Erkenntnisse der letzten Tests haben gezeigt, dass die Übermittlung von Emails über Kurzwelle über das Winlinknetzwerk die Weiterleitung und Aufnahme von Sprachnachrichten an Sicherheit, Vollständigkeit und Geschwindigkeit bei Weitem übertrifft!

Regionale Übungen:

In vielen Bundesländern werden sog. Katfielddays abgehalten. Dabei wird über eine Dauer von einigen Stunden bis zu einigen Tagen von Orten ohne Infrastruktur katfunkmässiger Betrieb abgewickelt. Die eingesetzte Ausrüstung wie Stromerzeuger, Solarpanele, speziell gefertigte Katfunkkoffer, einfache Drahtantennen, sowie Laptops und Software werden auf Einsatztauglichkeit getestet.

Dabei wurden schon einige Erkenntnisse gewonnen, die zu Verbesserungen oder Änderungen der eigenen oder fremden Ausrüstung oder Betriebsabwicklung geführt haben.

Notfunk Checkliste

Integrierte Übungen mit BOS:

Vereinzelt haben bereits regionale Katschutzbehörden wie z.B. die Bezirkshauptmannschaft Gmünd oder einige Gemeinden den Amateurfunkdienst bei sog. Stabsrahmenübungen in die Kommunikationsabläufe integriert. Das erhöhnt natürlich das Vertrauen in die Verlässlichkeit und in die Kompetenz der Funkamateure bei den Teilnehmern.

Seminare:

Seminare und Workshops vermitteln vertiefende Kenntnisse in Spezialbereichen. Beispielsweise wird die Theorie, der Aufbau und Betrieb von einfachen Drahtantennen in Katlagen erarbeitet.

Auch die im Katfunk eingesetzten Verfahren der Nachrichtenübermittlung über Pactor oder Packet Radio mit evt. Weiterleitung über das Winlinknetzwerk wird bei solchen Veranstaltungen den interessierten Katfunkern in Theorie und Praxis näher gebracht.

Präsentationen:

Die Veranstalter von Sicherheitstagen (österreichweit), Tag der offenen Türen (z.B. Bundesheer), Messen (z.B. Rettermesse Wels), Leistungsschauen (z.B. Rotes Kreuz) bieten dem Amateurfunkdienst eine Plattform, seine Möglichkeiten in der Krisentelekommunikation einem breiteren Publikum zu präsentieren. Hier werden die Emcomm-Ausrüstungen in Betrieb genommen und die damit möglichen Varianten der Verbindungsaufnahmen demonstriert.

Ansprechpartner in den Landesverbänden

Grundsätzlich sind die Ansprechpartner in den Landesverbänden unter der Adresse 'notfunk. oex@oevsv.at' zu erreichen!

Das 'oex' steht für den jeweiligen LV, z.B. OE1

Notfunkrunde

jeden ersten Mittwoch im Monat 19:45 Uhr Lokalzeit auf 3.643 KHz (+/- QRM)

IARU und Notfunk in anderen Ländern

- Amateur Radio Emergency Communications International [24]
- IARU-Region 1 Emergency Communication [25]
- Deutschland DARC Notfunk-Referat [26]
- Schweiz IG Notfunk [27]
- Holland DARES [28] & [29]
- ARRL Emergency Radio [30] Amateur Radio Today Youtube Video [31]
- England RAYNET [32]
- IRESC International Radio Emergency Support Coalition [33]
- Italien RNRE [34]
- Frankreich F.N.R.A.S.E.C. [35]
- Australien WICEN [36]
- Vereinigte Staaten von Amerika ARES [37]

Links

Amateurfunkstationen in Österreich [38]

Unwetterwarnungen für Österreich - Skywarn [39]

Unwetterwarnungen für Österreich - Unwetterzentrale [40]

Alarm-Pagernetz in Ost-Österreich [41]

Kontakt

Not- und Katfunkreferat im DV: Michael Maringer, OE1MMU oe1mmu@oevsv.at

Seiten in der Kategorie "NOTFUNK"

Folgende 12 Seiten sind in dieser Kategorie, von 12 insgesamt.

L

Lawinenunglück in Galtür

N

Notfunk Checkliste

- Notfunk Frequenzen
- Notfunk in den USA
- Notfunk in der Deutschland
- Notfunk in der Schweiz
- Notfunk in Österreich
- Notfunk Seminar Stream
- Notfunkaktionen

Т

Tsunami in Südostasien

W

WARN- und ALARMSIGNALE

Ü

• Überschwemmung in Bezau

Kategorie: NOTFUNK: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 1. Oktober 2010, 20:20 Uhr (Quelltext anzeigen)

OE1FEA (Diskussion | Beiträge)

K (→Partnerorganisationen)

← Zum vorherigen Versionsunterschied

Version vom 1. Januar 2011, 12:19 Uhr (Quelltext anzeigen)

Anonym (Diskussion | Beiträge)
Zum nächsten Versionsunterschied →

Zeile 5:

ARENA - The Amateur Radio Emergency
Network Austria is a national voluntary
service that is provided to the community
by licensed radio amateurs. ARENA is part
of the OEVSV and IARU - the national and
international amateur radio associations.
Our focus is to support the public in the
event of crises when conventional
communication systems fail. Many of our
members are volunteers in organizations
such as the Austrian Red Cross, Civil
Defense, fire brigades, military and related
institutions.

Unique EmComm support is provided by use of the HF, VHF and UHF frequency spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink and APRS. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Zeile 5:

ARENA - The Amateur Radio Emergency
Network Austria is a national voluntary
service that is provided to the community
by licensed radio amateurs. ARENA is part
of the OEVSV and IARU - the national and
international amateur radio associations.
Our focus is to support the public in the
event of crises when conventional
communication systems fail. Many of our
members are volunteers in organizations
such as the Austrian Red Cross, Civil
Defense, fire brigades, military and related
institutions.

spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink, APRS and HAM NET. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Unique EmComm support is provided by

use of the HF, VHF and UHF frequency

Version vom 1. Januar 2011, 12:19 Uhr

NOTFUNK-OE

AMATEUR RADIO EMERGENCY NETWORK AUSTRIA

English Summary

ARENA - The Amateur Radio Emergency Network Austria is a national voluntary service that is provided to the community by licensed radio amateurs. ARENA is part of the OEVSV and IARU - the national and international amateur radio associations. Our focus is to support the public in the event of crises when conventional communication systems fail. Many of our members are volunteers in organizations such as the Austrian Red Cross, Civil Defense, fire brigades, military and related institutions. Unique EmComm support is provided by use of the HF, VHF and UHF frequency spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink, APRS and HAMNET. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Inhaltsverzeichnis

1 Allgemeines	. 67
2 Kompetenz der Funkamateure	. 68
3 Richtlinien	. 68
3.1 Aufnehmen und Weiterleiten einer Notfallmeldung	. 68
3.2 Richtlinien für den Not- und Katastrophenfunk	. 68
4 Alarm- und Warnsignale, Notruf	. 72

5 Frequenzen	}
6 Betriebsarten	3
7 Globale Netzwerke	4
7.1 Winlink	4
7.2 Echolink	4
7.3 APRS	5
8 Partnerorganisationen	5
9 Übungen, Seminare, Weiterbildung, Schulungen usw	5
10 Ansprechpartner in den Landesverbänden	7
11 Notfunkrunde	8
12 IARU und Notfunk in anderen Ländern	8
13 Links	8
14 Kontakt	8

Allgemeines

Katastrophenfunkverkehr

Katastrophenfunkverkehr ist die Übermittlung von Nachrichten, die den nationalen oder internationalen Hilfeleistungsverkehr betreffen, zwischen Funkstellen innerhalb eines Katastrophengebietes sowie zwischen einer Funkstelle im Katastrophengebiet und Hilfe leistenden Organisationen.

Notfunkverkehr

Notfunkverkehr ist die Übermittlung von Nachrichten zwischen einer Funkstelle, die selbst in Not ist oder an einem Notfall beteiligt oder Zeuge des Notfalles ist, und einer oder mehreren Hilfe leistenden Funkstellen.

Unsere Aufgaben als Funkamateure

Funkamateure unterstützen Hilfsorganisationen und andere Behörden und Organisationen mit Sicherheitsaufgaben, oder leiten empfangene Notrufe an diese weiter.

Von jeher haben Funkamateure weltweit ihre Gerätschaften und ihr Wissen für Hilfeleistungen zur Verfügung gestellt. Für Notrufe, bei Naturkatastrophen, in Entwicklungsländern, bei Kriegen, dringend benötigten Medikamenten, Seenotfällen, etc. Egal bei welcher Krisenlage, Funkamateure sind bei einem Ausfall der kommerziellen Telekommunikationsnetze weltweit oft die ersten, die wieder Kontakt zur Außenwelt herstellen können.

Funkamateure als Kommunikationsspezialisten

Um z.B. eine interkontinentale Funkverbindung auf Kurzwelle aufzubauen reichen neben den nötigen Kenntnissen über die Ausbreitungsbedingungen, einige Meter Draht als Antenne notfalls zwischen Trümmern und Bäumen gespannt, eine (Auto-) Batterie/ Solarzelle, und ein (selbstgebautes) Funkgerät mit rund 1–5 Watt Sendeleistung und eine Morsetaste bzw. Mikrofon aus. Bei über zwei Millionen Funkamateuren weltweit, die dank der Zeitverschiebung rund um die Uhr aktiv sind, erreicht man immer jemanden.

Hochwasser, Erdbeben, Stürme, Großfeuer und andere schwere Katastrophen zerstören und beschädigen fast immer Telekommunikationseinrichtungen. Dabei ist es irrelevant, ob die Technik neu oder alt ist. Ohne die entsprechende Infrastruktur und ohne Strom- und Telefonleitungen funktioniert sie nicht mehr. Besonders hier zeigt sich die Stärke des Amateurfunks. Funkamateure betreiben ihre Station unabhängig von einer Infrastruktur. Sie verfügen regional und länderübergreifend über zahlreiche Kontakte und leisten damit eine der wichtigsten Beiträge bei der Unterstützung von Behörden und Hilfsorganisationen in der Notfallkommunikation.

Ein großer Vorteil des Amateurfunkdienstes sind hierbei weltweit zugewiesene Frequenzbereiche. Somit ist eine unkomplizierte grenzüberschreitende Kommunikation jederzeit möglich, während es bei der Zusammenarbeit verschiedener Hilfskräfte wie z.B. BOS, Bundesheer, örtliche Energieversorger, etc. schon bei regionalen/ nationalen Großschadenslagen immer wieder an den unterschiedlichen Funkdiensten und Frequenzen scheitert. Ein weiterer Vorteil besteht darin, dass der Funkamateur seine Geräte bestens kennt, da er durch den laufenden Betrieb praktisch immer am Üben ist.

Ausgabe: 26.04.2024 Dieses Dokument wurde erzeugt mit BlueSpice

Erinnern Sie sich noch?

• 12. Jänner 2010 - Erdbebenkatastrophe in Haiti

BH-Einsatz

- April 2009 Erdbebenkatastrophe in l'Aquila, Italien
- 1. Jänner 2005 Tsunami in Südostasien
- 23. August 2005 Überschwemmung in Bezau
- 23. Februar 1999 Lawinenunglück in Galtür
- Weitere Notfunkaktionen der Funkamateure [1]

Kompetenz der Funkamateure

Diese ist von der Internationalen Fernmeldeunion (ITU) in zwei Bereichen festgelegt:

- Alarmierung Empfangen und Verteilen von Alarmmeldungen
- Entlastung bzw. Unterstützung von Einsatzorganisationen (bei der Organisation von Hilfe in Gebieten, in denen andere [Telekom] Dienste noch nicht verfügbar sind).

Siehe ITU-EmComm: [2]

Richtlinien

Aufnehmen und Weiterleiten einer Notfallmeldung

- Wer? Name und Standort des Melders
- Wo? Orts des Notfalls
- Was? Was ist passiert, was ist zu tun, welche Hilfe wird angefordert und ist erforderlich?
- Wieviele? Verletze, Betroffene, etc.
- Welche? Art der vermutlichen Verletzung, Erkrankung und eingetretene Schäden
- Die Notrufzentrale, die Funkleitstation oder die den Notruf aufnehmende Station beendet die Verbindung erst dann, wenn sie alle Informationen bekommen hat, die für eine Hilfeleistung erforderlich sind.

Notfallkarte [3]

Richtlinien für den Not- und Katastrophenfunk

Am Beispiel Niederösterreich:

Teil 1 Allgemeiner Teil

Not- und Katastrophenfunk Referat des Landesverband Niederösterreich des ÖVSV

Not- und Katastrophenfunk-Konzept Version 1.1 vom 18.5.2007

Not- und Katastrophenfunk Referat des Landesverbandes Niederösterreich des ÖVSV

OE- Richtlinie

Not- und Katastrophenfunk

Teil 1

Allgemeines

Revisionshistorie:

Ausgabe	Datum	Änderung	Autor
1.0	3.4.2007	Initialversion	G. Scholz
1.1	18.05.2007	Überarbeitet für OE-Version	M.Maringer

Ausgabe 1.1 vom 18.5.2007

Seite 1 von 14

Teil 2 Niederösterreich

Not- und Katastrophenfunk Referat des Landesverband Niederösterreich des ÖVSV

Not- und Katastrophenfunk-Konzept Version 2.5 vom 17.7.2009

Not- und Katastrophenfunk Referat des Landesverbandes Niederösterreich des ÖVSV

Richtlinie

Not- und Katastrophenfunk

Teil 2

NIEDERÖSTERREICH

Revisionshistorie:

Ausgabe	Datum	Änderung	Autor
1.0	3.4.2007	Initialversion	G. Scholz
2.0		Ergänzung Pager-Alarmierung	G. Scholz
2.1	9.1.2008	Korrektur Tel.Nummer	G. Scholz
2.2	5.9.2008	Ergänzung ADL 324, div. Korrekturen	G. Scholz
2.3	20.12.2008	Adressänderung OE3CJB	G. Scholz
2.4	29.1.2009	Korrektur Notruf144	G. Scholz
2.5	17.7.2009	kleinere Korrekturen	G. Scholz

Ausgabe 2.5 vom17.7.2009

Seite 1 von 7

Für einige weitere Bundesländer bestehen bereits angepasste Versionen (z.B. Tirol) in denen länderspezifische Besonderheiten (z.B. Ansprechpartner, Adressen, technische Ausstattung usw.) eingearbeitet wurden. Bei Bedarf werden diese Richtlinien ergänzt oder überarbeitet!

IARU Notfunk Prozedur (Deutsch)

IARU

INTERNATIONALE NOTFUNK PROZEDUR FÜR KURZWELLE

Wie von allen 3 Regionen angenommen

Alarm- und Warnsignale, Notruf

DER NOTRUF [4]

Frequenzen

Für die weltweite 'Kompatibilität' wurden von der IARU-Konferenz Frequenzen beschlossen, die von allen Regionen benutzt werden können. Sprechfunkbetrieb findet auf der Kurzwelle nicht auf einer Frequenz (Kanal) statt, sondern rund um die 'Center of Activity'-Frequenzen (CoA). Im Regelfall bewegt man sich +/-5kHz um CoA - je nach Belegung und/oder Störungen.

Selbstverständlich kann jede passende Frequenz im Bedarfsfall zur Katfunkfrequenz ernannt werden.

Auflistung der Notfunkfrequenzen > Notfunk Frequenzen

Betriebsarten

Im Katfunk kommt in der ersten Phase einer Katlage die Verbindungsaufnahme meist per **Sprache** zu stande. In weiterer Folge ist die Übermittlung von schriftlichen und bildlichen Informationen per **Email** via Kurzwelle/Ultrakurzwelle[5] ein essentieller Teil einer sicheren und stabilen Krisentelekommunikation.

Andere Betriebsarten spielen nur am Rande oder bei besonderen Lagen eine Rolle: In den Betriebsarten **CW**[6] und **PSK31**[7] sind bei Bedarf mit Minimalequipment und geringen Sendeleistungen weltweite Verbindungen möglich. Leider fehlt hier die Möglichkeit der fehlerfreien Informationsübertragung. SSTV oder **ATV** [8] zur Bildübertragung wird immer mehr ein wichtiges Element in der Führungsunterstützung für Einsatzleitungen, die durch den Amateurfunkdienst unterstützt werden.

Globale Netzwerke

Winlink

Winlink 2000 (WL2K) [9] ist ein weltweites "Email via Funk" System welches ausschließlich von lizensierten Funkamateuren auf nicht kommerzieller Basis betrieben wird. Das Winlink-System liefert wertvolle Dienste für die Not- und Krisenkommunikation, nämlich überall dort wo es keinen Internet Zugang (mehr) gibt. Mit Hilfe moderner Computer- und Netzwerktechnik und unter strikter Beachtung der Internet RFC-Empfehlungen ist das Winlink Development Team (WDT) um eine ständige Verbesserung für lokale, regionale und internationale Anwendungen bemüht. Um das WL2K System zu verwenden, müssen Sie eine Amateur-Funklizenz besitzen. Die Nutzung des Systems und aller Software ist kostenlos. [10] WL2K ist ein Non-Profit-Projekt der Amateur Radio Safety Foundation,Inc. [11]

WL2K Zugänge in OE:

Betriebsart **Pactor** OE3XEC[12] - Betriebsart AX.25 Packet Radio OE7XLR-13 und OE3XAR-10[13]

In der Betriebsart **Winmor** sind in EU meist nur 2-4 Stationen aktiv. Es ist jedoch anzunehmen, daß die gegenüber Pactor kostengünstigere Betriebsart (eine Soundkarte, wie bei PSK31 oder RTTY eingesetzt, genügt) eine rasche Verbreitung finden wird. Derzeit (Stand 1.10.2010) sind halbwegs sicher erreichbar: OE5XCL-5 in Wels (Dial 3612 kHz USB) und DA5UHR-5 in Frankfurt (Dial 7048,4 kHz USB), gelegentlich auch PD4U-5 in Apeldoorn (Dial 14109 kHz USB) und LA3F-5 in Sofiemyr (Dial 3596 kHz USB). Aber auch User-zu-User Verbindungen (Peer-to-Peer) sind im Notfunk, wenn keine Email-Vermittlung über Internet verfügbar, möglich. Als Client Software kann derzeit nur **RMS Express** [14] eingesetzt werden.

Zeitweise sind noch bemannte Stationen QRV, die ein Gateway zum WL2K-Netzwerk in RobustPacketRadio (RPR) zur Verfügung stellen. Zur Zeit sind das Versuche wobei kein 24/7 Betrieb gewährleistet werden kann. Bei Erfolg, könnte die eine oder andere Station als unbemannte Station dauerhaft onair gehen.

Echolink

Seit Inkrafttreten der neuen Amateurfunkverordnung ist es gestattet, Amateurfunkgeräte mit dem Internet zu verbinden.

EchoLink ist ein Internetprogramm, mithilfe dessen sich lizensierte Funkamateure der ganzen Welt mittels Computer über das Internet miteinander unterhalten können. Wie oben erwähnt, können nun auch Amateurfunkgeräte mit EchoLink verbunden werden. Jeder EchoLink-Station wird beim erstmaligen Einloggen eine sogenannte (nur einmalig vergebene) Node-Nummer zugewiesen (meistens vier- bis sechsstellig). Mittels DTMF-Tönen sind diese Stationen dann bei Betrieb über Funk durch Eingabe der Node-Nummer oder des Rufzeichens erreichbar. Weitere Informationen [15] und [16]

APRS

Im Amateurfunk wird APRS (Automatic Packet Reporting System) dazu verwendet, um Informationen und Meßdaten, egal welcher Art, weltweit zu übertragen. Die Verbreitung (Digipeating) der APRS-Daten erfolgt auf der europaweit einheitlichen Frequenz 144.800 MHz im 2m-Amateurfunkband mit 1200 Baud. [17]

Partnerorganisationen

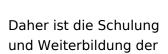
Unter Partnerorganisationen sind jene zu verstehen, die entweder die Unterstützung des Amateurfunkdienstes in Anspruch nehmen und/oder selber Funkamateure mit entsprechenden Funktionen beschäftigen.

Beim Österreichischen Roten Kreuz[18] sind in allen Bundesländern Telekomeinheiten mit lizensierten Funkamateuren integriert, die im Katfall auch auf den Amateurfunkdienst als Rückfallebene zurückgreifen können. Damit ist bei Bedarf die Kommunikation mit externen Funkamateuren sichergestellt.

Die **Landeswarnzentralen (LWZ)** der Landesregierungen (z.B. Tirol[19]) bzw. in der **Katastrophenleitzentrale** der Gemeinde Wien (KLZ) sind im Katfall für die Krisentelekommunikation innerhalb des jeweiligen Bundeslandes und mit der Bundeswarnzentrale (BWZ[20]) beim BMI zuständig. Auch in den LWZ's und der KLZ wird Schritt für Schritt oder ist bereits der Amateurfunkdienst als unterstützendes Führungsmittel integriert.

Das **österreichische Bundesheer** hat schon seit vielen Jahren eine eigene Amateurfunkgruppierung AMRS[21] die aus Heeresangehörigen mit Amateurfunklizenz besteht und ebenfalls im Katfall über den Amateurfunkdienst auf die große Anzahl externer Funkamateure weltweit zugreifen kann!

Allen Partnerorganisationen wurden durch die oberste Fernmeldbehörde (OFMB[22]) Rufzeichen (z.B. OEH, OEK, OEY) als sog. Staatsfunkstellen zugewiesen. Diese Staatsfunkstellen betreiben abseits des Amateurfunkdienstes Kurzwellenbetrieb auf eigenen Frequenzen innerhalb Österreichs.


Im Krisenfall sind diese Staatsfunkstellen befugt mit Funkamateuren auf Amateurfunkfrequenzen Funkbetrieb abzuwickeln.

Übungen, Seminare, Weiterbildung, Schulungen usw.

Funkamateure sind durch die regelmäßige Ausübung ihres Hobbys

in der Bedienung ihrer Ausrüstung bestens geschult. Jedoch erfordert die Abwicklung von Not- und Katfunkbetrieb spezielle Kenntnisse über Abläufe, über die Organisation der BOS [23] und deren Notwendigkeiten, sowie auch den Umgang mit Meldungen. Auch der Betrieb der eigenen Ausrüstung weicht oftmals vom Üblichen ab.

an der Katastrophentelekommunikation beteiligten Funkamateure ein wichtiger Punkt. Einerseits wird das theoretische Rüstzeug in Seminaren und Workshops vermittelt und andererseits werden diese Kenntnisse in praktischen Übungen erprobt und verbessert.

AOEC:

Eine - zumindest in Europa - einzigartige Besonderheit stellt der AOEC (All_OE_Contest) jeweils am 1. Mai jeden Jahres dar. Dabei ist es den Funkamateuren und den OP's der Staatsfunkstellen erlaubt, miteinander auf Amateurfunkfrequenzen Verbindungen aufzunehmen. Diese Katfunkübung - die zwar als Contest ausgeschrieben ist - soll den 'nicht_lizensierten' OP's der Staatsfunkstellen die Möglichkeit geben, sich mit den Eigenheiten des Amateurfunkbetriebes vertraut zu machen. Umgekehrt natürlich ebenso!

Mittlerweile sind bei diesen Organisationen ebenfalls zahlreiche Funkamateure im Einsatz, die den Betrieb abwickeln und dann auch für allfällige Realeinsätze zur Verfügung stehen.

Vergleichbar mit dem AOEC ist der sog. 'X-Test' - ein Crossbandtest in den USA, bei dem die Funkamateure auf Amateurfunkfrequenzen senden und auf kommerziellen Frequenzen der Partner hören. Die Partner (z.B. MARS) senden auf deren zugewiesenen Frequenzen und hören auf Amateurfunkfrequenzen. Somit entstehen Crossbandverbindungen, bei denen jeder Beteiligte Sendebetrieb nur entsprechend seiner Lizenz durchführt.

GSET:

GSET heisst 'Global Simulated Emcomm Test' und bedeutet soviel wie globaler simulierter Katfunktest. Im Rahmen dieses von Greg Mossup, G0DUB ins Leben gerufenen Tests verfassen und versenden die teilnehmenden Emcomm Stationen aus allen drei IARU-Regionen standardisierte Meldungen. Die Kette der Weiterleitung von Sprachmeldungen und die Abgabe von digitalen Meldungen endet in einer Emailadresse an der die einlangenen Nachrichten nach Laufzeit und Vollständigleit ausgewertet werden.

Eine der wichtigsten Erkenntnisse der letzten Tests haben gezeigt, dass die Übermittlung von Emails über Kurzwelle über das Winlinknetzwerk die Weiterleitung und Aufnahme von Sprachnachrichten an Sicherheit, Vollständigkeit und Geschwindigkeit bei Weitem übertrifft!

Regionale Übungen:

In vielen Bundesländern werden sog. Katfielddays abgehalten. Dabei wird über eine Dauer von einigen Stunden bis zu einigen Tagen von Orten ohne Infrastruktur katfunkmässiger Betrieb abgewickelt. Die eingesetzte Ausrüstung wie Stromerzeuger, Solarpanele, speziell gefertigte Katfunkkoffer, einfache Drahtantennen, sowie Laptops und Software werden auf Einsatztauglichkeit getestet.

Dabei wurden schon einige Erkenntnisse gewonnen, die zu Verbesserungen oder Änderungen der eigenen oder fremden Ausrüstung oder Betriebsabwicklung geführt haben.

Notfunk Checkliste

Integrierte Übungen mit BOS:

Vereinzelt haben bereits regionale Katschutzbehörden wie z.B. die Bezirkshauptmannschaft Gmünd oder einige Gemeinden den Amateurfunkdienst bei sog. Stabsrahmenübungen in die Kommunikationsabläufe integriert. Das erhöhnt natürlich das Vertrauen in die Verlässlichkeit und in die Kompetenz der Funkamateure bei den Teilnehmern.

Seminare:

Seminare und Workshops vermitteln vertiefende Kenntnisse in Spezialbereichen. Beispielsweise wird die Theorie, der Aufbau und Betrieb von einfachen Drahtantennen in Katlagen erarbeitet.

Auch die im Katfunk eingesetzten Verfahren der Nachrichtenübermittlung über Pactor oder Packet Radio mit evt. Weiterleitung über das Winlinknetzwerk wird bei solchen Veranstaltungen den interessierten Katfunkern in Theorie und Praxis näher gebracht.

Präsentationen:

Die Veranstalter von Sicherheitstagen (österreichweit), Tag der offenen Türen (z.B. Bundesheer), Messen (z.B. Rettermesse Wels), Leistungsschauen (z.B. Rotes Kreuz) bieten dem Amateurfunkdienst eine Plattform, seine Möglichkeiten in der Krisentelekommunikation einem breiteren Publikum zu präsentieren. Hier werden die Emcomm-Ausrüstungen in Betrieb genommen und die damit möglichen Varianten der Verbindungsaufnahmen demonstriert.

Ansprechpartner in den Landesverbänden

Grundsätzlich sind die Ansprechpartner in den Landesverbänden unter der Adresse 'notfunk. oex@oevsv.at' zu erreichen!

Das 'oex' steht für den jeweiligen LV, z.B. OE1

Notfunkrunde

jeden ersten Mittwoch im Monat 19:45 Uhr Lokalzeit auf 3.643 KHz (+/- QRM)

IARU und Notfunk in anderen Ländern

- Amateur Radio Emergency Communications International [24]
- IARU-Region 1 Emergency Communication [25]
- Deutschland DARC Notfunk-Referat [26]
- Schweiz IG Notfunk [27]
- Holland DARES [28] & [29]
- ARRL Emergency Radio [30] Amateur Radio Today Youtube Video [31]
- England RAYNET [32]
- IRESC International Radio Emergency Support Coalition [33]
- Italien RNRE [34]
- Frankreich F.N.R.A.S.E.C. [35]
- Australien WICEN [36]
- Vereinigte Staaten von Amerika ARES [37]

Links

Amateurfunkstationen in Österreich [38]

Unwetterwarnungen für Österreich - Skywarn [39]

Unwetterwarnungen für Österreich - Unwetterzentrale [40]

Alarm-Pagernetz in Ost-Österreich [41]

Kontakt

Not- und Katfunkreferat im DV: Michael Maringer, OE1MMU oe1mmu@oevsv.at

Kategorie: NOTFUNK: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 1. Oktober 2010, 20:20 Uhr (Quelltext anzeigen)

OE1FEA (Diskussion | Beiträge) K (→Partnerorganisationen)

← Zum vorherigen Versionsunterschied

Anonym (Diskussion | Beiträge)

Zum nächsten Versionsunterschied →

Version vom 1. Januar 2011, 12:19 Uhr (Q

uelltext anzeigen)

Zeile 5:

ARENA - The Amateur Radio Emergency Network Austria is a national voluntary service that is provided to the community by licensed radio amateurs. ARENA is part of the OEVSV and IARU - the national and international amateur radio associations. Our focus is to support the public in the event of crises when conventional communication systems fail. Many of our members are volunteers in organizations such as the Austrian Red Cross, Civil Defense, fire brigades, military and related institutions.

Unique EmComm support is provided by use of the HF, VHF and UHF frequency spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink and APRS. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non-government organizations is also maintained.

Ausgabe: 26.04.2024

Zeile 5:

ARENA - The Amateur Radio Emergency Network Austria is a national voluntary service that is provided to the community by licensed radio amateurs. ARENA is part of the OEVSV and IARU - the national and international amateur radio associations. Our focus is to support the public in the event of crises when conventional communication systems fail. Many of our members are volunteers in organizations such as the Austrian Red Cross, Civil Defense, fire brigades, military and related institutions.

spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink, APRS and HAM **NET**. For instance, one of the 5 mirrorredundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Unique EmComm support is provided by

use of the HF, VHF and UHF frequency

Version vom 1. Januar 2011, 12:19 Uhr

NOTFUNK-OE

AMATEUR RADIO EMERGENCY NETWORK AUSTRIA

English Summary

ARENA - The Amateur Radio Emergency Network Austria is a national voluntary service that is provided to the community by licensed radio amateurs. ARENA is part of the OEVSV and IARU - the national and international amateur radio associations. Our focus is to support the public in the event of crises when conventional communication systems fail. Many of our members are volunteers in organizations such as the Austrian Red Cross, Civil Defense, fire brigades, military and related institutions. Unique EmComm support is provided by use of the HF, VHF and UHF frequency spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink, APRS and HAMNET. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Inhaltsverzeichnis

1 Allgemeines	. 82
2 Kompetenz der Funkamateure	. 83
3 Richtlinien	. 83
3.1 Aufnehmen und Weiterleiten einer Notfallmeldung	. 83
3.2 Richtlinien für den Not- und Katastrophenfunk	. 83
4 Alarm- und Warnsignale, Notruf	. 87

5 Frequenzen	88
6 Betriebsarten	88
7 Globale Netzwerke	89
7.1 Winlink	89
7.2 Echolink	89
7.3 APRS	90
8 Partnerorganisationen	90
9 Übungen, Seminare, Weiterbildung, Schulungen usw	90
10 Ansprechpartner in den Landesverbänden	92
11 Notfunkrunde	93
12 IARU und Notfunk in anderen Ländern	93
13 Links	93
14 Kontakt	93

Allgemeines

Katastrophenfunkverkehr

Katastrophenfunkverkehr ist die Übermittlung von Nachrichten, die den nationalen oder internationalen Hilfeleistungsverkehr betreffen, zwischen Funkstellen innerhalb eines Katastrophengebietes sowie zwischen einer Funkstelle im Katastrophengebiet und Hilfe leistenden Organisationen.

Notfunkverkehr

Notfunkverkehr ist die Übermittlung von Nachrichten zwischen einer Funkstelle, die selbst in Not ist oder an einem Notfall beteiligt oder Zeuge des Notfalles ist, und einer oder mehreren Hilfe leistenden Funkstellen.

Unsere Aufgaben als Funkamateure

Funkamateure unterstützen Hilfsorganisationen und andere Behörden und Organisationen mit Sicherheitsaufgaben, oder leiten empfangene Notrufe an diese weiter.

Von jeher haben Funkamateure weltweit ihre Gerätschaften und ihr Wissen für Hilfeleistungen zur Verfügung gestellt. Für Notrufe, bei Naturkatastrophen, in Entwicklungsländern, bei Kriegen, dringend benötigten Medikamenten, Seenotfällen, etc. Egal bei welcher Krisenlage, Funkamateure sind bei einem Ausfall der kommerziellen Telekommunikationsnetze weltweit oft die ersten, die wieder Kontakt zur Außenwelt herstellen können.

Funkamateure als Kommunikationsspezialisten

Um z.B. eine interkontinentale Funkverbindung auf Kurzwelle aufzubauen reichen neben den nötigen Kenntnissen über die Ausbreitungsbedingungen, einige Meter Draht als Antenne notfalls zwischen Trümmern und Bäumen gespannt, eine (Auto-) Batterie/ Solarzelle, und ein (selbstgebautes) Funkgerät mit rund 1–5 Watt Sendeleistung und eine Morsetaste bzw. Mikrofon aus. Bei über zwei Millionen Funkamateuren weltweit, die dank der Zeitverschiebung rund um die Uhr aktiv sind, erreicht man immer jemanden.

Hochwasser, Erdbeben, Stürme, Großfeuer und andere schwere Katastrophen zerstören und beschädigen fast immer Telekommunikationseinrichtungen. Dabei ist es irrelevant, ob die Technik neu oder alt ist. Ohne die entsprechende Infrastruktur und ohne Strom- und Telefonleitungen funktioniert sie nicht mehr. Besonders hier zeigt sich die Stärke des Amateurfunks. Funkamateure betreiben ihre Station unabhängig von einer Infrastruktur. Sie verfügen regional und länderübergreifend über zahlreiche Kontakte und leisten damit eine der wichtigsten Beiträge bei der Unterstützung von Behörden und Hilfsorganisationen in der Notfallkommunikation.

Ein großer Vorteil des Amateurfunkdienstes sind hierbei weltweit zugewiesene Frequenzbereiche. Somit ist eine unkomplizierte grenzüberschreitende Kommunikation jederzeit möglich, während es bei der Zusammenarbeit verschiedener Hilfskräfte wie z.B. BOS, Bundesheer, örtliche Energieversorger, etc. schon bei regionalen/ nationalen Großschadenslagen immer wieder an den unterschiedlichen Funkdiensten und Frequenzen scheitert. Ein weiterer Vorteil besteht darin, dass der Funkamateur seine Geräte bestens kennt, da er durch den laufenden Betrieb praktisch immer am Üben ist.

Ausgabe: 26.04.2024 Dieses Dokument wurde erzeugt mit BlueSpice

Erinnern Sie sich noch?

• 12. Jänner 2010 - Erdbebenkatastrophe in Haiti

BH-Einsatz

- April 2009 Erdbebenkatastrophe in l'Aquila, Italien
- 1. Jänner 2005 Tsunami in Südostasien
- 23. August 2005 Überschwemmung in Bezau
- 23. Februar 1999 Lawinenunglück in Galtür
- Weitere Notfunkaktionen der Funkamateure [1]

Kompetenz der Funkamateure

Diese ist von der Internationalen Fernmeldeunion (ITU) in zwei Bereichen festgelegt:

- Alarmierung Empfangen und Verteilen von Alarmmeldungen
- Entlastung bzw. Unterstützung von Einsatzorganisationen (bei der Organisation von Hilfe in Gebieten, in denen andere [Telekom] Dienste noch nicht verfügbar sind).

Siehe ITU-EmComm: [2]

Richtlinien

Aufnehmen und Weiterleiten einer Notfallmeldung

- Wer? Name und Standort des Melders
- Wo? Orts des Notfalls
- Was? Was ist passiert, was ist zu tun, welche Hilfe wird angefordert und ist erforderlich?
- Wieviele? Verletze, Betroffene, etc.
- Welche? Art der vermutlichen Verletzung, Erkrankung und eingetretene Schäden
- Die Notrufzentrale, die Funkleitstation oder die den Notruf aufnehmende Station beendet die Verbindung erst dann, wenn sie alle Informationen bekommen hat, die für eine Hilfeleistung erforderlich sind.

Notfallkarte [3]

Richtlinien für den Not- und Katastrophenfunk

Am Beispiel Niederösterreich:

Teil 1 Allgemeiner Teil

Not- und Katastrophenfunk Referat des Landesverband Niederösterreich des ÖVSV

Not- und Katastrophenfunk-Konzept Version 1.1 vom 18.5.2007

Not- und Katastrophenfunk Referat des Landesverbandes Niederösterreich des ÖVSV

OE- Richtlinie

Not- und Katastrophenfunk

Teil 1

Allgemeines

Revisionshistorie:

Ausgabe	Datum	Änderung	Autor
1.0	3.4.2007	Initialversion	G. Scholz
1.1	18.05.2007	Überarbeitet für OE-Version	M.Maringer

Ausgabe 1.1 vom 18.5.2007

Seite 1 von 14

Teil 2 Niederösterreich

Not- und Katastrophenfunk Referat des Landesverband Niederösterreich des ÖVSV

Not- und Katastrophenfunk-Konzept Version 2.5 vom 17.7.2009

Not- und Katastrophenfunk Referat des Landesverbandes Niederösterreich des ÖVSV

Richtlinie

Not- und Katastrophenfunk

Teil 2

NIEDERÖSTERREICH

Revisionshistorie:

Ausgabe	Datum	Änderung	Autor
1.0	3.4.2007	Initialversion	G. Scholz
2.0	27.8.2007	Ergänzung Pager-Alarmierung	G. Scholz
2.1	9.1.2008	Korrektur Tel.Nummer	G. Scholz
2.2	5.9.2008	Ergänzung ADL 324, div. Korrekturen	G. Scholz
2.3	20.12.2008	Adressänderung OE3CJB	G. Scholz
2.4	29.1.2009	Korrektur Notruf144	G. Scholz
2.5	17.7.2009	kleinere Korrekturen	G. Scholz

Ausgabe 2.5 vom17.7.2009

Seite 1 von 7

Für einige weitere Bundesländer bestehen bereits angepasste Versionen (z.B. Tirol) in denen länderspezifische Besonderheiten (z.B. Ansprechpartner, Adressen, technische Ausstattung usw.) eingearbeitet wurden. Bei Bedarf werden diese Richtlinien ergänzt oder überarbeitet!

IARU Notfunk Prozedur (Deutsch)

IARU

INTERNATIONALE NOTFUNK PROZEDUR FÜR KURZWELLE

Wie von allen 3 Regionen angenommen

Alarm- und Warnsignale, Notruf

DER NOTRUF [4]

Frequenzen

Für die weltweite 'Kompatibilität' wurden von der IARU-Konferenz Frequenzen beschlossen, die von allen Regionen benutzt werden können. Sprechfunkbetrieb findet auf der Kurzwelle nicht auf einer Frequenz (Kanal) statt, sondern rund um die 'Center of Activity'-Frequenzen (CoA). Im Regelfall bewegt man sich +/-5kHz um CoA - je nach Belegung und/oder Störungen.

Selbstverständlich kann jede passende Frequenz im Bedarfsfall zur Katfunkfrequenz ernannt werden.

Auflistung der Notfunkfrequenzen > Notfunk Frequenzen

Betriebsarten

Im Katfunk kommt in der ersten Phase einer Katlage die Verbindungsaufnahme meist per **Sprache** zu stande. In weiterer Folge ist die Übermittlung von schriftlichen und bildlichen Informationen per **Email** via Kurzwelle/Ultrakurzwelle[5] ein essentieller Teil einer sicheren und stabilen Krisentelekommunikation.

Andere Betriebsarten spielen nur am Rande oder bei besonderen Lagen eine Rolle: In den Betriebsarten **CW**[6] und **PSK31**[7] sind bei Bedarf mit Minimalequipment und geringen Sendeleistungen weltweite Verbindungen möglich. Leider fehlt hier die Möglichkeit der fehlerfreien Informationsübertragung. SSTV oder **ATV** [8] zur Bildübertragung wird immer mehr ein wichtiges Element in der Führungsunterstützung für Einsatzleitungen, die durch den Amateurfunkdienst unterstützt werden.

Globale Netzwerke

Winlink

Winlink 2000 (WL2K) [9] ist ein weltweites "Email via Funk" System welches ausschließlich von lizensierten Funkamateuren auf nicht kommerzieller Basis betrieben wird. Das Winlink-System liefert wertvolle Dienste für die Not- und Krisenkommunikation, nämlich überall dort wo es keinen Internet Zugang (mehr) gibt. Mit Hilfe moderner Computer- und Netzwerktechnik und unter strikter Beachtung der Internet RFC-Empfehlungen ist das Winlink Development Team (WDT) um eine ständige Verbesserung für lokale, regionale und internationale Anwendungen bemüht. Um das WL2K System zu verwenden, müssen Sie eine Amateur-Funklizenz besitzen. Die Nutzung des Systems und aller Software ist kostenlos. [10] WL2K ist ein Non-Profit-Projekt der Amateur Radio Safety Foundation,Inc. [11]

WL2K Zugänge in OE:

Betriebsart **Pactor** OE3XEC[12] - Betriebsart AX.25 Packet Radio OE7XLR-13 und OE3XAR-10[13]

In der Betriebsart **Winmor** sind in EU meist nur 2-4 Stationen aktiv. Es ist jedoch anzunehmen, daß die gegenüber Pactor kostengünstigere Betriebsart (eine Soundkarte, wie bei PSK31 oder RTTY eingesetzt, genügt) eine rasche Verbreitung finden wird. Derzeit (Stand 1.10.2010) sind halbwegs sicher erreichbar: OE5XCL-5 in Wels (Dial 3612 kHz USB) und DA5UHR-5 in Frankfurt (Dial 7048,4 kHz USB), gelegentlich auch PD4U-5 in Apeldoorn (Dial 14109 kHz USB) und LA3F-5 in Sofiemyr (Dial 3596 kHz USB). Aber auch User-zu-User Verbindungen (Peer-to-Peer) sind im Notfunk, wenn keine Email-Vermittlung über Internet verfügbar, möglich. Als Client Software kann derzeit nur **RMS Express** [14] eingesetzt werden.

Zeitweise sind noch bemannte Stationen QRV, die ein Gateway zum WL2K-Netzwerk in RobustPacketRadio (RPR) zur Verfügung stellen. Zur Zeit sind das Versuche wobei kein 24/7 Betrieb gewährleistet werden kann. Bei Erfolg, könnte die eine oder andere Station als unbemannte Station dauerhaft onair gehen.

Echolink

Seit Inkrafttreten der neuen Amateurfunkverordnung ist es gestattet, Amateurfunkgeräte mit dem Internet zu verbinden.

EchoLink ist ein Internetprogramm, mithilfe dessen sich lizensierte Funkamateure der ganzen Welt mittels Computer über das Internet miteinander unterhalten können. Wie oben erwähnt, können nun auch Amateurfunkgeräte mit EchoLink verbunden werden. Jeder EchoLink-Station wird beim erstmaligen Einloggen eine sogenannte (nur einmalig vergebene) Node-Nummer zugewiesen (meistens vier- bis sechsstellig). Mittels DTMF-Tönen sind diese Stationen dann bei Betrieb über Funk durch Eingabe der Node-Nummer oder des Rufzeichens erreichbar. Weitere Informationen [15] und [16]

APRS

Im Amateurfunk wird APRS (Automatic Packet Reporting System) dazu verwendet, um Informationen und Meßdaten, egal welcher Art, weltweit zu übertragen. Die Verbreitung (Digipeating) der APRS-Daten erfolgt auf der europaweit einheitlichen Frequenz 144.800 MHz im 2m-Amateurfunkband mit 1200 Baud. [17]

Partnerorganisationen

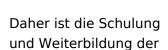
Unter Partnerorganisationen sind jene zu verstehen, die entweder die Unterstützung des Amateurfunkdienstes in Anspruch nehmen und/oder selber Funkamateure mit entsprechenden Funktionen beschäftigen.

Beim Österreichischen Roten Kreuz[18] sind in allen Bundesländern Telekomeinheiten mit lizensierten Funkamateuren integriert, die im Katfall auch auf den Amateurfunkdienst als Rückfallebene zurückgreifen können. Damit ist bei Bedarf die Kommunikation mit externen Funkamateuren sichergestellt.

Die **Landeswarnzentralen (LWZ)** der Landesregierungen (z.B. Tirol[19]) bzw. in der **Katastrophenleitzentrale** der Gemeinde Wien (KLZ) sind im Katfall für die Krisentelekommunikation innerhalb des jeweiligen Bundeslandes und mit der Bundeswarnzentrale (BWZ[20]) beim BMI zuständig. Auch in den LWZ's und der KLZ wird Schritt für Schritt oder ist bereits der Amateurfunkdienst als unterstützendes Führungsmittel integriert.

Das **österreichische Bundesheer** hat schon seit vielen Jahren eine eigene Amateurfunkgruppierung AMRS[21] die aus Heeresangehörigen mit Amateurfunklizenz besteht und ebenfalls im Katfall über den Amateurfunkdienst auf die große Anzahl externer Funkamateure weltweit zugreifen kann!

Allen Partnerorganisationen wurden durch die oberste Fernmeldbehörde (OFMB[22]) Rufzeichen (z.B. OEH, OEK, OEY) als sog. Staatsfunkstellen zugewiesen. Diese Staatsfunkstellen betreiben abseits des Amateurfunkdienstes Kurzwellenbetrieb auf eigenen Frequenzen innerhalb Österreichs.


Im Krisenfall sind diese Staatsfunkstellen befugt mit Funkamateuren auf Amateurfunkfrequenzen Funkbetrieb abzuwickeln.

Übungen, Seminare, Weiterbildung, Schulungen usw.

Funkamateure sind durch die regelmäßige Ausübung ihres Hobbys

in der Bedienung ihrer Ausrüstung bestens geschult. Jedoch erfordert die Abwicklung von Not- und Katfunkbetrieb spezielle Kenntnisse über Abläufe, über die Organisation der BOS [23] und deren Notwendigkeiten, sowie auch den Umgang mit Meldungen. Auch der Betrieb der eigenen Ausrüstung weicht oftmals vom Üblichen ab.

an der Katastrophentelekommunikation beteiligten Funkamateure ein wichtiger Punkt. Einerseits wird das theoretische Rüstzeug in Seminaren und Workshops vermittelt und andererseits werden diese Kenntnisse in praktischen Übungen erprobt und verbessert.

AOEC:

Eine - zumindest in Europa - einzigartige Besonderheit stellt der AOEC (All_OE_Contest) jeweils am 1. Mai jeden Jahres dar. Dabei ist es den Funkamateuren und den OP's der Staatsfunkstellen erlaubt, miteinander auf Amateurfunkfrequenzen Verbindungen aufzunehmen. Diese Katfunkübung - die zwar als Contest ausgeschrieben ist - soll den 'nicht_lizensierten' OP's der Staatsfunkstellen die Möglichkeit geben, sich mit den Eigenheiten des Amateurfunkbetriebes vertraut zu machen. Umgekehrt natürlich ebenso!

Mittlerweile sind bei diesen Organisationen ebenfalls zahlreiche Funkamateure im Einsatz, die den Betrieb abwickeln und dann auch für allfällige Realeinsätze zur Verfügung stehen.

Vergleichbar mit dem AOEC ist der sog. 'X-Test' - ein Crossbandtest in den USA, bei dem die Funkamateure auf Amateurfunkfrequenzen senden und auf kommerziellen Frequenzen der Partner hören. Die Partner (z.B. MARS) senden auf deren zugewiesenen Frequenzen und hören auf Amateurfunkfrequenzen. Somit entstehen Crossbandverbindungen, bei denen jeder Beteiligte Sendebetrieb nur entsprechend seiner Lizenz durchführt.

GSET:

GSET heisst 'Global Simulated Emcomm Test' und bedeutet soviel wie globaler simulierter Katfunktest. Im Rahmen dieses von Greg Mossup, G0DUB ins Leben gerufenen Tests verfassen und versenden die teilnehmenden Emcomm Stationen aus allen drei IARU-Regionen standardisierte Meldungen. Die Kette der Weiterleitung von Sprachmeldungen und die Abgabe von digitalen Meldungen endet in einer Emailadresse an der die einlangenen Nachrichten nach Laufzeit und Vollständigleit ausgewertet werden.

Eine der wichtigsten Erkenntnisse der letzten Tests haben gezeigt, dass die Übermittlung von Emails über Kurzwelle über das Winlinknetzwerk die Weiterleitung und Aufnahme von Sprachnachrichten an Sicherheit, Vollständigkeit und Geschwindigkeit bei Weitem übertrifft!

Regionale Übungen:

In vielen Bundesländern werden sog. Katfielddays abgehalten. Dabei wird über eine Dauer von einigen Stunden bis zu einigen Tagen von Orten ohne Infrastruktur katfunkmässiger Betrieb abgewickelt. Die eingesetzte Ausrüstung wie Stromerzeuger, Solarpanele, speziell gefertigte Katfunkkoffer, einfache Drahtantennen, sowie Laptops und Software werden auf Einsatztauglichkeit getestet.

Dabei wurden schon einige Erkenntnisse gewonnen, die zu Verbesserungen oder Änderungen der eigenen oder fremden Ausrüstung oder Betriebsabwicklung geführt haben.

Notfunk Checkliste

Integrierte Übungen mit BOS:

Vereinzelt haben bereits regionale Katschutzbehörden wie z.B. die Bezirkshauptmannschaft Gmünd oder einige Gemeinden den Amateurfunkdienst bei sog. Stabsrahmenübungen in die Kommunikationsabläufe integriert. Das erhöhnt natürlich das Vertrauen in die Verlässlichkeit und in die Kompetenz der Funkamateure bei den Teilnehmern.

Seminare:

Seminare und Workshops vermitteln vertiefende Kenntnisse in Spezialbereichen. Beispielsweise wird die Theorie, der Aufbau und Betrieb von einfachen Drahtantennen in Katlagen erarbeitet.

Auch die im Katfunk eingesetzten Verfahren der Nachrichtenübermittlung über Pactor oder Packet Radio mit evt. Weiterleitung über das Winlinknetzwerk wird bei solchen Veranstaltungen den interessierten Katfunkern in Theorie und Praxis näher gebracht.

Präsentationen:

Die Veranstalter von Sicherheitstagen (österreichweit), Tag der offenen Türen (z.B. Bundesheer), Messen (z.B. Rettermesse Wels), Leistungsschauen (z.B. Rotes Kreuz) bieten dem Amateurfunkdienst eine Plattform, seine Möglichkeiten in der Krisentelekommunikation einem breiteren Publikum zu präsentieren. Hier werden die Emcomm-Ausrüstungen in Betrieb genommen und die damit möglichen Varianten der Verbindungsaufnahmen demonstriert.

Ansprechpartner in den Landesverbänden

Grundsätzlich sind die Ansprechpartner in den Landesverbänden unter der Adresse 'notfunk. oex@oevsv.at' zu erreichen!

Das 'oex' steht für den jeweiligen LV, z.B. OE1

Notfunkrunde

jeden ersten Mittwoch im Monat 19:45 Uhr Lokalzeit auf 3.643 KHz (+/- QRM)

IARU und Notfunk in anderen Ländern

- Amateur Radio Emergency Communications International [24]
- IARU-Region 1 Emergency Communication [25]
- Deutschland DARC Notfunk-Referat [26]
- Schweiz IG Notfunk [27]
- Holland DARES [28] & [29]
- ARRL Emergency Radio [30] Amateur Radio Today Youtube Video [31]
- England RAYNET [32]
- IRESC International Radio Emergency Support Coalition [33]
- Italien RNRE [34]
- Frankreich F.N.R.A.S.E.C. [35]
- Australien WICEN [36]
- Vereinigte Staaten von Amerika ARES [37]

Links

Amateurfunkstationen in Österreich [38]

Unwetterwarnungen für Österreich - Skywarn [39]

Unwetterwarnungen für Österreich - Unwetterzentrale [40]

Alarm-Pagernetz in Ost-Österreich [41]

Kontakt

Not- und Katfunkreferat im DV: Michael Maringer, OE1MMU oe1mmu@oevsv.at

Kategorie: NOTFUNK: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 1. Oktober 2010, 20:20 Uhr (Quelltext anzeigen)

OE1FEA (Diskussion | Beiträge)

K (→Partnerorganisationen)

← Zum vorherigen Versionsunterschied

Zei	ile	5:
-----	-----	----

ARENA - The Amateur Radio Emergency
Network Austria is a national voluntary
service that is provided to the community
by licensed radio amateurs. ARENA is part
of the OEVSV and IARU - the national and
international amateur radio associations.
Our focus is to support the public in the
event of crises when conventional
communication systems fail. Many of our
members are volunteers in organizations
such as the Austrian Red Cross, Civil
Defense, fire brigades, military and related
institutions.

Unique EmComm support is provided by use of the HF, VHF and UHF frequency spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink and APRS. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Version vom 1. Januar 2011, 12:19 Uhr (Quelltext anzeigen)

Anonym (Diskussion | Beiträge)
Zum nächsten Versionsunterschied →

Zeile 5:

ARENA - The Amateur Radio Emergency
Network Austria is a national voluntary
service that is provided to the community
by licensed radio amateurs. ARENA is part
of the OEVSV and IARU - the national and
international amateur radio associations.
Our focus is to support the public in the
event of crises when conventional
communication systems fail. Many of our
members are volunteers in organizations
such as the Austrian Red Cross, Civil
Defense, fire brigades, military and related
institutions.

spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink, APRS and HAM NET. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Unique EmComm support is provided by

use of the HF, VHF and UHF frequency

Version vom 1. Januar 2011, 12:19 Uhr

NOTFUNK-OE

AMATEUR RADIO EMERGENCY NETWORK AUSTRIA

English Summary

ARENA - The Amateur Radio Emergency Network Austria is a national voluntary service that is provided to the community by licensed radio amateurs. ARENA is part of the OEVSV and IARU - the national and international amateur radio associations. Our focus is to support the public in the event of crises when conventional communication systems fail. Many of our members are volunteers in organizations such as the Austrian Red Cross, Civil Defense, fire brigades, military and related institutions. Unique EmComm support is provided by use of the HF, VHF and UHF frequency spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink, APRS and HAMNET. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Inhaltsverzeichnis

1 Allgemeines	97
2 Kompetenz der Funkamateure	98
3 Richtlinien	98
3.1 Aufnehmen und Weiterleiten einer Notfallmeldung	98
3.2 Richtlinien für den Not- und Katastrophenfunk	98
4 Alarm- und Warnsignale, Notruf	102

5 Frequenzen	103
6 Betriebsarten	103
7 Globale Netzwerke	104
7.1 Winlink	104
7.2 Echolink	104
7.3 APRS	
8 Partnerorganisationen	105
9 Übungen, Seminare, Weiterbildung, Schulungen usw	105
10 Ansprechpartner in den Landesverbänden	107
11 Notfunkrunde	108
12 IARU und Notfunk in anderen Ländern	108
13 Links	108
14 Kontakt	108

Allgemeines

Katastrophenfunkverkehr

Katastrophenfunkverkehr ist die Übermittlung von Nachrichten, die den nationalen oder internationalen Hilfeleistungsverkehr betreffen, zwischen Funkstellen innerhalb eines Katastrophengebietes sowie zwischen einer Funkstelle im Katastrophengebiet und Hilfe leistenden Organisationen.

Notfunkverkehr

Notfunkverkehr ist die Übermittlung von Nachrichten zwischen einer Funkstelle, die selbst in Not ist oder an einem Notfall beteiligt oder Zeuge des Notfalles ist, und einer oder mehreren Hilfe leistenden Funkstellen.

Unsere Aufgaben als Funkamateure

Funkamateure unterstützen Hilfsorganisationen und andere Behörden und Organisationen mit Sicherheitsaufgaben, oder leiten empfangene Notrufe an diese weiter.

Von jeher haben Funkamateure weltweit ihre Gerätschaften und ihr Wissen für Hilfeleistungen zur Verfügung gestellt. Für Notrufe, bei Naturkatastrophen, in Entwicklungsländern, bei Kriegen, dringend benötigten Medikamenten, Seenotfällen, etc. Egal bei welcher Krisenlage, Funkamateure sind bei einem Ausfall der kommerziellen Telekommunikationsnetze weltweit oft die ersten, die wieder Kontakt zur Außenwelt herstellen können.

Funkamateure als Kommunikationsspezialisten

Um z.B. eine interkontinentale Funkverbindung auf Kurzwelle aufzubauen reichen neben den nötigen Kenntnissen über die Ausbreitungsbedingungen, einige Meter Draht als Antenne notfalls zwischen Trümmern und Bäumen gespannt, eine (Auto-) Batterie/ Solarzelle, und ein (selbstgebautes) Funkgerät mit rund 1–5 Watt Sendeleistung und eine Morsetaste bzw. Mikrofon aus. Bei über zwei Millionen Funkamateuren weltweit, die dank der Zeitverschiebung rund um die Uhr aktiv sind, erreicht man immer jemanden.

Hochwasser, Erdbeben, Stürme, Großfeuer und andere schwere Katastrophen zerstören und beschädigen fast immer Telekommunikationseinrichtungen. Dabei ist es irrelevant, ob die Technik neu oder alt ist. Ohne die entsprechende Infrastruktur und ohne Strom- und Telefonleitungen funktioniert sie nicht mehr. Besonders hier zeigt sich die Stärke des Amateurfunks. Funkamateure betreiben ihre Station unabhängig von einer Infrastruktur. Sie verfügen regional und länderübergreifend über zahlreiche Kontakte und leisten damit eine der wichtigsten Beiträge bei der Unterstützung von Behörden und Hilfsorganisationen in der Notfallkommunikation.

Ein großer Vorteil des Amateurfunkdienstes sind hierbei weltweit zugewiesene Frequenzbereiche. Somit ist eine unkomplizierte grenzüberschreitende Kommunikation jederzeit möglich, während es bei der Zusammenarbeit verschiedener Hilfskräfte wie z.B. BOS, Bundesheer, örtliche Energieversorger, etc. schon bei regionalen/ nationalen Großschadenslagen immer wieder an den unterschiedlichen Funkdiensten und Frequenzen scheitert. Ein weiterer Vorteil besteht darin, dass der Funkamateur seine Geräte bestens kennt, da er durch den laufenden Betrieb praktisch immer am Üben ist.

Ausgabe: 26.04.2024 Dieses Dokument wurde erzeugt mit BlueSpice

Erinnern Sie sich noch?

• 12. Jänner 2010 - Erdbebenkatastrophe in Haiti

BH-Einsatz

- April 2009 Erdbebenkatastrophe in l'Aquila, Italien
- 1. Jänner 2005 Tsunami in Südostasien
- 23. August 2005 Überschwemmung in Bezau
- 23. Februar 1999 Lawinenunglück in Galtür
- Weitere Notfunkaktionen der Funkamateure [1]

Kompetenz der Funkamateure

Diese ist von der Internationalen Fernmeldeunion (ITU) in zwei Bereichen festgelegt:

- Alarmierung Empfangen und Verteilen von Alarmmeldungen
- Entlastung bzw. Unterstützung von Einsatzorganisationen (bei der Organisation von Hilfe in Gebieten, in denen andere [Telekom] Dienste noch nicht verfügbar sind).

Siehe ITU-EmComm: [2]

Richtlinien

Aufnehmen und Weiterleiten einer Notfallmeldung

- Wer? Name und Standort des Melders
- Wo? Orts des Notfalls
- Was? Was ist passiert, was ist zu tun, welche Hilfe wird angefordert und ist erforderlich?
- Wieviele? Verletze, Betroffene, etc.
- Welche? Art der vermutlichen Verletzung, Erkrankung und eingetretene Schäden
- Die Notrufzentrale, die Funkleitstation oder die den Notruf aufnehmende Station beendet die Verbindung erst dann, wenn sie alle Informationen bekommen hat, die für eine Hilfeleistung erforderlich sind.

Notfallkarte [3]

Richtlinien für den Not- und Katastrophenfunk

Am Beispiel Niederösterreich:

Teil 1 Allgemeiner Teil

Not- und Katastrophenfunk Referat des Landesverband Niederösterreich des ÖVSV

Not- und Katastrophenfunk-Konzept Version 1.1 vom 18.5.2007

Not- und Katastrophenfunk Referat des Landesverbandes Niederösterreich des ÖVSV

OE- Richtlinie

Not- und Katastrophenfunk

Teil 1

Allgemeines

Revisionshistorie:

Ausgabe	Datum	Änderung	Autor
1.0	3.4.2007	Initialversion	G. Scholz
1.1	18.05.2007	Überarbeitet für OE-Version	M.Maringer

Ausgabe 1.1 vom 18.5.2007

Seite 1 von 14

Teil 2 Niederösterreich

Not- und Katastrophenfunk Referat des Landesverband Niederösterreich des ÖVSV

Not- und Katastrophenfunk-Konzept Version 2.5 vom 17.7.2009

Not- und Katastrophenfunk Referat des Landesverbandes Niederösterreich des ÖVSV

Richtlinie

Not- und Katastrophenfunk

Teil 2

NIEDERÖSTERREICH

Revisionshistorie:

Ausgabe	Datum	Änderung	Autor
1.0	3.4.2007	Initialversion	G. Scholz
2.0	27.8.2007	Ergänzung Pager-Alarmierung	G. Scholz
2.1	9.1.2008	Korrektur Tel.Nummer	G. Scholz
2.2	5.9.2008	Ergänzung ADL 324, div. Korrekturen	G. Scholz
2.3	20.12.2008	Adressänderung OE3CJB	G. Scholz
2.4	29.1.2009	Korrektur Notruf144	G. Scholz
2.5	17.7.2009	kleinere Korrekturen	G. Scholz

Ausgabe 2.5 vom17.7.2009

Seite 1 von 7

Für einige weitere Bundesländer bestehen bereits angepasste Versionen (z.B. Tirol) in denen länderspezifische Besonderheiten (z.B. Ansprechpartner, Adressen, technische Ausstattung usw.) eingearbeitet wurden. Bei Bedarf werden diese Richtlinien ergänzt oder überarbeitet!

IARU Notfunk Prozedur (Deutsch)

IARU

INTERNATIONALE NOTFUNK PROZEDUR FÜR KURZWELLE

Wie von allen 3 Regionen angenommen

Alarm- und Warnsignale, Notruf

DER NOTRUF [4]

Frequenzen

Für die weltweite 'Kompatibilität' wurden von der IARU-Konferenz Frequenzen beschlossen, die von allen Regionen benutzt werden können. Sprechfunkbetrieb findet auf der Kurzwelle nicht auf einer Frequenz (Kanal) statt, sondern rund um die 'Center of Activity'-Frequenzen (CoA). Im Regelfall bewegt man sich +/-5kHz um CoA - je nach Belegung und/oder Störungen.

Selbstverständlich kann jede passende Frequenz im Bedarfsfall zur Katfunkfrequenz ernannt werden.

Auflistung der Notfunkfrequenzen > Notfunk Frequenzen

Betriebsarten

Im Katfunk kommt in der ersten Phase einer Katlage die Verbindungsaufnahme meist per **Sprache** zu stande. In weiterer Folge ist die Übermittlung von schriftlichen und bildlichen Informationen per **Email** via Kurzwelle/Ultrakurzwelle[5] ein essentieller Teil einer sicheren und stabilen Krisentelekommunikation.

Andere Betriebsarten spielen nur am Rande oder bei besonderen Lagen eine Rolle: In den Betriebsarten **CW**[6] und **PSK31**[7] sind bei Bedarf mit Minimalequipment und geringen Sendeleistungen weltweite Verbindungen möglich. Leider fehlt hier die Möglichkeit der fehlerfreien Informationsübertragung. SSTV oder **ATV** [8] zur Bildübertragung wird immer mehr ein wichtiges Element in der Führungsunterstützung für Einsatzleitungen, die durch den Amateurfunkdienst unterstützt werden.

Globale Netzwerke

Winlink

Winlink 2000 (WL2K) [9] ist ein weltweites "Email via Funk" System welches ausschließlich von lizensierten Funkamateuren auf nicht kommerzieller Basis betrieben wird. Das Winlink-System liefert wertvolle Dienste für die Not- und Krisenkommunikation, nämlich überall dort wo es keinen Internet Zugang (mehr) gibt. Mit Hilfe moderner Computer- und Netzwerktechnik und unter strikter Beachtung der Internet RFC-Empfehlungen ist das Winlink Development Team (WDT) um eine ständige Verbesserung für lokale, regionale und internationale Anwendungen bemüht. Um das WL2K System zu verwenden, müssen Sie eine Amateur-Funklizenz besitzen. Die Nutzung des Systems und aller Software ist kostenlos. [10] WL2K ist ein Non-Profit-Projekt der Amateur Radio Safety Foundation,Inc. [11]

WL2K Zugänge in OE:

Betriebsart **Pactor** OE3XEC[12] - Betriebsart AX.25 Packet Radio OE7XLR-13 und OE3XAR-10[13]

In der Betriebsart **Winmor** sind in EU meist nur 2-4 Stationen aktiv. Es ist jedoch anzunehmen, daß die gegenüber Pactor kostengünstigere Betriebsart (eine Soundkarte, wie bei PSK31 oder RTTY eingesetzt, genügt) eine rasche Verbreitung finden wird. Derzeit (Stand 1.10.2010) sind halbwegs sicher erreichbar: OE5XCL-5 in Wels (Dial 3612 kHz USB) und DA5UHR-5 in Frankfurt (Dial 7048,4 kHz USB), gelegentlich auch PD4U-5 in Apeldoorn (Dial 14109 kHz USB) und LA3F-5 in Sofiemyr (Dial 3596 kHz USB). Aber auch User-zu-User Verbindungen (Peer-to-Peer) sind im Notfunk, wenn keine Email-Vermittlung über Internet verfügbar, möglich. Als Client Software kann derzeit nur **RMS Express** [14] eingesetzt werden.

Zeitweise sind noch bemannte Stationen QRV, die ein Gateway zum WL2K-Netzwerk in RobustPacketRadio (RPR) zur Verfügung stellen. Zur Zeit sind das Versuche wobei kein 24/7 Betrieb gewährleistet werden kann. Bei Erfolg, könnte die eine oder andere Station als unbemannte Station dauerhaft onair gehen.

Echolink

Seit Inkrafttreten der neuen Amateurfunkverordnung ist es gestattet, Amateurfunkgeräte mit dem Internet zu verbinden.

EchoLink ist ein Internetprogramm, mithilfe dessen sich lizensierte Funkamateure der ganzen Welt mittels Computer über das Internet miteinander unterhalten können. Wie oben erwähnt, können nun auch Amateurfunkgeräte mit EchoLink verbunden werden. Jeder EchoLink-Station wird beim erstmaligen Einloggen eine sogenannte (nur einmalig vergebene) Node-Nummer zugewiesen (meistens vier- bis sechsstellig). Mittels DTMF-Tönen sind diese Stationen dann bei Betrieb über Funk durch Eingabe der Node-Nummer oder des Rufzeichens erreichbar. Weitere Informationen [15] und [16]

APRS

Im Amateurfunk wird APRS (Automatic Packet Reporting System) dazu verwendet, um Informationen und Meßdaten, egal welcher Art, weltweit zu übertragen. Die Verbreitung (Digipeating) der APRS-Daten erfolgt auf der europaweit einheitlichen Frequenz 144.800 MHz im 2m-Amateurfunkband mit 1200 Baud. [17]

Partnerorganisationen

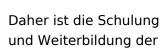
Unter Partnerorganisationen sind jene zu verstehen, die entweder die Unterstützung des Amateurfunkdienstes in Anspruch nehmen und/oder selber Funkamateure mit entsprechenden Funktionen beschäftigen.

Beim Österreichischen Roten Kreuz[18] sind in allen Bundesländern Telekomeinheiten mit lizensierten Funkamateuren integriert, die im Katfall auch auf den Amateurfunkdienst als Rückfallebene zurückgreifen können. Damit ist bei Bedarf die Kommunikation mit externen Funkamateuren sichergestellt.

Die **Landeswarnzentralen (LWZ)** der Landesregierungen (z.B. Tirol[19]) bzw. in der **Katastrophenleitzentrale** der Gemeinde Wien (KLZ) sind im Katfall für die Krisentelekommunikation innerhalb des jeweiligen Bundeslandes und mit der Bundeswarnzentrale (BWZ[20]) beim BMI zuständig. Auch in den LWZ's und der KLZ wird Schritt für Schritt oder ist bereits der Amateurfunkdienst als unterstützendes Führungsmittel integriert.

Das **österreichische Bundesheer** hat schon seit vielen Jahren eine eigene Amateurfunkgruppierung AMRS[21] die aus Heeresangehörigen mit Amateurfunklizenz besteht und ebenfalls im Katfall über den Amateurfunkdienst auf die große Anzahl externer Funkamateure weltweit zugreifen kann!

Allen Partnerorganisationen wurden durch die oberste Fernmeldbehörde (OFMB[22]) Rufzeichen (z.B. OEH, OEK, OEY) als sog. Staatsfunkstellen zugewiesen. Diese Staatsfunkstellen betreiben abseits des Amateurfunkdienstes Kurzwellenbetrieb auf eigenen Frequenzen innerhalb Österreichs.


Im Krisenfall sind diese Staatsfunkstellen befugt mit Funkamateuren auf Amateurfunkfrequenzen Funkbetrieb abzuwickeln.

Übungen, Seminare, Weiterbildung, Schulungen usw.

Funkamateure sind durch die regelmäßige Ausübung ihres Hobbys

in der Bedienung ihrer Ausrüstung bestens geschult. Jedoch erfordert die Abwicklung von Not- und Katfunkbetrieb spezielle Kenntnisse über Abläufe, über die Organisation der BOS [23] und deren Notwendigkeiten, sowie auch den Umgang mit Meldungen. Auch der Betrieb der eigenen Ausrüstung weicht oftmals vom Üblichen ab.

an der Katastrophentelekommunikation beteiligten Funkamateure ein wichtiger Punkt. Einerseits wird das theoretische Rüstzeug in Seminaren und Workshops vermittelt und andererseits werden diese Kenntnisse in praktischen Übungen erprobt und verbessert.

AOEC:

Eine - zumindest in Europa - einzigartige Besonderheit stellt der AOEC (All_OE_Contest) jeweils am 1. Mai jeden Jahres dar. Dabei ist es den Funkamateuren und den OP's der Staatsfunkstellen erlaubt, miteinander auf Amateurfunkfrequenzen Verbindungen aufzunehmen. Diese Katfunkübung - die zwar als Contest ausgeschrieben ist - soll den 'nicht_lizensierten' OP's der Staatsfunkstellen die Möglichkeit geben, sich mit den Eigenheiten des Amateurfunkbetriebes vertraut zu machen. Umgekehrt natürlich ebenso!

Mittlerweile sind bei diesen Organisationen ebenfalls zahlreiche Funkamateure im Einsatz, die den Betrieb abwickeln und dann auch für allfällige Realeinsätze zur Verfügung stehen.

Vergleichbar mit dem AOEC ist der sog. 'X-Test' - ein Crossbandtest in den USA, bei dem die Funkamateure auf Amateurfunkfrequenzen senden und auf kommerziellen Frequenzen der Partner hören. Die Partner (z.B. MARS) senden auf deren zugewiesenen Frequenzen und hören auf Amateurfunkfrequenzen. Somit entstehen Crossbandverbindungen, bei denen jeder Beteiligte Sendebetrieb nur entsprechend seiner Lizenz durchführt.

GSET:

GSET heisst 'Global Simulated Emcomm Test' und bedeutet soviel wie globaler simulierter Katfunktest. Im Rahmen dieses von Greg Mossup, G0DUB ins Leben gerufenen Tests verfassen und versenden die teilnehmenden Emcomm Stationen aus allen drei IARU-Regionen standardisierte Meldungen. Die Kette der Weiterleitung von Sprachmeldungen und die Abgabe von digitalen Meldungen endet in einer Emailadresse an der die einlangenen Nachrichten nach Laufzeit und Vollständigleit ausgewertet werden.

Eine der wichtigsten Erkenntnisse der letzten Tests haben gezeigt, dass die Übermittlung von Emails über Kurzwelle über das Winlinknetzwerk die Weiterleitung und Aufnahme von Sprachnachrichten an Sicherheit, Vollständigkeit und Geschwindigkeit bei Weitem übertrifft!

Regionale Übungen:

In vielen Bundesländern werden sog. Katfielddays abgehalten. Dabei wird über eine Dauer von einigen Stunden bis zu einigen Tagen von Orten ohne Infrastruktur katfunkmässiger Betrieb abgewickelt. Die eingesetzte Ausrüstung wie Stromerzeuger, Solarpanele, speziell gefertigte Katfunkkoffer, einfache Drahtantennen, sowie Laptops und Software werden auf Einsatztauglichkeit getestet.

Dabei wurden schon einige Erkenntnisse gewonnen, die zu Verbesserungen oder Änderungen der eigenen oder fremden Ausrüstung oder Betriebsabwicklung geführt haben.

Notfunk Checkliste

Integrierte Übungen mit BOS:

Vereinzelt haben bereits regionale Katschutzbehörden wie z.B. die Bezirkshauptmannschaft Gmünd oder einige Gemeinden den Amateurfunkdienst bei sog. Stabsrahmenübungen in die Kommunikationsabläufe integriert. Das erhöhnt natürlich das Vertrauen in die Verlässlichkeit und in die Kompetenz der Funkamateure bei den Teilnehmern.

Seminare:

Seminare und Workshops vermitteln vertiefende Kenntnisse in Spezialbereichen. Beispielsweise wird die Theorie, der Aufbau und Betrieb von einfachen Drahtantennen in Katlagen erarbeitet.

Auch die im Katfunk eingesetzten Verfahren der Nachrichtenübermittlung über Pactor oder Packet Radio mit evt. Weiterleitung über das Winlinknetzwerk wird bei solchen Veranstaltungen den interessierten Katfunkern in Theorie und Praxis näher gebracht.

Präsentationen:

Die Veranstalter von Sicherheitstagen (österreichweit), Tag der offenen Türen (z.B. Bundesheer), Messen (z.B. Rettermesse Wels), Leistungsschauen (z.B. Rotes Kreuz) bieten dem Amateurfunkdienst eine Plattform, seine Möglichkeiten in der Krisentelekommunikation einem breiteren Publikum zu präsentieren. Hier werden die Emcomm-Ausrüstungen in Betrieb genommen und die damit möglichen Varianten der Verbindungsaufnahmen demonstriert.

Ansprechpartner in den Landesverbänden

Grundsätzlich sind die Ansprechpartner in den Landesverbänden unter der Adresse 'notfunk. oex@oevsv.at' zu erreichen!

Das 'oex' steht für den jeweiligen LV, z.B. OE1

Notfunkrunde

jeden ersten Mittwoch im Monat 19:45 Uhr Lokalzeit auf 3.643 KHz (+/- QRM)

IARU und Notfunk in anderen Ländern

- Amateur Radio Emergency Communications International [24]
- IARU-Region 1 Emergency Communication [25]
- Deutschland DARC Notfunk-Referat [26]
- Schweiz IG Notfunk [27]
- Holland DARES [28] & [29]
- ARRL Emergency Radio [30] Amateur Radio Today Youtube Video [31]
- England RAYNET [32]
- IRESC International Radio Emergency Support Coalition [33]
- Italien RNRE [34]
- Frankreich F.N.R.A.S.E.C. [35]
- Australien WICEN [36]
- Vereinigte Staaten von Amerika ARES [37]

Links

Amateurfunkstationen in Österreich [38]

Unwetterwarnungen für Österreich - Skywarn [39]

Unwetterwarnungen für Österreich - Unwetterzentrale [40]

Alarm-Pagernetz in Ost-Österreich [41]

Kontakt

Not- und Katfunkreferat im DV: Michael Maringer, OE1MMU oe1mmu@oevsv.at

Kategorie: NOTFUNK: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 1. Oktober 2010, 20:20 Uhr (Quelltext anzeigen)

OE1FEA (Diskussion | Beiträge)

K (→Partnerorganisationen)

← Zum vorherigen Versionsunterschied

Zeile	5:	

Zeile 5:

ARENA - The Amateur Radio Emergency
Network Austria is a national voluntary
service that is provided to the community
by licensed radio amateurs. ARENA is part
of the OEVSV and IARU - the national and
international amateur radio associations.
Our focus is to support the public in the
event of crises when conventional
communication systems fail. Many of our
members are volunteers in organizations
such as the Austrian Red Cross, Civil
Defense, fire brigades, military and related
institutions.

Unique EmComm support is provided by use of the HF, VHF and UHF frequency spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink and APRS. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

ARENA - The Amateur Radio Emergency
Network Austria is a national voluntary
service that is provided to the community
by licensed radio amateurs. ARENA is part
of the OEVSV and IARU - the national and
international amateur radio associations.
Our focus is to support the public in the
event of crises when conventional
communication systems fail. Many of our
members are volunteers in organizations
such as the Austrian Red Cross, Civil
Defense, fire brigades, military and related
institutions.

Version vom 1. Januar 2011, 12:19 Uhr (Q

uelltext anzeigen)

Anonym (Diskussion | Beiträge)

Zum nächsten Versionsunterschied →

use of the HF, VHF and UHF frequency spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink, APRS and HAM NET. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Unique EmComm support is provided by

·-

Ausgabe: 26.04.2024

Version vom 1. Januar 2011, 12:19 Uhr

NOTFUNK-OE

AMATEUR RADIO EMERGENCY NETWORK AUSTRIA

English Summary

ARENA - The Amateur Radio Emergency Network Austria is a national voluntary service that is provided to the community by licensed radio amateurs. ARENA is part of the OEVSV and IARU - the national and international amateur radio associations. Our focus is to support the public in the event of crises when conventional communication systems fail. Many of our members are volunteers in organizations such as the Austrian Red Cross, Civil Defense, fire brigades, military and related institutions. Unique EmComm support is provided by use of the HF, VHF and UHF frequency spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink, APRS and HAMNET. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Inhaltsverzeichnis1 Allgemeines1122 Kompetenz der Funkamateure1133 Richtlinien1133.1 Aufnehmen und Weiterleiten einer Notfallmeldung113

5 Frequenzen	118
6 Betriebsarten	118
7 Globale Netzwerke	119
7.1 Winlink	119
7.2 Echolink	119
7.3 APRS	
8 Partnerorganisationen	120
9 Übungen, Seminare, Weiterbildung, Schulungen usw	120
10 Ansprechpartner in den Landesverbänden	122
11 Notfunkrunde	123
12 IARU und Notfunk in anderen Ländern	123
13 Links	123
14 Kontakt	123

Allgemeines

Katastrophenfunkverkehr

Katastrophenfunkverkehr ist die Übermittlung von Nachrichten, die den nationalen oder internationalen Hilfeleistungsverkehr betreffen, zwischen Funkstellen innerhalb eines Katastrophengebietes sowie zwischen einer Funkstelle im Katastrophengebiet und Hilfe leistenden Organisationen.

Notfunkverkehr

Notfunkverkehr ist die Übermittlung von Nachrichten zwischen einer Funkstelle, die selbst in Not ist oder an einem Notfall beteiligt oder Zeuge des Notfalles ist, und einer oder mehreren Hilfe leistenden Funkstellen.

Unsere Aufgaben als Funkamateure

Funkamateure unterstützen Hilfsorganisationen und andere Behörden und Organisationen mit Sicherheitsaufgaben, oder leiten empfangene Notrufe an diese weiter.

Von jeher haben Funkamateure weltweit ihre Gerätschaften und ihr Wissen für Hilfeleistungen zur Verfügung gestellt. Für Notrufe, bei Naturkatastrophen, in Entwicklungsländern, bei Kriegen, dringend benötigten Medikamenten, Seenotfällen, etc. Egal bei welcher Krisenlage, Funkamateure sind bei einem Ausfall der kommerziellen Telekommunikationsnetze weltweit oft die ersten, die wieder Kontakt zur Außenwelt herstellen können.

Funkamateure als Kommunikationsspezialisten

Um z.B. eine interkontinentale Funkverbindung auf Kurzwelle aufzubauen reichen neben den nötigen Kenntnissen über die Ausbreitungsbedingungen, einige Meter Draht als Antenne notfalls zwischen Trümmern und Bäumen gespannt, eine (Auto-) Batterie/ Solarzelle, und ein (selbstgebautes) Funkgerät mit rund 1–5 Watt Sendeleistung und eine Morsetaste bzw. Mikrofon aus. Bei über zwei Millionen Funkamateuren weltweit, die dank der Zeitverschiebung rund um die Uhr aktiv sind, erreicht man immer jemanden.

Hochwasser, Erdbeben, Stürme, Großfeuer und andere schwere Katastrophen zerstören und beschädigen fast immer Telekommunikationseinrichtungen. Dabei ist es irrelevant, ob die Technik neu oder alt ist. Ohne die entsprechende Infrastruktur und ohne Strom- und Telefonleitungen funktioniert sie nicht mehr. Besonders hier zeigt sich die Stärke des Amateurfunks. Funkamateure betreiben ihre Station unabhängig von einer Infrastruktur. Sie verfügen regional und länderübergreifend über zahlreiche Kontakte und leisten damit eine der wichtigsten Beiträge bei der Unterstützung von Behörden und Hilfsorganisationen in der Notfallkommunikation.

Ein großer Vorteil des Amateurfunkdienstes sind hierbei weltweit zugewiesene Frequenzbereiche. Somit ist eine unkomplizierte grenzüberschreitende Kommunikation jederzeit möglich, während es bei der Zusammenarbeit verschiedener Hilfskräfte wie z.B. BOS, Bundesheer, örtliche Energieversorger, etc. schon bei regionalen/ nationalen Großschadenslagen immer wieder an den unterschiedlichen Funkdiensten und Frequenzen scheitert. Ein weiterer Vorteil besteht darin, dass der Funkamateur seine Geräte bestens kennt, da er durch den laufenden Betrieb praktisch immer am Üben ist.

Ausgabe: 26.04.2024 Dieses Dokument wurde erzeugt mit BlueSpice

Erinnern Sie sich noch?

• 12. Jänner 2010 - Erdbebenkatastrophe in Haiti

BH-Einsatz

- April 2009 Erdbebenkatastrophe in l'Aquila, Italien
- 1. Jänner 2005 Tsunami in Südostasien
- 23. August 2005 Überschwemmung in Bezau
- 23. Februar 1999 Lawinenunglück in Galtür
- Weitere Notfunkaktionen der Funkamateure [1]

Kompetenz der Funkamateure

Diese ist von der Internationalen Fernmeldeunion (ITU) in zwei Bereichen festgelegt:

- Alarmierung Empfangen und Verteilen von Alarmmeldungen
- Entlastung bzw. Unterstützung von Einsatzorganisationen (bei der Organisation von Hilfe in Gebieten, in denen andere [Telekom] Dienste noch nicht verfügbar sind).

Siehe ITU-EmComm: [2]

Richtlinien

Aufnehmen und Weiterleiten einer Notfallmeldung

- Wer? Name und Standort des Melders
- Wo? Orts des Notfalls
- Was? Was ist passiert, was ist zu tun, welche Hilfe wird angefordert und ist erforderlich?
- Wieviele? Verletze, Betroffene, etc.
- Welche? Art der vermutlichen Verletzung, Erkrankung und eingetretene Schäden
- Die Notrufzentrale, die Funkleitstation oder die den Notruf aufnehmende Station beendet die Verbindung erst dann, wenn sie alle Informationen bekommen hat, die für eine Hilfeleistung erforderlich sind.

Notfallkarte [3]

Richtlinien für den Not- und Katastrophenfunk

Am Beispiel Niederösterreich:

Teil 1 Allgemeiner Teil

Not- und Katastrophenfunk Referat des Landesverband Niederösterreich des ÖVSV

Not- und Katastrophenfunk-Konzept Version 1.1 vom 18.5.2007

Not- und Katastrophenfunk Referat des Landesverbandes Niederösterreich des ÖVSV

OE- Richtlinie

Not- und Katastrophenfunk

Teil 1

Allgemeines

Revisionshistorie:

Ausgabe	Datum	Änderung	Autor
1.0	3.4.2007	Initialversion	G. Scholz
1.1	18.05.2007	Überarbeitet für OE-Version	M.Maringer

Ausgabe 1.1 vom 18.5.2007

Seite 1 von 14

Teil 2 Niederösterreich

Not- und Katastrophenfunk Referat des Landesverband Niederösterreich des ÖVSV

Not- und Katastrophenfunk-Konzept Version 2.5 vom 17.7.2009

Not- und Katastrophenfunk Referat des Landesverbandes Niederösterreich des ÖVSV

Richtlinie

Not- und Katastrophenfunk

Teil 2

NIEDERÖSTERREICH

Revisionshistorie:

Ausgabe	Datum	Änderung	Autor
1.0	3.4.2007	Initialversion	G. Scholz
2.0	27.8.2007	Ergänzung Pager-Alarmierung	G. Scholz
2.1	9.1.2008	Korrektur Tel.Nummer	G. Scholz
2.2	5.9.2008	Ergänzung ADL 324, div. Korrekturen	G. Scholz
2.3	20.12.2008	Adressänderung OE3CJB	G. Scholz
2.4	29.1.2009	Korrektur Notruf144	G. Scholz
2.5	17.7.2009	kleinere Korrekturen	G. Scholz

Ausgabe 2.5 vom17.7.2009

Seite 1 von 7

Für einige weitere Bundesländer bestehen bereits angepasste Versionen (z.B. Tirol) in denen länderspezifische Besonderheiten (z.B. Ansprechpartner, Adressen, technische Ausstattung usw.) eingearbeitet wurden. Bei Bedarf werden diese Richtlinien ergänzt oder überarbeitet!

IARU Notfunk Prozedur (Deutsch)

IARU

INTERNATIONALE NOTFUNK PROZEDUR FÜR KURZWELLE

Wie von allen 3 Regionen angenommen

Alarm- und Warnsignale, Notruf

DER NOTRUF [4]

Frequenzen

Für die weltweite 'Kompatibilität' wurden von der IARU-Konferenz Frequenzen beschlossen, die von allen Regionen benutzt werden können. Sprechfunkbetrieb findet auf der Kurzwelle nicht auf einer Frequenz (Kanal) statt, sondern rund um die 'Center of Activity'-Frequenzen (CoA). Im Regelfall bewegt man sich +/-5kHz um CoA - je nach Belegung und/oder Störungen.

Selbstverständlich kann jede passende Frequenz im Bedarfsfall zur Katfunkfrequenz ernannt werden.

Auflistung der Notfunkfrequenzen > Notfunk Frequenzen

Betriebsarten

Im Katfunk kommt in der ersten Phase einer Katlage die Verbindungsaufnahme meist per **Sprache** zu stande. In weiterer Folge ist die Übermittlung von schriftlichen und bildlichen Informationen per **Email** via Kurzwelle/Ultrakurzwelle[5] ein essentieller Teil einer sicheren und stabilen Krisentelekommunikation.

Andere Betriebsarten spielen nur am Rande oder bei besonderen Lagen eine Rolle: In den Betriebsarten **CW**[6] und **PSK31**[7] sind bei Bedarf mit Minimalequipment und geringen Sendeleistungen weltweite Verbindungen möglich. Leider fehlt hier die Möglichkeit der fehlerfreien Informationsübertragung. SSTV oder **ATV** [8] zur Bildübertragung wird immer mehr ein wichtiges Element in der Führungsunterstützung für Einsatzleitungen, die durch den Amateurfunkdienst unterstützt werden.

Globale Netzwerke

Winlink

Winlink 2000 (WL2K) [9] ist ein weltweites "Email via Funk" System welches ausschließlich von lizensierten Funkamateuren auf nicht kommerzieller Basis betrieben wird. Das Winlink-System liefert wertvolle Dienste für die Not- und Krisenkommunikation, nämlich überall dort wo es keinen Internet Zugang (mehr) gibt. Mit Hilfe moderner Computer- und Netzwerktechnik und unter strikter Beachtung der Internet RFC-Empfehlungen ist das Winlink Development Team (WDT) um eine ständige Verbesserung für lokale, regionale und internationale Anwendungen bemüht. Um das WL2K System zu verwenden, müssen Sie eine Amateur-Funklizenz besitzen. Die Nutzung des Systems und aller Software ist kostenlos. [10] WL2K ist ein Non-Profit-Projekt der Amateur Radio Safety Foundation,Inc. [11]

WL2K Zugänge in OE:

Betriebsart **Pactor** OE3XEC[12] - Betriebsart AX.25 Packet Radio OE7XLR-13 und OE3XAR-10[13]

In der Betriebsart **Winmor** sind in EU meist nur 2-4 Stationen aktiv. Es ist jedoch anzunehmen, daß die gegenüber Pactor kostengünstigere Betriebsart (eine Soundkarte, wie bei PSK31 oder RTTY eingesetzt, genügt) eine rasche Verbreitung finden wird. Derzeit (Stand 1.10.2010) sind halbwegs sicher erreichbar: OE5XCL-5 in Wels (Dial 3612 kHz USB) und DA5UHR-5 in Frankfurt (Dial 7048,4 kHz USB), gelegentlich auch PD4U-5 in Apeldoorn (Dial 14109 kHz USB) und LA3F-5 in Sofiemyr (Dial 3596 kHz USB). Aber auch User-zu-User Verbindungen (Peer-to-Peer) sind im Notfunk, wenn keine Email-Vermittlung über Internet verfügbar, möglich. Als Client Software kann derzeit nur **RMS Express** [14] eingesetzt werden.

Zeitweise sind noch bemannte Stationen QRV, die ein Gateway zum WL2K-Netzwerk in RobustPacketRadio (RPR) zur Verfügung stellen. Zur Zeit sind das Versuche wobei kein 24/7 Betrieb gewährleistet werden kann. Bei Erfolg, könnte die eine oder andere Station als unbemannte Station dauerhaft onair gehen.

Echolink

Seit Inkrafttreten der neuen Amateurfunkverordnung ist es gestattet, Amateurfunkgeräte mit dem Internet zu verbinden.

EchoLink ist ein Internetprogramm, mithilfe dessen sich lizensierte Funkamateure der ganzen Welt mittels Computer über das Internet miteinander unterhalten können. Wie oben erwähnt, können nun auch Amateurfunkgeräte mit EchoLink verbunden werden. Jeder EchoLink-Station wird beim erstmaligen Einloggen eine sogenannte (nur einmalig vergebene) Node-Nummer zugewiesen (meistens vier- bis sechsstellig). Mittels DTMF-Tönen sind diese Stationen dann bei Betrieb über Funk durch Eingabe der Node-Nummer oder des Rufzeichens erreichbar. Weitere Informationen [15] und [16]

APRS

Im Amateurfunk wird APRS (Automatic Packet Reporting System) dazu verwendet, um Informationen und Meßdaten, egal welcher Art, weltweit zu übertragen. Die Verbreitung (Digipeating) der APRS-Daten erfolgt auf der europaweit einheitlichen Frequenz 144.800 MHz im 2m-Amateurfunkband mit 1200 Baud. [17]

Partnerorganisationen

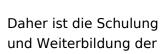
Unter Partnerorganisationen sind jene zu verstehen, die entweder die Unterstützung des Amateurfunkdienstes in Anspruch nehmen und/oder selber Funkamateure mit entsprechenden Funktionen beschäftigen.

Beim Österreichischen Roten Kreuz[18] sind in allen Bundesländern Telekomeinheiten mit lizensierten Funkamateuren integriert, die im Katfall auch auf den Amateurfunkdienst als Rückfallebene zurückgreifen können. Damit ist bei Bedarf die Kommunikation mit externen Funkamateuren sichergestellt.

Die **Landeswarnzentralen (LWZ)** der Landesregierungen (z.B. Tirol[19]) bzw. in der **Katastrophenleitzentrale** der Gemeinde Wien (KLZ) sind im Katfall für die Krisentelekommunikation innerhalb des jeweiligen Bundeslandes und mit der Bundeswarnzentrale (BWZ[20]) beim BMI zuständig. Auch in den LWZ's und der KLZ wird Schritt für Schritt oder ist bereits der Amateurfunkdienst als unterstützendes Führungsmittel integriert.

Das **österreichische Bundesheer** hat schon seit vielen Jahren eine eigene Amateurfunkgruppierung AMRS[21] die aus Heeresangehörigen mit Amateurfunklizenz besteht und ebenfalls im Katfall über den Amateurfunkdienst auf die große Anzahl externer Funkamateure weltweit zugreifen kann!

Allen Partnerorganisationen wurden durch die oberste Fernmeldbehörde (OFMB[22]) Rufzeichen (z.B. OEH, OEK, OEY) als sog. Staatsfunkstellen zugewiesen. Diese Staatsfunkstellen betreiben abseits des Amateurfunkdienstes Kurzwellenbetrieb auf eigenen Frequenzen innerhalb Österreichs.


Im Krisenfall sind diese Staatsfunkstellen befugt mit Funkamateuren auf Amateurfunkfrequenzen Funkbetrieb abzuwickeln.

Übungen, Seminare, Weiterbildung, Schulungen usw.

Funkamateure sind durch die regelmäßige Ausübung ihres Hobbys

in der Bedienung ihrer Ausrüstung bestens geschult. Jedoch erfordert die Abwicklung von Not- und Katfunkbetrieb spezielle Kenntnisse über Abläufe, über die Organisation der BOS [23] und deren Notwendigkeiten, sowie auch den Umgang mit Meldungen. Auch der Betrieb der eigenen Ausrüstung weicht oftmals vom Üblichen ab.

an der Katastrophentelekommunikation beteiligten Funkamateure ein wichtiger Punkt. Einerseits wird das theoretische Rüstzeug in Seminaren und Workshops vermittelt und andererseits werden diese Kenntnisse in praktischen Übungen erprobt und verbessert.

AOEC:

Eine - zumindest in Europa - einzigartige Besonderheit stellt der AOEC (All_OE_Contest) jeweils am 1. Mai jeden Jahres dar. Dabei ist es den Funkamateuren und den OP's der Staatsfunkstellen erlaubt, miteinander auf Amateurfunkfrequenzen Verbindungen aufzunehmen. Diese Katfunkübung - die zwar als Contest ausgeschrieben ist - soll den 'nicht_lizensierten' OP's der Staatsfunkstellen die Möglichkeit geben, sich mit den Eigenheiten des Amateurfunkbetriebes vertraut zu machen. Umgekehrt natürlich ebenso!

Mittlerweile sind bei diesen Organisationen ebenfalls zahlreiche Funkamateure im Einsatz, die den Betrieb abwickeln und dann auch für allfällige Realeinsätze zur Verfügung stehen.

Vergleichbar mit dem AOEC ist der sog. 'X-Test' - ein Crossbandtest in den USA, bei dem die Funkamateure auf Amateurfunkfrequenzen senden und auf kommerziellen Frequenzen der Partner hören. Die Partner (z.B. MARS) senden auf deren zugewiesenen Frequenzen und hören auf Amateurfunkfrequenzen. Somit entstehen Crossbandverbindungen, bei denen jeder Beteiligte Sendebetrieb nur entsprechend seiner Lizenz durchführt.

GSET:

GSET heisst 'Global Simulated Emcomm Test' und bedeutet soviel wie globaler simulierter Katfunktest. Im Rahmen dieses von Greg Mossup, G0DUB ins Leben gerufenen Tests verfassen und versenden die teilnehmenden Emcomm Stationen aus allen drei IARU-Regionen standardisierte Meldungen. Die Kette der Weiterleitung von Sprachmeldungen und die Abgabe von digitalen Meldungen endet in einer Emailadresse an der die einlangenen Nachrichten nach Laufzeit und Vollständigleit ausgewertet werden.

Eine der wichtigsten Erkenntnisse der letzten Tests haben gezeigt, dass die Übermittlung von Emails über Kurzwelle über das Winlinknetzwerk die Weiterleitung und Aufnahme von Sprachnachrichten an Sicherheit, Vollständigkeit und Geschwindigkeit bei Weitem übertrifft!

Regionale Übungen:

In vielen Bundesländern werden sog. Katfielddays abgehalten. Dabei wird über eine Dauer von einigen Stunden bis zu einigen Tagen von Orten ohne Infrastruktur katfunkmässiger Betrieb abgewickelt. Die eingesetzte Ausrüstung wie Stromerzeuger, Solarpanele, speziell gefertigte Katfunkkoffer, einfache Drahtantennen, sowie Laptops und Software werden auf Einsatztauglichkeit getestet.

Dabei wurden schon einige Erkenntnisse gewonnen, die zu Verbesserungen oder Änderungen der eigenen oder fremden Ausrüstung oder Betriebsabwicklung geführt haben.

Notfunk Checkliste

Integrierte Übungen mit BOS:

Vereinzelt haben bereits regionale Katschutzbehörden wie z.B. die Bezirkshauptmannschaft Gmünd oder einige Gemeinden den Amateurfunkdienst bei sog. Stabsrahmenübungen in die Kommunikationsabläufe integriert. Das erhöhnt natürlich das Vertrauen in die Verlässlichkeit und in die Kompetenz der Funkamateure bei den Teilnehmern.

Seminare:

Seminare und Workshops vermitteln vertiefende Kenntnisse in Spezialbereichen. Beispielsweise wird die Theorie, der Aufbau und Betrieb von einfachen Drahtantennen in Katlagen erarbeitet.

Auch die im Katfunk eingesetzten Verfahren der Nachrichtenübermittlung über Pactor oder Packet Radio mit evt. Weiterleitung über das Winlinknetzwerk wird bei solchen Veranstaltungen den interessierten Katfunkern in Theorie und Praxis näher gebracht.

Präsentationen:

Die Veranstalter von Sicherheitstagen (österreichweit), Tag der offenen Türen (z.B. Bundesheer), Messen (z.B. Rettermesse Wels), Leistungsschauen (z.B. Rotes Kreuz) bieten dem Amateurfunkdienst eine Plattform, seine Möglichkeiten in der Krisentelekommunikation einem breiteren Publikum zu präsentieren. Hier werden die Emcomm-Ausrüstungen in Betrieb genommen und die damit möglichen Varianten der Verbindungsaufnahmen demonstriert.

Ansprechpartner in den Landesverbänden

Grundsätzlich sind die Ansprechpartner in den Landesverbänden unter der Adresse 'notfunk. oex@oevsv.at' zu erreichen!

Das 'oex' steht für den jeweiligen LV, z.B. OE1

Notfunkrunde

jeden ersten Mittwoch im Monat 19:45 Uhr Lokalzeit auf 3.643 KHz (+/- QRM)

IARU und Notfunk in anderen Ländern

- Amateur Radio Emergency Communications International [24]
- IARU-Region 1 Emergency Communication [25]
- Deutschland DARC Notfunk-Referat [26]
- Schweiz IG Notfunk [27]
- Holland DARES [28] & [29]
- ARRL Emergency Radio [30] Amateur Radio Today Youtube Video [31]
- England RAYNET [32]
- IRESC International Radio Emergency Support Coalition [33]
- Italien RNRE [34]
- Frankreich F.N.R.A.S.E.C. [35]
- Australien WICEN [36]
- Vereinigte Staaten von Amerika ARES [37]

Links

Amateurfunkstationen in Österreich [38]

Unwetterwarnungen für Österreich - Skywarn [39]

Unwetterwarnungen für Österreich - Unwetterzentrale [40]

Alarm-Pagernetz in Ost-Österreich [41]

Kontakt

Not- und Katfunkreferat im DV: Michael Maringer, OE1MMU oe1mmu@oevsv.at

Kategorie: NOTFUNK: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 1. Oktober 2010, 20:20 Uhr (Quelltext anzeigen)

OE1FEA (Diskussion | Beiträge)

K (→Partnerorganisationen)

← Zum vorherigen Versionsunterschied

uelltext anzeigen) Anonym (Diskussion | Beiträge)

Anonym (Diskussion | Beitrage)
Zum nächsten Versionsunterschied →

Version vom 1. Januar 2011, 12:19 Uhr (Q

Zeile 5:

ARENA - The Amateur Radio Emergency
Network Austria is a national voluntary
service that is provided to the community
by licensed radio amateurs. ARENA is part
of the OEVSV and IARU - the national and
international amateur radio associations.
Our focus is to support the public in the
event of crises when conventional
communication systems fail. Many of our
members are volunteers in organizations
such as the Austrian Red Cross, Civil
Defense, fire brigades, military and related
institutions.

Unique EmComm support is provided by use of the HF, VHF and UHF frequency spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink and APRS. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Zeile 5:

ARENA - The Amateur Radio Emergency
Network Austria is a national voluntary
service that is provided to the community
by licensed radio amateurs. ARENA is part
of the OEVSV and IARU - the national and
international amateur radio associations.
Our focus is to support the public in the
event of crises when conventional
communication systems fail. Many of our
members are volunteers in organizations
such as the Austrian Red Cross, Civil
Defense, fire brigades, military and related
institutions.

spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink, APRS and HAM NET. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Unique EmComm support is provided by

use of the HF, VHF and UHF frequency

Version vom 1. Januar 2011, 12:19 Uhr

NOTFUNK-OE

AMATEUR RADIO EMERGENCY NETWORK AUSTRIA

English Summary

ARENA - The Amateur Radio Emergency Network Austria is a national voluntary service that is provided to the community by licensed radio amateurs. ARENA is part of the OEVSV and IARU - the national and international amateur radio associations. Our focus is to support the public in the event of crises when conventional communication systems fail. Many of our members are volunteers in organizations such as the Austrian Red Cross, Civil Defense, fire brigades, military and related institutions. Unique EmComm support is provided by use of the HF, VHF and UHF frequency spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink, APRS and HAMNET. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Inhaltsverzeichnis

1 Allgemeines	127
2 Kompetenz der Funkamateure	128
3 Richtlinien	128
3.1 Aufnehmen und Weiterleiten einer Notfallmeldung	128
3.2 Richtlinien für den Not- und Katastrophenfunk	128
4 Alarm- und Warnsignale, Notruf	132

5 Frequenzen	133
6 Betriebsarten	133
7 Globale Netzwerke	134
7.1 Winlink	134
7.2 Echolink	134
7.3 APRS	135
8 Partnerorganisationen	135
9 Übungen, Seminare, Weiterbildung, Schulungen usw	
10 Ansprechpartner in den Landesverbänden	137
11 Notfunkrunde	
12 IARU und Notfunk in anderen Ländern	138
13 Links	138
14 Kontakt	138

Allgemeines

Katastrophenfunkverkehr

Katastrophenfunkverkehr ist die Übermittlung von Nachrichten, die den nationalen oder internationalen Hilfeleistungsverkehr betreffen, zwischen Funkstellen innerhalb eines Katastrophengebietes sowie zwischen einer Funkstelle im Katastrophengebiet und Hilfe leistenden Organisationen.

Notfunkverkehr

Notfunkverkehr ist die Übermittlung von Nachrichten zwischen einer Funkstelle, die selbst in Not ist oder an einem Notfall beteiligt oder Zeuge des Notfalles ist, und einer oder mehreren Hilfe leistenden Funkstellen.

Unsere Aufgaben als Funkamateure

Funkamateure unterstützen Hilfsorganisationen und andere Behörden und Organisationen mit Sicherheitsaufgaben, oder leiten empfangene Notrufe an diese weiter.

Von jeher haben Funkamateure weltweit ihre Gerätschaften und ihr Wissen für Hilfeleistungen zur Verfügung gestellt. Für Notrufe, bei Naturkatastrophen, in Entwicklungsländern, bei Kriegen, dringend benötigten Medikamenten, Seenotfällen, etc. Egal bei welcher Krisenlage, Funkamateure sind bei einem Ausfall der kommerziellen Telekommunikationsnetze weltweit oft die ersten, die wieder Kontakt zur Außenwelt herstellen können.

Funkamateure als Kommunikationsspezialisten

Um z.B. eine interkontinentale Funkverbindung auf Kurzwelle aufzubauen reichen neben den nötigen Kenntnissen über die Ausbreitungsbedingungen, einige Meter Draht als Antenne notfalls zwischen Trümmern und Bäumen gespannt, eine (Auto-) Batterie/ Solarzelle, und ein (selbstgebautes) Funkgerät mit rund 1–5 Watt Sendeleistung und eine Morsetaste bzw. Mikrofon aus. Bei über zwei Millionen Funkamateuren weltweit, die dank der Zeitverschiebung rund um die Uhr aktiv sind, erreicht man immer jemanden.

Hochwasser, Erdbeben, Stürme, Großfeuer und andere schwere Katastrophen zerstören und beschädigen fast immer Telekommunikationseinrichtungen. Dabei ist es irrelevant, ob die Technik neu oder alt ist. Ohne die entsprechende Infrastruktur und ohne Strom- und Telefonleitungen funktioniert sie nicht mehr. Besonders hier zeigt sich die Stärke des Amateurfunks. Funkamateure betreiben ihre Station unabhängig von einer Infrastruktur. Sie verfügen regional und länderübergreifend über zahlreiche Kontakte und leisten damit eine der wichtigsten Beiträge bei der Unterstützung von Behörden und Hilfsorganisationen in der Notfallkommunikation.

Ein großer Vorteil des Amateurfunkdienstes sind hierbei weltweit zugewiesene Frequenzbereiche. Somit ist eine unkomplizierte grenzüberschreitende Kommunikation jederzeit möglich, während es bei der Zusammenarbeit verschiedener Hilfskräfte wie z.B. BOS, Bundesheer, örtliche Energieversorger, etc. schon bei regionalen/ nationalen Großschadenslagen immer wieder an den unterschiedlichen Funkdiensten und Frequenzen scheitert. Ein weiterer Vorteil besteht darin, dass der Funkamateur seine Geräte bestens kennt, da er durch den laufenden Betrieb praktisch immer am Üben ist.

Ausgabe: 26.04.2024 Dieses Dokument wurde erzeugt mit BlueSpice

Erinnern Sie sich noch?

• 12. Jänner 2010 - Erdbebenkatastrophe in Haiti

BH-Einsatz

- April 2009 Erdbebenkatastrophe in l'Aquila, Italien
- 1. Jänner 2005 Tsunami in Südostasien
- 23. August 2005 Überschwemmung in Bezau
- 23. Februar 1999 Lawinenunglück in Galtür
- Weitere Notfunkaktionen der Funkamateure [1]

Kompetenz der Funkamateure

Diese ist von der Internationalen Fernmeldeunion (ITU) in zwei Bereichen festgelegt:

- Alarmierung Empfangen und Verteilen von Alarmmeldungen
- Entlastung bzw. Unterstützung von Einsatzorganisationen (bei der Organisation von Hilfe in Gebieten, in denen andere [Telekom] Dienste noch nicht verfügbar sind).

Siehe ITU-EmComm: [2]

Richtlinien

Aufnehmen und Weiterleiten einer Notfallmeldung

- Wer? Name und Standort des Melders
- Wo? Orts des Notfalls
- Was? Was ist passiert, was ist zu tun, welche Hilfe wird angefordert und ist erforderlich?
- Wieviele? Verletze, Betroffene, etc.
- Welche? Art der vermutlichen Verletzung, Erkrankung und eingetretene Schäden
- Die Notrufzentrale, die Funkleitstation oder die den Notruf aufnehmende Station beendet die Verbindung erst dann, wenn sie alle Informationen bekommen hat, die für eine Hilfeleistung erforderlich sind.

Notfallkarte [3]

Richtlinien für den Not- und Katastrophenfunk

Am Beispiel Niederösterreich:

Teil 1 Allgemeiner Teil

Not- und Katastrophenfunk Referat des Landesverband Niederösterreich des ÖVSV

Not- und Katastrophenfunk-Konzept Version 1.1 vom 18.5.2007

Not- und Katastrophenfunk Referat des Landesverbandes Niederösterreich des ÖVSV

OE- Richtlinie

Not- und Katastrophenfunk

Teil 1

Allgemeines

Revisionshistorie:

Ausgabe	Datum	Änderung	Autor
1.0	3.4.2007	Initialversion	G. Scholz
1.1	18.05.2007	Überarbeitet für OE-Version	M.Maringer

Ausgabe 1.1 vom 18.5.2007

Seite 1 von 14

Teil 2 Niederösterreich

Not- und Katastrophenfunk Referat des Landesverband Niederösterreich des ÖVSV

Not- und Katastrophenfunk-Konzept Version 2.5 vom 17.7.2009

Not- und Katastrophenfunk Referat des Landesverbandes Niederösterreich des ÖVSV

Richtlinie

Not- und Katastrophenfunk

Teil 2

NIEDERÖSTERREICH

Revisionshistorie:

Ausgabe	Datum	Änderung	Autor
1.0	3.4.2007	Initialversion	G. Scholz
2.0	27.8.2007	Ergänzung Pager-Alarmierung	G. Scholz
2.1	9.1.2008	Korrektur Tel.Nummer	G. Scholz
2.2	5.9.2008	Ergänzung ADL 324, div. Korrekturen	G. Scholz
2.3	20.12.2008	Adressänderung OE3CJB	G. Scholz
2.4	29.1.2009	Korrektur Notruf144	G. Scholz
2.5	17.7.2009	kleinere Korrekturen	G. Scholz

Ausgabe 2.5 vom17.7.2009

Seite 1 von 7

Für einige weitere Bundesländer bestehen bereits angepasste Versionen (z.B. Tirol) in denen länderspezifische Besonderheiten (z.B. Ansprechpartner, Adressen, technische Ausstattung usw.) eingearbeitet wurden. Bei Bedarf werden diese Richtlinien ergänzt oder überarbeitet!

IARU Notfunk Prozedur (Deutsch)

IARU

INTERNATIONALE NOTFUNK PROZEDUR FÜR KURZWELLE

Wie von allen 3 Regionen angenommen

Alarm- und Warnsignale, Notruf

DER NOTRUF [4]

Frequenzen

Für die weltweite 'Kompatibilität' wurden von der IARU-Konferenz Frequenzen beschlossen, die von allen Regionen benutzt werden können. Sprechfunkbetrieb findet auf der Kurzwelle nicht auf einer Frequenz (Kanal) statt, sondern rund um die 'Center of Activity'-Frequenzen (CoA). Im Regelfall bewegt man sich +/-5kHz um CoA - je nach Belegung und/oder Störungen.

Selbstverständlich kann jede passende Frequenz im Bedarfsfall zur Katfunkfrequenz ernannt werden.

Auflistung der Notfunkfrequenzen > Notfunk Frequenzen

Betriebsarten

Im Katfunk kommt in der ersten Phase einer Katlage die Verbindungsaufnahme meist per **Sprache** zu stande. In weiterer Folge ist die Übermittlung von schriftlichen und bildlichen Informationen per **Email** via Kurzwelle/Ultrakurzwelle[5] ein essentieller Teil einer sicheren und stabilen Krisentelekommunikation.

Andere Betriebsarten spielen nur am Rande oder bei besonderen Lagen eine Rolle: In den Betriebsarten **CW**[6] und **PSK31**[7] sind bei Bedarf mit Minimalequipment und geringen Sendeleistungen weltweite Verbindungen möglich. Leider fehlt hier die Möglichkeit der fehlerfreien Informationsübertragung. SSTV oder **ATV** [8] zur Bildübertragung wird immer mehr ein wichtiges Element in der Führungsunterstützung für Einsatzleitungen, die durch den Amateurfunkdienst unterstützt werden.

Globale Netzwerke

Winlink

Winlink 2000 (WL2K) [9] ist ein weltweites "Email via Funk" System welches ausschließlich von lizensierten Funkamateuren auf nicht kommerzieller Basis betrieben wird. Das Winlink-System liefert wertvolle Dienste für die Not- und Krisenkommunikation, nämlich überall dort wo es keinen Internet Zugang (mehr) gibt. Mit Hilfe moderner Computer- und Netzwerktechnik und unter strikter Beachtung der Internet RFC-Empfehlungen ist das Winlink Development Team (WDT) um eine ständige Verbesserung für lokale, regionale und internationale Anwendungen bemüht. Um das WL2K System zu verwenden, müssen Sie eine Amateur-Funklizenz besitzen. Die Nutzung des Systems und aller Software ist kostenlos. [10] WL2K ist ein Non-Profit-Projekt der Amateur Radio Safety Foundation,Inc. [11]

WL2K Zugänge in OE:

Betriebsart **Pactor** OE3XEC[12] - Betriebsart AX.25 Packet Radio OE7XLR-13 und OE3XAR-10[13]

In der Betriebsart **Winmor** sind in EU meist nur 2-4 Stationen aktiv. Es ist jedoch anzunehmen, daß die gegenüber Pactor kostengünstigere Betriebsart (eine Soundkarte, wie bei PSK31 oder RTTY eingesetzt, genügt) eine rasche Verbreitung finden wird. Derzeit (Stand 1.10.2010) sind halbwegs sicher erreichbar: OE5XCL-5 in Wels (Dial 3612 kHz USB) und DA5UHR-5 in Frankfurt (Dial 7048,4 kHz USB), gelegentlich auch PD4U-5 in Apeldoorn (Dial 14109 kHz USB) und LA3F-5 in Sofiemyr (Dial 3596 kHz USB). Aber auch User-zu-User Verbindungen (Peer-to-Peer) sind im Notfunk, wenn keine Email-Vermittlung über Internet verfügbar, möglich. Als Client Software kann derzeit nur **RMS Express** [14] eingesetzt werden.

Zeitweise sind noch bemannte Stationen QRV, die ein Gateway zum WL2K-Netzwerk in RobustPacketRadio (RPR) zur Verfügung stellen. Zur Zeit sind das Versuche wobei kein 24/7 Betrieb gewährleistet werden kann. Bei Erfolg, könnte die eine oder andere Station als unbemannte Station dauerhaft onair gehen.

Echolink

Seit Inkrafttreten der neuen Amateurfunkverordnung ist es gestattet, Amateurfunkgeräte mit dem Internet zu verbinden.

EchoLink ist ein Internetprogramm, mithilfe dessen sich lizensierte Funkamateure der ganzen Welt mittels Computer über das Internet miteinander unterhalten können. Wie oben erwähnt, können nun auch Amateurfunkgeräte mit EchoLink verbunden werden. Jeder EchoLink-Station wird beim erstmaligen Einloggen eine sogenannte (nur einmalig vergebene) Node-Nummer zugewiesen (meistens vier- bis sechsstellig). Mittels DTMF-Tönen sind diese Stationen dann bei Betrieb über Funk durch Eingabe der Node-Nummer oder des Rufzeichens erreichbar. Weitere Informationen [15] und [16]

APRS

Im Amateurfunk wird APRS (Automatic Packet Reporting System) dazu verwendet, um Informationen und Meßdaten, egal welcher Art, weltweit zu übertragen. Die Verbreitung (Digipeating) der APRS-Daten erfolgt auf der europaweit einheitlichen Frequenz 144.800 MHz im 2m-Amateurfunkband mit 1200 Baud. [17]

Partnerorganisationen

Unter Partnerorganisationen sind jene zu verstehen, die entweder die Unterstützung des Amateurfunkdienstes in Anspruch nehmen und/oder selber Funkamateure mit entsprechenden Funktionen beschäftigen.

Beim Österreichischen Roten Kreuz[18] sind in allen Bundesländern Telekomeinheiten mit lizensierten Funkamateuren integriert, die im Katfall auch auf den Amateurfunkdienst als Rückfallebene zurückgreifen können. Damit ist bei Bedarf die Kommunikation mit externen Funkamateuren sichergestellt.

Die **Landeswarnzentralen (LWZ)** der Landesregierungen (z.B. Tirol[19]) bzw. in der **Katastrophenleitzentrale** der Gemeinde Wien (KLZ) sind im Katfall für die Krisentelekommunikation innerhalb des jeweiligen Bundeslandes und mit der Bundeswarnzentrale (BWZ[20]) beim BMI zuständig. Auch in den LWZ's und der KLZ wird Schritt für Schritt oder ist bereits der Amateurfunkdienst als unterstützendes Führungsmittel integriert.

Das **österreichische Bundesheer** hat schon seit vielen Jahren eine eigene Amateurfunkgruppierung AMRS[21] die aus Heeresangehörigen mit Amateurfunklizenz besteht und ebenfalls im Katfall über den Amateurfunkdienst auf die große Anzahl externer Funkamateure weltweit zugreifen kann!

Allen Partnerorganisationen wurden durch die oberste Fernmeldbehörde (OFMB[22]) Rufzeichen (z.B. OEH, OEK, OEY) als sog. Staatsfunkstellen zugewiesen. Diese Staatsfunkstellen betreiben abseits des Amateurfunkdienstes Kurzwellenbetrieb auf eigenen Frequenzen innerhalb Österreichs.

Im Krisenfall sind diese Staatsfunkstellen befugt mit Funkamateuren auf Amateurfunkfrequenzen Funkbetrieb abzuwickeln.

Übungen, Seminare, Weiterbildung, Schulungen usw.

Funkamateure sind durch die regelmäßige Ausübung ihres Hobbys

in der Bedienung ihrer Ausrüstung bestens geschult. Jedoch erfordert die Abwicklung von Not- und Katfunkbetrieb spezielle Kenntnisse über Abläufe, über die Organisation der BOS [23] und deren Notwendigkeiten, sowie auch den Umgang mit Meldungen. Auch der Betrieb der eigenen Ausrüstung weicht oftmals vom Üblichen ab.

an der Katastrophentelekommunikation beteiligten Funkamateure ein wichtiger Punkt. Einerseits wird das theoretische Rüstzeug in Seminaren und Workshops vermittelt und andererseits werden diese Kenntnisse in praktischen Übungen erprobt und verbessert.

AOEC:

Eine - zumindest in Europa - einzigartige Besonderheit stellt der AOEC (All_OE_Contest) jeweils am 1. Mai jeden Jahres dar. Dabei ist es den Funkamateuren und den OP's der Staatsfunkstellen erlaubt, miteinander auf Amateurfunkfrequenzen Verbindungen aufzunehmen. Diese Katfunkübung - die zwar als Contest ausgeschrieben ist - soll den 'nicht_lizensierten' OP's der Staatsfunkstellen die Möglichkeit geben, sich mit den Eigenheiten des Amateurfunkbetriebes vertraut zu machen. Umgekehrt natürlich ebenso!

Mittlerweile sind bei diesen Organisationen ebenfalls zahlreiche Funkamateure im Einsatz, die den Betrieb abwickeln und dann auch für allfällige Realeinsätze zur Verfügung stehen.

Vergleichbar mit dem AOEC ist der sog. 'X-Test' - ein Crossbandtest in den USA, bei dem die Funkamateure auf Amateurfunkfrequenzen senden und auf kommerziellen Frequenzen der Partner hören. Die Partner (z.B. MARS) senden auf deren zugewiesenen Frequenzen und hören auf Amateurfunkfrequenzen. Somit entstehen Crossbandverbindungen, bei denen jeder Beteiligte Sendebetrieb nur entsprechend seiner Lizenz durchführt.

GSET:

Ausgabe: 26.04.2024

GSET heisst 'Global Simulated Emcomm Test' und bedeutet soviel wie globaler simulierter Katfunktest. Im Rahmen dieses von Greg Mossup, G0DUB ins Leben gerufenen Tests verfassen und versenden die teilnehmenden Emcomm Stationen aus allen drei IARU-Regionen standardisierte Meldungen. Die Kette der Weiterleitung von Sprachmeldungen und die Abgabe von digitalen Meldungen endet in einer Emailadresse an der die einlangenen Nachrichten nach Laufzeit und Vollständigleit ausgewertet werden.

Eine der wichtigsten Erkenntnisse der letzten Tests haben gezeigt, dass die Übermittlung von Emails über Kurzwelle über das Winlinknetzwerk die Weiterleitung und Aufnahme von Sprachnachrichten an Sicherheit, Vollständigkeit und Geschwindigkeit bei Weitem übertrifft!

Regionale Übungen:

In vielen Bundesländern werden sog. Katfielddays abgehalten. Dabei wird über eine Dauer von einigen Stunden bis zu einigen Tagen von Orten ohne Infrastruktur katfunkmässiger Betrieb abgewickelt. Die eingesetzte Ausrüstung wie Stromerzeuger, Solarpanele, speziell gefertigte Katfunkkoffer, einfache Drahtantennen, sowie Laptops und Software werden auf Einsatztauglichkeit getestet.

Dabei wurden schon einige Erkenntnisse gewonnen, die zu Verbesserungen oder Änderungen der eigenen oder fremden Ausrüstung oder Betriebsabwicklung geführt haben.

Notfunk Checkliste

Integrierte Übungen mit BOS:

Vereinzelt haben bereits regionale Katschutzbehörden wie z.B. die Bezirkshauptmannschaft Gmünd oder einige Gemeinden den Amateurfunkdienst bei sog. Stabsrahmenübungen in die Kommunikationsabläufe integriert. Das erhöhnt natürlich das Vertrauen in die Verlässlichkeit und in die Kompetenz der Funkamateure bei den Teilnehmern.

Seminare:

Seminare und Workshops vermitteln vertiefende Kenntnisse in Spezialbereichen. Beispielsweise wird die Theorie, der Aufbau und Betrieb von einfachen Drahtantennen in Katlagen erarbeitet.

Auch die im Katfunk eingesetzten Verfahren der Nachrichtenübermittlung über Pactor oder Packet Radio mit evt. Weiterleitung über das Winlinknetzwerk wird bei solchen Veranstaltungen den interessierten Katfunkern in Theorie und Praxis näher gebracht.

Präsentationen:

Die Veranstalter von Sicherheitstagen (österreichweit), Tag der offenen Türen (z.B. Bundesheer), Messen (z.B. Rettermesse Wels), Leistungsschauen (z.B. Rotes Kreuz) bieten dem Amateurfunkdienst eine Plattform, seine Möglichkeiten in der Krisentelekommunikation einem breiteren Publikum zu präsentieren. Hier werden die Emcomm-Ausrüstungen in Betrieb genommen und die damit möglichen Varianten der Verbindungsaufnahmen demonstriert.

Ansprechpartner in den Landesverbänden

Grundsätzlich sind die Ansprechpartner in den Landesverbänden unter der Adresse 'notfunk. oex@oevsv.at' zu erreichen!

Das 'oex' steht für den jeweiligen LV, z.B. OE1

Notfunkrunde

jeden ersten Mittwoch im Monat 19:45 Uhr Lokalzeit auf 3.643 KHz (+/- QRM)

IARU und Notfunk in anderen Ländern

- Amateur Radio Emergency Communications International [24]
- IARU-Region 1 Emergency Communication [25]
- Deutschland DARC Notfunk-Referat [26]
- Schweiz IG Notfunk [27]
- Holland DARES [28] & [29]
- ARRL Emergency Radio [30] Amateur Radio Today Youtube Video [31]
- England RAYNET [32]
- IRESC International Radio Emergency Support Coalition [33]
- Italien RNRE [34]
- Frankreich F.N.R.A.S.E.C. [35]
- Australien WICEN [36]
- Vereinigte Staaten von Amerika ARES [37]

Links

Amateurfunkstationen in Österreich [38]

Unwetterwarnungen für Österreich - Skywarn [39]

Unwetterwarnungen für Österreich - Unwetterzentrale [40]

Alarm-Pagernetz in Ost-Österreich [41]

Kontakt

Not- und Katfunkreferat im DV: Michael Maringer, OE1MMU oe1mmu@oevsv.at

Kategorie: NOTFUNK: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 1. Oktober 2010, 20:20 Uhr (Quelltext anzeigen)

OE1FEA (Diskussion | Beiträge)

K (→Partnerorganisationen)

← Zum vorherigen Versionsunterschied

Version vom 1. Januar 2011, 12:19 Uhr (Quelltext anzeigen)

Anonym (Diskussion | Beiträge)
Zum nächsten Versionsunterschied →

Zeile 5:

ARENA - The Amateur Radio Emergency
Network Austria is a national voluntary
service that is provided to the community
by licensed radio amateurs. ARENA is part
of the OEVSV and IARU - the national and
international amateur radio associations.
Our focus is to support the public in the
event of crises when conventional
communication systems fail. Many of our
members are volunteers in organizations
such as the Austrian Red Cross, Civil
Defense, fire brigades, military and related
institutions.

Unique EmComm support is provided by use of the HF, VHF and UHF frequency spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink and APRS. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Zeile 5:

ARENA - The Amateur Radio Emergency
Network Austria is a national voluntary
service that is provided to the community
by licensed radio amateurs. ARENA is part
of the OEVSV and IARU - the national and
international amateur radio associations.
Our focus is to support the public in the
event of crises when conventional
communication systems fail. Many of our
members are volunteers in organizations
such as the Austrian Red Cross, Civil
Defense, fire brigades, military and related
institutions.

spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink, APRS and HAM NET. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Unique EmComm support is provided by

use of the HF, VHF and UHF frequency

Version vom 1. Januar 2011, 12:19 Uhr

NOTFUNK-OE

AMATEUR RADIO EMERGENCY NETWORK AUSTRIA

English Summary

ARENA - The Amateur Radio Emergency Network Austria is a national voluntary service that is provided to the community by licensed radio amateurs. ARENA is part of the OEVSV and IARU - the national and international amateur radio associations. Our focus is to support the public in the event of crises when conventional communication systems fail. Many of our members are volunteers in organizations such as the Austrian Red Cross, Civil Defense, fire brigades, military and related institutions. Unique EmComm support is provided by use of the HF, VHF and UHF frequency spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink, APRS and HAMNET. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Inhaltsverzeichnis

1 Allgemeines	. 142
2 Kompetenz der Funkamateure	. 143
3 Richtlinien	. 143
3.1 Aufnehmen und Weiterleiten einer Notfallmeldung	. 143
3.2 Richtlinien für den Not- und Katastrophenfunk	. 143
4 Alarm- und Warnsignale, Notruf	. 147

5 Frequenzen	148
6 Betriebsarten	
7 Globale Netzwerke	. 149
7.1 Winlink	. 149
7.2 Echolink	. 149
7.3 APRS	. 150
8 Partnerorganisationen	. 150
9 Übungen, Seminare, Weiterbildung, Schulungen usw	
10 Ansprechpartner in den Landesverbänden	. 152
11 Notfunkrunde	
12 IARU und Notfunk in anderen Ländern	. 153
13 Links	. 153
14 Kontakt	. 153

Allgemeines

Katastrophenfunkverkehr

Katastrophenfunkverkehr ist die Übermittlung von Nachrichten, die den nationalen oder internationalen Hilfeleistungsverkehr betreffen, zwischen Funkstellen innerhalb eines Katastrophengebietes sowie zwischen einer Funkstelle im Katastrophengebiet und Hilfe leistenden Organisationen.

Notfunkverkehr

Notfunkverkehr ist die Übermittlung von Nachrichten zwischen einer Funkstelle, die selbst in Not ist oder an einem Notfall beteiligt oder Zeuge des Notfalles ist, und einer oder mehreren Hilfe leistenden Funkstellen.

Unsere Aufgaben als Funkamateure

Funkamateure unterstützen Hilfsorganisationen und andere Behörden und Organisationen mit Sicherheitsaufgaben, oder leiten empfangene Notrufe an diese weiter.

Von jeher haben Funkamateure weltweit ihre Gerätschaften und ihr Wissen für Hilfeleistungen zur Verfügung gestellt. Für Notrufe, bei Naturkatastrophen, in Entwicklungsländern, bei Kriegen, dringend benötigten Medikamenten, Seenotfällen, etc. Egal bei welcher Krisenlage, Funkamateure sind bei einem Ausfall der kommerziellen Telekommunikationsnetze weltweit oft die ersten, die wieder Kontakt zur Außenwelt herstellen können.

Funkamateure als Kommunikationsspezialisten

Um z.B. eine interkontinentale Funkverbindung auf Kurzwelle aufzubauen reichen neben den nötigen Kenntnissen über die Ausbreitungsbedingungen, einige Meter Draht als Antenne notfalls zwischen Trümmern und Bäumen gespannt, eine (Auto-) Batterie/ Solarzelle, und ein (selbstgebautes) Funkgerät mit rund 1–5 Watt Sendeleistung und eine Morsetaste bzw. Mikrofon aus. Bei über zwei Millionen Funkamateuren weltweit, die dank der Zeitverschiebung rund um die Uhr aktiv sind, erreicht man immer jemanden.

Hochwasser, Erdbeben, Stürme, Großfeuer und andere schwere Katastrophen zerstören und beschädigen fast immer Telekommunikationseinrichtungen. Dabei ist es irrelevant, ob die Technik neu oder alt ist. Ohne die entsprechende Infrastruktur und ohne Strom- und Telefonleitungen funktioniert sie nicht mehr. Besonders hier zeigt sich die Stärke des Amateurfunks. Funkamateure betreiben ihre Station unabhängig von einer Infrastruktur. Sie verfügen regional und länderübergreifend über zahlreiche Kontakte und leisten damit eine der wichtigsten Beiträge bei der Unterstützung von Behörden und Hilfsorganisationen in der Notfallkommunikation.

Ein großer Vorteil des Amateurfunkdienstes sind hierbei weltweit zugewiesene Frequenzbereiche. Somit ist eine unkomplizierte grenzüberschreitende Kommunikation jederzeit möglich, während es bei der Zusammenarbeit verschiedener Hilfskräfte wie z.B. BOS, Bundesheer, örtliche Energieversorger, etc. schon bei regionalen/ nationalen Großschadenslagen immer wieder an den unterschiedlichen Funkdiensten und Frequenzen scheitert. Ein weiterer Vorteil besteht darin, dass der Funkamateur seine Geräte bestens kennt, da er durch den laufenden Betrieb praktisch immer am Üben ist.

Ausgabe: 26.04.2024 Dieses Dokument wurde erzeugt mit BlueSpice

Erinnern Sie sich noch?

• 12. Jänner 2010 - Erdbebenkatastrophe in Haiti

BH-Einsatz

- April 2009 Erdbebenkatastrophe in l'Aquila, Italien
- 1. Jänner 2005 Tsunami in Südostasien
- 23. August 2005 Überschwemmung in Bezau
- 23. Februar 1999 Lawinenunglück in Galtür
- Weitere Notfunkaktionen der Funkamateure [1]

Kompetenz der Funkamateure

Diese ist von der Internationalen Fernmeldeunion (ITU) in zwei Bereichen festgelegt:

- Alarmierung Empfangen und Verteilen von Alarmmeldungen
- Entlastung bzw. Unterstützung von Einsatzorganisationen (bei der Organisation von Hilfe in Gebieten, in denen andere [Telekom] Dienste noch nicht verfügbar sind).

Siehe ITU-EmComm: [2]

Richtlinien

Aufnehmen und Weiterleiten einer Notfallmeldung

- Wer? Name und Standort des Melders
- Wo? Orts des Notfalls
- Was? Was ist passiert, was ist zu tun, welche Hilfe wird angefordert und ist erforderlich?
- Wieviele? Verletze, Betroffene, etc.
- Welche? Art der vermutlichen Verletzung, Erkrankung und eingetretene Schäden
- Die Notrufzentrale, die Funkleitstation oder die den Notruf aufnehmende Station beendet die Verbindung erst dann, wenn sie alle Informationen bekommen hat, die für eine Hilfeleistung erforderlich sind.

Notfallkarte [3]

Richtlinien für den Not- und Katastrophenfunk

Am Beispiel Niederösterreich:

Teil 1 Allgemeiner Teil

Not- und Katastrophenfunk Referat des Landesverband Niederösterreich des ÖVSV

Not- und Katastrophenfunk-Konzept Version 1.1 vom 18.5.2007

Not- und Katastrophenfunk Referat des Landesverbandes Niederösterreich des ÖVSV

OE- Richtlinie

Not- und Katastrophenfunk

Teil 1

Allgemeines

Revisionshistorie:

Ausgabe	Datum	Änderung	Autor
1.0	3.4.2007	Initialversion	G. Scholz
1.1	18.05.2007	Überarbeitet für OE-Version	M.Maringer

Ausgabe 1.1 vom 18.5.2007

Seite 1 von 14

Teil 2 Niederösterreich

Not- und Katastrophenfunk Referat des Landesverband Niederösterreich des ÖVSV

Not- und Katastrophenfunk-Konzept Version 2.5 vom 17.7.2009

Not- und Katastrophenfunk Referat des Landesverbandes Niederösterreich des ÖVSV

Richtlinie

Not- und Katastrophenfunk

Teil 2

NIEDERÖSTERREICH

Revisionshistorie:

Ausgabe	Datum	Änderung	Autor
1.0	3.4.2007	Initialversion	G. Scholz
2.0	27.8.2007	Ergänzung Pager-Alarmierung	G. Scholz
2.1	9.1.2008	Korrektur Tel.Nummer	G. Scholz
2.2	5.9.2008	Ergänzung ADL 324, div. Korrekturen	G. Scholz
2.3	20.12.2008	Adressänderung OE3CJB	G. Scholz
2.4	29.1.2009	Korrektur Notruf144	G. Scholz
2.5	17.7.2009	kleinere Korrekturen	G. Scholz

Ausgabe 2.5 vom17.7.2009

Seite 1 von 7

Für einige weitere Bundesländer bestehen bereits angepasste Versionen (z.B. Tirol) in denen länderspezifische Besonderheiten (z.B. Ansprechpartner, Adressen, technische Ausstattung usw.) eingearbeitet wurden. Bei Bedarf werden diese Richtlinien ergänzt oder überarbeitet!

IARU Notfunk Prozedur (Deutsch)

IARU

INTERNATIONALE NOTFUNK PROZEDUR FÜR KURZWELLE

Wie von allen 3 Regionen angenommen

Alarm- und Warnsignale, Notruf

DER NOTRUF [4]

Frequenzen

Für die weltweite 'Kompatibilität' wurden von der IARU-Konferenz Frequenzen beschlossen, die von allen Regionen benutzt werden können. Sprechfunkbetrieb findet auf der Kurzwelle nicht auf einer Frequenz (Kanal) statt, sondern rund um die 'Center of Activity'-Frequenzen (CoA). Im Regelfall bewegt man sich +/-5kHz um CoA - je nach Belegung und/oder Störungen.

Selbstverständlich kann jede passende Frequenz im Bedarfsfall zur Katfunkfrequenz ernannt werden.

Auflistung der Notfunkfrequenzen > Notfunk Frequenzen

Betriebsarten

Im Katfunk kommt in der ersten Phase einer Katlage die Verbindungsaufnahme meist per **Sprache** zu stande. In weiterer Folge ist die Übermittlung von schriftlichen und bildlichen Informationen per **Email** via Kurzwelle/Ultrakurzwelle[5] ein essentieller Teil einer sicheren und stabilen Krisentelekommunikation.

Andere Betriebsarten spielen nur am Rande oder bei besonderen Lagen eine Rolle: In den Betriebsarten **CW**[6] und **PSK31**[7] sind bei Bedarf mit Minimalequipment und geringen Sendeleistungen weltweite Verbindungen möglich. Leider fehlt hier die Möglichkeit der fehlerfreien Informationsübertragung. SSTV oder **ATV** [8] zur Bildübertragung wird immer mehr ein wichtiges Element in der Führungsunterstützung für Einsatzleitungen, die durch den Amateurfunkdienst unterstützt werden.

Globale Netzwerke

Winlink

Winlink 2000 (WL2K) [9] ist ein weltweites "Email via Funk" System welches ausschließlich von lizensierten Funkamateuren auf nicht kommerzieller Basis betrieben wird. Das Winlink-System liefert wertvolle Dienste für die Not- und Krisenkommunikation, nämlich überall dort wo es keinen Internet Zugang (mehr) gibt. Mit Hilfe moderner Computer- und Netzwerktechnik und unter strikter Beachtung der Internet RFC-Empfehlungen ist das Winlink Development Team (WDT) um eine ständige Verbesserung für lokale, regionale und internationale Anwendungen bemüht. Um das WL2K System zu verwenden, müssen Sie eine Amateur-Funklizenz besitzen. Die Nutzung des Systems und aller Software ist kostenlos. [10] WL2K ist ein Non-Profit-Projekt der Amateur Radio Safety Foundation,Inc. [11]

WL2K Zugänge in OE:

Betriebsart **Pactor** OE3XEC[12] - Betriebsart AX.25 Packet Radio OE7XLR-13 und OE3XAR-10[13]

In der Betriebsart **Winmor** sind in EU meist nur 2-4 Stationen aktiv. Es ist jedoch anzunehmen, daß die gegenüber Pactor kostengünstigere Betriebsart (eine Soundkarte, wie bei PSK31 oder RTTY eingesetzt, genügt) eine rasche Verbreitung finden wird. Derzeit (Stand 1.10.2010) sind halbwegs sicher erreichbar: OE5XCL-5 in Wels (Dial 3612 kHz USB) und DA5UHR-5 in Frankfurt (Dial 7048,4 kHz USB), gelegentlich auch PD4U-5 in Apeldoorn (Dial 14109 kHz USB) und LA3F-5 in Sofiemyr (Dial 3596 kHz USB). Aber auch User-zu-User Verbindungen (Peer-to-Peer) sind im Notfunk, wenn keine Email-Vermittlung über Internet verfügbar, möglich. Als Client Software kann derzeit nur **RMS Express** [14] eingesetzt werden.

Zeitweise sind noch bemannte Stationen QRV, die ein Gateway zum WL2K-Netzwerk in RobustPacketRadio (RPR) zur Verfügung stellen. Zur Zeit sind das Versuche wobei kein 24/7 Betrieb gewährleistet werden kann. Bei Erfolg, könnte die eine oder andere Station als unbemannte Station dauerhaft onair gehen.

Echolink

Seit Inkrafttreten der neuen Amateurfunkverordnung ist es gestattet, Amateurfunkgeräte mit dem Internet zu verbinden.

EchoLink ist ein Internetprogramm, mithilfe dessen sich lizensierte Funkamateure der ganzen Welt mittels Computer über das Internet miteinander unterhalten können. Wie oben erwähnt, können nun auch Amateurfunkgeräte mit EchoLink verbunden werden. Jeder EchoLink-Station wird beim erstmaligen Einloggen eine sogenannte (nur einmalig vergebene) Node-Nummer zugewiesen (meistens vier- bis sechsstellig). Mittels DTMF-Tönen sind diese Stationen dann bei Betrieb über Funk durch Eingabe der Node-Nummer oder des Rufzeichens erreichbar. Weitere Informationen [15] und [16]

APRS

Im Amateurfunk wird APRS (Automatic Packet Reporting System) dazu verwendet, um Informationen und Meßdaten, egal welcher Art, weltweit zu übertragen. Die Verbreitung (Digipeating) der APRS-Daten erfolgt auf der europaweit einheitlichen Frequenz 144.800 MHz im 2m-Amateurfunkband mit 1200 Baud. [17]

Partnerorganisationen

Unter Partnerorganisationen sind jene zu verstehen, die entweder die Unterstützung des Amateurfunkdienstes in Anspruch nehmen und/oder selber Funkamateure mit entsprechenden Funktionen beschäftigen.

Beim Österreichischen Roten Kreuz[18] sind in allen Bundesländern Telekomeinheiten mit lizensierten Funkamateuren integriert, die im Katfall auch auf den Amateurfunkdienst als Rückfallebene zurückgreifen können. Damit ist bei Bedarf die Kommunikation mit externen Funkamateuren sichergestellt.

Die **Landeswarnzentralen (LWZ)** der Landesregierungen (z.B. Tirol[19]) bzw. in der **Katastrophenleitzentrale** der Gemeinde Wien (KLZ) sind im Katfall für die Krisentelekommunikation innerhalb des jeweiligen Bundeslandes und mit der Bundeswarnzentrale (BWZ[20]) beim BMI zuständig. Auch in den LWZ's und der KLZ wird Schritt für Schritt oder ist bereits der Amateurfunkdienst als unterstützendes Führungsmittel integriert.

Das **österreichische Bundesheer** hat schon seit vielen Jahren eine eigene Amateurfunkgruppierung AMRS[21] die aus Heeresangehörigen mit Amateurfunklizenz besteht und ebenfalls im Katfall über den Amateurfunkdienst auf die große Anzahl externer Funkamateure weltweit zugreifen kann!

Allen Partnerorganisationen wurden durch die oberste Fernmeldbehörde (OFMB[22]) Rufzeichen (z.B. OEH, OEK, OEY) als sog. Staatsfunkstellen zugewiesen. Diese Staatsfunkstellen betreiben abseits des Amateurfunkdienstes Kurzwellenbetrieb auf eigenen Frequenzen innerhalb Österreichs.

Im Krisenfall sind diese Staatsfunkstellen befugt mit Funkamateuren auf Amateurfunkfrequenzen Funkbetrieb abzuwickeln.

Übungen, Seminare, Weiterbildung, Schulungen usw.

Funkamateure sind durch die regelmäßige Ausübung ihres Hobbys

in der Bedienung ihrer Ausrüstung bestens geschult. Jedoch erfordert die Abwicklung von Not- und Katfunkbetrieb spezielle Kenntnisse über Abläufe, über die Organisation der BOS [23] und deren Notwendigkeiten, sowie auch den Umgang mit Meldungen. Auch der Betrieb der eigenen Ausrüstung weicht oftmals vom Üblichen ab.

an der Katastrophentelekommunikation beteiligten Funkamateure ein wichtiger Punkt. Einerseits wird das theoretische Rüstzeug in Seminaren und Workshops vermittelt und andererseits werden diese Kenntnisse in praktischen Übungen erprobt und verbessert.

AOEC:

Eine - zumindest in Europa - einzigartige Besonderheit stellt der AOEC (All_OE_Contest) jeweils am 1. Mai jeden Jahres dar. Dabei ist es den Funkamateuren und den OP's der Staatsfunkstellen erlaubt, miteinander auf Amateurfunkfrequenzen Verbindungen aufzunehmen. Diese Katfunkübung - die zwar als Contest ausgeschrieben ist - soll den 'nicht_lizensierten' OP's der Staatsfunkstellen die Möglichkeit geben, sich mit den Eigenheiten des Amateurfunkbetriebes vertraut zu machen. Umgekehrt natürlich ebenso!

Mittlerweile sind bei diesen Organisationen ebenfalls zahlreiche Funkamateure im Einsatz, die den Betrieb abwickeln und dann auch für allfällige Realeinsätze zur Verfügung stehen.

Vergleichbar mit dem AOEC ist der sog. 'X-Test' - ein Crossbandtest in den USA, bei dem die Funkamateure auf Amateurfunkfrequenzen senden und auf kommerziellen Frequenzen der Partner hören. Die Partner (z.B. MARS) senden auf deren zugewiesenen Frequenzen und hören auf Amateurfunkfrequenzen. Somit entstehen Crossbandverbindungen, bei denen jeder Beteiligte Sendebetrieb nur entsprechend seiner Lizenz durchführt.

GSET:

GSET heisst 'Global Simulated Emcomm Test' und bedeutet soviel wie globaler simulierter Katfunktest. Im Rahmen dieses von Greg Mossup, G0DUB ins Leben gerufenen Tests verfassen und versenden die teilnehmenden Emcomm Stationen aus allen drei IARU-Regionen standardisierte Meldungen. Die Kette der Weiterleitung von Sprachmeldungen und die Abgabe von digitalen Meldungen endet in einer Emailadresse an der die einlangenen Nachrichten nach Laufzeit und Vollständigleit ausgewertet werden.

Eine der wichtigsten Erkenntnisse der letzten Tests haben gezeigt, dass die Übermittlung von Emails über Kurzwelle über das Winlinknetzwerk die Weiterleitung und Aufnahme von Sprachnachrichten an Sicherheit, Vollständigkeit und Geschwindigkeit bei Weitem übertrifft!

Regionale Übungen:

In vielen Bundesländern werden sog. Katfielddays abgehalten. Dabei wird über eine Dauer von einigen Stunden bis zu einigen Tagen von Orten ohne Infrastruktur katfunkmässiger Betrieb abgewickelt. Die eingesetzte Ausrüstung wie Stromerzeuger, Solarpanele, speziell gefertigte Katfunkkoffer, einfache Drahtantennen, sowie Laptops und Software werden auf Einsatztauglichkeit getestet.

Dabei wurden schon einige Erkenntnisse gewonnen, die zu Verbesserungen oder Änderungen der eigenen oder fremden Ausrüstung oder Betriebsabwicklung geführt haben.

Notfunk Checkliste

Integrierte Übungen mit BOS:

Vereinzelt haben bereits regionale Katschutzbehörden wie z.B. die Bezirkshauptmannschaft Gmünd oder einige Gemeinden den Amateurfunkdienst bei sog. Stabsrahmenübungen in die Kommunikationsabläufe integriert. Das erhöhnt natürlich das Vertrauen in die Verlässlichkeit und in die Kompetenz der Funkamateure bei den Teilnehmern.

Seminare:

Seminare und Workshops vermitteln vertiefende Kenntnisse in Spezialbereichen. Beispielsweise wird die Theorie, der Aufbau und Betrieb von einfachen Drahtantennen in Katlagen erarbeitet.

Auch die im Katfunk eingesetzten Verfahren der Nachrichtenübermittlung über Pactor oder Packet Radio mit evt. Weiterleitung über das Winlinknetzwerk wird bei solchen Veranstaltungen den interessierten Katfunkern in Theorie und Praxis näher gebracht.

Präsentationen:

Die Veranstalter von Sicherheitstagen (österreichweit), Tag der offenen Türen (z.B. Bundesheer), Messen (z.B. Rettermesse Wels), Leistungsschauen (z.B. Rotes Kreuz) bieten dem Amateurfunkdienst eine Plattform, seine Möglichkeiten in der Krisentelekommunikation einem breiteren Publikum zu präsentieren. Hier werden die Emcomm-Ausrüstungen in Betrieb genommen und die damit möglichen Varianten der Verbindungsaufnahmen demonstriert.

Ansprechpartner in den Landesverbänden

Grundsätzlich sind die Ansprechpartner in den Landesverbänden unter der Adresse 'notfunk. oex@oevsv.at' zu erreichen!

Das 'oex' steht für den jeweiligen LV, z.B. OE1

Notfunkrunde

jeden ersten Mittwoch im Monat 19:45 Uhr Lokalzeit auf 3.643 KHz (+/- QRM)

IARU und Notfunk in anderen Ländern

- Amateur Radio Emergency Communications International [24]
- IARU-Region 1 Emergency Communication [25]
- Deutschland DARC Notfunk-Referat [26]
- Schweiz IG Notfunk [27]
- Holland DARES [28] & [29]
- ARRL Emergency Radio [30] Amateur Radio Today Youtube Video [31]
- England RAYNET [32]
- IRESC International Radio Emergency Support Coalition [33]
- Italien RNRE [34]
- Frankreich F.N.R.A.S.E.C. [35]
- Australien WICEN [36]
- Vereinigte Staaten von Amerika ARES [37]

Links

Amateurfunkstationen in Österreich [38]

Unwetterwarnungen für Österreich - Skywarn [39]

Unwetterwarnungen für Österreich - Unwetterzentrale [40]

Alarm-Pagernetz in Ost-Österreich [41]

Kontakt

Not- und Katfunkreferat im DV: Michael Maringer, OE1MMU oe1mmu@oevsv.at

Kategorie: NOTFUNK: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 1. Oktober 2010, 20:20 Uhr (Quelltext anzeigen)

OE1FEA (Diskussion | Beiträge)

K (→Partnerorganisationen)

← Zum vorherigen Versionsunterschied

Zeile 5:	Zeile 5:

ARENA - The Amateur Radio Emergency
Network Austria is a national voluntary
service that is provided to the community
by licensed radio amateurs. ARENA is part
of the OEVSV and IARU - the national and
international amateur radio associations.
Our focus is to support the public in the
event of crises when conventional
communication systems fail. Many of our
members are volunteers in organizations
such as the Austrian Red Cross, Civil
Defense, fire brigades, military and related
institutions.

Unique EmComm support is provided by use of the HF, VHF and UHF frequency spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink and APRS. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Ausgabe: 26.04.2024

Version vom 1. Januar 2011, 12:19 Uhr (Q uelltext anzeigen)

Anonym (Diskussion | Beiträge)
Zum nächsten Versionsunterschied →

ARENA - The Amateur Radio Emergency
Network Austria is a national voluntary
service that is provided to the community
by licensed radio amateurs. ARENA is part
of the OEVSV and IARU - the national and
international amateur radio associations.
Our focus is to support the public in the
event of crises when conventional
communication systems fail. Many of our
members are volunteers in organizations
such as the Austrian Red Cross, Civil
Defense, fire brigades, military and related
institutions.

use of the HF, VHF and UHF frequency spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink, APRS and HAM NET. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Unique EmComm support is provided by

Version vom 1. Januar 2011, 12:19 Uhr

NOTFUNK-OE

AMATEUR RADIO EMERGENCY NETWORK AUSTRIA

English Summary

ARENA - The Amateur Radio Emergency Network Austria is a national voluntary service that is provided to the community by licensed radio amateurs. ARENA is part of the OEVSV and IARU - the national and international amateur radio associations. Our focus is to support the public in the event of crises when conventional communication systems fail. Many of our members are volunteers in organizations such as the Austrian Red Cross, Civil Defense, fire brigades, military and related institutions. Unique EmComm support is provided by use of the HF, VHF and UHF frequency spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink, APRS and HAMNET. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Inhaltsverzeichnis

1 Allgemeines	157
2 Kompetenz der Funkamateure	158
3 Richtlinien	158
3.1 Aufnehmen und Weiterleiten einer Notfallmeldung	158
3.2 Richtlinien für den Not- und Katastrophenfunk	158
4 Alarm- und Warnsignale, Notruf	162

Ausgabe: 26.04.2024 Dieses Dokument wurde erzeugt mit BlueSpice

5 Frequenzen	163
6 Betriebsarten	163
7 Globale Netzwerke	164
7.1 Winlink	164
7.2 Echolink	164
7.3 APRS	
8 Partnerorganisationen	165
9 Übungen, Seminare, Weiterbildung, Schulungen usw	165
10 Ansprechpartner in den Landesverbänden	167
11 Notfunkrunde	168
12 IARU und Notfunk in anderen Ländern	168
13 Links	168
14 Kontakt	168

Allgemeines

Katastrophenfunkverkehr

Katastrophenfunkverkehr ist die Übermittlung von Nachrichten, die den nationalen oder internationalen Hilfeleistungsverkehr betreffen, zwischen Funkstellen innerhalb eines Katastrophengebietes sowie zwischen einer Funkstelle im Katastrophengebiet und Hilfe leistenden Organisationen.

Notfunkverkehr

Notfunkverkehr ist die Übermittlung von Nachrichten zwischen einer Funkstelle, die selbst in Not ist oder an einem Notfall beteiligt oder Zeuge des Notfalles ist, und einer oder mehreren Hilfe leistenden Funkstellen.

Unsere Aufgaben als Funkamateure

Funkamateure unterstützen Hilfsorganisationen und andere Behörden und Organisationen mit Sicherheitsaufgaben, oder leiten empfangene Notrufe an diese weiter.

Von jeher haben Funkamateure weltweit ihre Gerätschaften und ihr Wissen für Hilfeleistungen zur Verfügung gestellt. Für Notrufe, bei Naturkatastrophen, in Entwicklungsländern, bei Kriegen, dringend benötigten Medikamenten, Seenotfällen, etc. Egal bei welcher Krisenlage, Funkamateure sind bei einem Ausfall der kommerziellen Telekommunikationsnetze weltweit oft die ersten, die wieder Kontakt zur Außenwelt herstellen können.

Funkamateure als Kommunikationsspezialisten

Um z.B. eine interkontinentale Funkverbindung auf Kurzwelle aufzubauen reichen neben den nötigen Kenntnissen über die Ausbreitungsbedingungen, einige Meter Draht als Antenne notfalls zwischen Trümmern und Bäumen gespannt, eine (Auto-) Batterie/ Solarzelle, und ein (selbstgebautes) Funkgerät mit rund 1–5 Watt Sendeleistung und eine Morsetaste bzw. Mikrofon aus. Bei über zwei Millionen Funkamateuren weltweit, die dank der Zeitverschiebung rund um die Uhr aktiv sind, erreicht man immer jemanden.

Hochwasser, Erdbeben, Stürme, Großfeuer und andere schwere Katastrophen zerstören und beschädigen fast immer Telekommunikationseinrichtungen. Dabei ist es irrelevant, ob die Technik neu oder alt ist. Ohne die entsprechende Infrastruktur und ohne Strom- und Telefonleitungen funktioniert sie nicht mehr. Besonders hier zeigt sich die Stärke des Amateurfunks. Funkamateure betreiben ihre Station unabhängig von einer Infrastruktur. Sie verfügen regional und länderübergreifend über zahlreiche Kontakte und leisten damit eine der wichtigsten Beiträge bei der Unterstützung von Behörden und Hilfsorganisationen in der Notfallkommunikation.

Ein großer Vorteil des Amateurfunkdienstes sind hierbei weltweit zugewiesene Frequenzbereiche. Somit ist eine unkomplizierte grenzüberschreitende Kommunikation jederzeit möglich, während es bei der Zusammenarbeit verschiedener Hilfskräfte wie z.B. BOS, Bundesheer, örtliche Energieversorger, etc. schon bei regionalen/ nationalen Großschadenslagen immer wieder an den unterschiedlichen Funkdiensten und Frequenzen scheitert. Ein weiterer Vorteil besteht darin, dass der Funkamateur seine Geräte bestens kennt, da er durch den laufenden Betrieb praktisch immer am Üben ist.

Ausgabe: 26.04.2024 Dieses Dokument wurde erzeugt mit BlueSpice

Erinnern Sie sich noch?

• 12. Jänner 2010 - Erdbebenkatastrophe in Haiti

BH-Einsatz

- April 2009 Erdbebenkatastrophe in l'Aquila, Italien
- 1. Jänner 2005 Tsunami in Südostasien
- 23. August 2005 Überschwemmung in Bezau
- 23. Februar 1999 Lawinenunglück in Galtür
- Weitere Notfunkaktionen der Funkamateure [1]

Kompetenz der Funkamateure

Diese ist von der Internationalen Fernmeldeunion (ITU) in zwei Bereichen festgelegt:

- Alarmierung Empfangen und Verteilen von Alarmmeldungen
- Entlastung bzw. Unterstützung von Einsatzorganisationen (bei der Organisation von Hilfe in Gebieten, in denen andere [Telekom] Dienste noch nicht verfügbar sind).

Siehe ITU-EmComm: [2]

Richtlinien

Aufnehmen und Weiterleiten einer Notfallmeldung

- Wer? Name und Standort des Melders
- Wo? Orts des Notfalls
- Was? Was ist passiert, was ist zu tun, welche Hilfe wird angefordert und ist erforderlich?
- Wieviele? Verletze, Betroffene, etc.
- Welche? Art der vermutlichen Verletzung, Erkrankung und eingetretene Schäden
- Die Notrufzentrale, die Funkleitstation oder die den Notruf aufnehmende Station beendet die Verbindung erst dann, wenn sie alle Informationen bekommen hat, die für eine Hilfeleistung erforderlich sind.

Notfallkarte [3]

Richtlinien für den Not- und Katastrophenfunk

Am Beispiel Niederösterreich:

Teil 1 Allgemeiner Teil

Not- und Katastrophenfunk Referat des Landesverband Niederösterreich des ÖVSV

Not- und Katastrophenfunk-Konzept Version 1.1 vom 18.5.2007

Not- und Katastrophenfunk Referat des Landesverbandes Niederösterreich des ÖVSV

OE- Richtlinie

Not- und Katastrophenfunk

Teil 1

Allgemeines

Revisionshistorie:

Ausgabe	Datum	Änderung	Autor
1.0	3.4.2007	Initialversion	G. Scholz
1.1	18.05.2007	Überarbeitet für OE-Version	M.Maringer

Ausgabe 1.1 vom 18.5.2007

Seite 1 von 14

Teil 2 Niederösterreich

Not- und Katastrophenfunk Referat des Landesverband Niederösterreich des ÖVSV

Not- und Katastrophenfunk-Konzept Version 2.5 vom 17.7.2009

Not- und Katastrophenfunk Referat des Landesverbandes Niederösterreich des ÖVSV

Richtlinie

Not- und Katastrophenfunk

Teil 2

NIEDERÖSTERREICH

Revisionshistorie:

Ausgabe	Datum	Änderung	Autor
1.0	3.4.2007	Initialversion	G. Scholz
2.0	27.8.2007	Ergänzung Pager-Alarmierung	G. Scholz
2.1	9.1.2008	Korrektur Tel.Nummer	G. Scholz
2.2	5.9.2008	Ergänzung ADL 324, div. Korrekturen	G. Scholz
2.3	20.12.2008	Adressänderung OE3CJB	G. Scholz
2.4	29.1.2009	Korrektur Notruf144	G. Scholz
2.5	17.7.2009	kleinere Korrekturen	G. Scholz

Ausgabe 2.5 vom17.7.2009

Seite 1 von 7

Für einige weitere Bundesländer bestehen bereits angepasste Versionen (z.B. Tirol) in denen länderspezifische Besonderheiten (z.B. Ansprechpartner, Adressen, technische Ausstattung usw.) eingearbeitet wurden. Bei Bedarf werden diese Richtlinien ergänzt oder überarbeitet!

IARU Notfunk Prozedur (Deutsch)

IARU

INTERNATIONALE NOTFUNK PROZEDUR FÜR KURZWELLE

Wie von allen 3 Regionen angenommen

Alarm- und Warnsignale, Notruf

DER NOTRUF [4]

Frequenzen

Für die weltweite 'Kompatibilität' wurden von der IARU-Konferenz Frequenzen beschlossen, die von allen Regionen benutzt werden können. Sprechfunkbetrieb findet auf der Kurzwelle nicht auf einer Frequenz (Kanal) statt, sondern rund um die 'Center of Activity'-Frequenzen (CoA). Im Regelfall bewegt man sich +/-5kHz um CoA - je nach Belegung und/oder Störungen.

Selbstverständlich kann jede passende Frequenz im Bedarfsfall zur Katfunkfrequenz ernannt werden.

Auflistung der Notfunkfrequenzen > Notfunk Frequenzen

Betriebsarten

Im Katfunk kommt in der ersten Phase einer Katlage die Verbindungsaufnahme meist per **Sprache** zu stande. In weiterer Folge ist die Übermittlung von schriftlichen und bildlichen Informationen per **Email** via Kurzwelle/Ultrakurzwelle[5] ein essentieller Teil einer sicheren und stabilen Krisentelekommunikation.

Andere Betriebsarten spielen nur am Rande oder bei besonderen Lagen eine Rolle: In den Betriebsarten **CW**[6] und **PSK31**[7] sind bei Bedarf mit Minimalequipment und geringen Sendeleistungen weltweite Verbindungen möglich. Leider fehlt hier die Möglichkeit der fehlerfreien Informationsübertragung. SSTV oder **ATV** [8] zur Bildübertragung wird immer mehr ein wichtiges Element in der Führungsunterstützung für Einsatzleitungen, die durch den Amateurfunkdienst unterstützt werden.

Globale Netzwerke

Winlink

Winlink 2000 (WL2K) [9] ist ein weltweites "Email via Funk" System welches ausschließlich von lizensierten Funkamateuren auf nicht kommerzieller Basis betrieben wird. Das Winlink-System liefert wertvolle Dienste für die Not- und Krisenkommunikation, nämlich überall dort wo es keinen Internet Zugang (mehr) gibt. Mit Hilfe moderner Computer- und Netzwerktechnik und unter strikter Beachtung der Internet RFC-Empfehlungen ist das Winlink Development Team (WDT) um eine ständige Verbesserung für lokale, regionale und internationale Anwendungen bemüht. Um das WL2K System zu verwenden, müssen Sie eine Amateur-Funklizenz besitzen. Die Nutzung des Systems und aller Software ist kostenlos. [10] WL2K ist ein Non-Profit-Projekt der Amateur Radio Safety Foundation,Inc. [11]

WL2K Zugänge in OE:

Betriebsart **Pactor** OE3XEC[12] - Betriebsart AX.25 Packet Radio OE7XLR-13 und OE3XAR-10[13]

In der Betriebsart **Winmor** sind in EU meist nur 2-4 Stationen aktiv. Es ist jedoch anzunehmen, daß die gegenüber Pactor kostengünstigere Betriebsart (eine Soundkarte, wie bei PSK31 oder RTTY eingesetzt, genügt) eine rasche Verbreitung finden wird. Derzeit (Stand 1.10.2010) sind halbwegs sicher erreichbar: OE5XCL-5 in Wels (Dial 3612 kHz USB) und DA5UHR-5 in Frankfurt (Dial 7048,4 kHz USB), gelegentlich auch PD4U-5 in Apeldoorn (Dial 14109 kHz USB) und LA3F-5 in Sofiemyr (Dial 3596 kHz USB). Aber auch User-zu-User Verbindungen (Peer-to-Peer) sind im Notfunk, wenn keine Email-Vermittlung über Internet verfügbar, möglich. Als Client Software kann derzeit nur **RMS Express** [14] eingesetzt werden.

Zeitweise sind noch bemannte Stationen QRV, die ein Gateway zum WL2K-Netzwerk in RobustPacketRadio (RPR) zur Verfügung stellen. Zur Zeit sind das Versuche wobei kein 24/7 Betrieb gewährleistet werden kann. Bei Erfolg, könnte die eine oder andere Station als unbemannte Station dauerhaft onair gehen.

Echolink

Seit Inkrafttreten der neuen Amateurfunkverordnung ist es gestattet, Amateurfunkgeräte mit dem Internet zu verbinden.

EchoLink ist ein Internetprogramm, mithilfe dessen sich lizensierte Funkamateure der ganzen Welt mittels Computer über das Internet miteinander unterhalten können. Wie oben erwähnt, können nun auch Amateurfunkgeräte mit EchoLink verbunden werden. Jeder EchoLink-Station wird beim erstmaligen Einloggen eine sogenannte (nur einmalig vergebene) Node-Nummer zugewiesen (meistens vier- bis sechsstellig). Mittels DTMF-Tönen sind diese Stationen dann bei Betrieb über Funk durch Eingabe der Node-Nummer oder des Rufzeichens erreichbar. Weitere Informationen [15] und [16]

APRS

Im Amateurfunk wird APRS (Automatic Packet Reporting System) dazu verwendet, um Informationen und Meßdaten, egal welcher Art, weltweit zu übertragen. Die Verbreitung (Digipeating) der APRS-Daten erfolgt auf der europaweit einheitlichen Frequenz 144.800 MHz im 2m-Amateurfunkband mit 1200 Baud. [17]

Partnerorganisationen

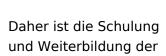
Unter Partnerorganisationen sind jene zu verstehen, die entweder die Unterstützung des Amateurfunkdienstes in Anspruch nehmen und/oder selber Funkamateure mit entsprechenden Funktionen beschäftigen.

Beim Österreichischen Roten Kreuz[18] sind in allen Bundesländern Telekomeinheiten mit lizensierten Funkamateuren integriert, die im Katfall auch auf den Amateurfunkdienst als Rückfallebene zurückgreifen können. Damit ist bei Bedarf die Kommunikation mit externen Funkamateuren sichergestellt.

Die **Landeswarnzentralen (LWZ)** der Landesregierungen (z.B. Tirol[19]) bzw. in der **Katastrophenleitzentrale** der Gemeinde Wien (KLZ) sind im Katfall für die Krisentelekommunikation innerhalb des jeweiligen Bundeslandes und mit der Bundeswarnzentrale (BWZ[20]) beim BMI zuständig. Auch in den LWZ's und der KLZ wird Schritt für Schritt oder ist bereits der Amateurfunkdienst als unterstützendes Führungsmittel integriert.

Das **österreichische Bundesheer** hat schon seit vielen Jahren eine eigene Amateurfunkgruppierung AMRS[21] die aus Heeresangehörigen mit Amateurfunklizenz besteht und ebenfalls im Katfall über den Amateurfunkdienst auf die große Anzahl externer Funkamateure weltweit zugreifen kann!

Allen Partnerorganisationen wurden durch die oberste Fernmeldbehörde (OFMB[22]) Rufzeichen (z.B. OEH, OEK, OEY) als sog. Staatsfunkstellen zugewiesen. Diese Staatsfunkstellen betreiben abseits des Amateurfunkdienstes Kurzwellenbetrieb auf eigenen Frequenzen innerhalb Österreichs.


Im Krisenfall sind diese Staatsfunkstellen befugt mit Funkamateuren auf Amateurfunkfrequenzen Funkbetrieb abzuwickeln.

Übungen, Seminare, Weiterbildung, Schulungen usw.

Funkamateure sind durch die regelmäßige Ausübung ihres Hobbys

in der Bedienung ihrer Ausrüstung bestens geschult. Jedoch erfordert die Abwicklung von Not- und Katfunkbetrieb spezielle Kenntnisse über Abläufe, über die Organisation der BOS [23] und deren Notwendigkeiten, sowie auch den Umgang mit Meldungen. Auch der Betrieb der eigenen Ausrüstung weicht oftmals vom Üblichen ab.

an der Katastrophentelekommunikation beteiligten Funkamateure ein wichtiger Punkt. Einerseits wird das theoretische Rüstzeug in Seminaren und Workshops vermittelt und andererseits werden diese Kenntnisse in praktischen Übungen erprobt und verbessert.

AOEC:

Eine - zumindest in Europa - einzigartige Besonderheit stellt der AOEC (All_OE_Contest) jeweils am 1. Mai jeden Jahres dar. Dabei ist es den Funkamateuren und den OP's der Staatsfunkstellen erlaubt, miteinander auf Amateurfunkfrequenzen Verbindungen aufzunehmen. Diese Katfunkübung - die zwar als Contest ausgeschrieben ist - soll den 'nicht_lizensierten' OP's der Staatsfunkstellen die Möglichkeit geben, sich mit den Eigenheiten des Amateurfunkbetriebes vertraut zu machen. Umgekehrt natürlich ebenso!

Mittlerweile sind bei diesen Organisationen ebenfalls zahlreiche Funkamateure im Einsatz, die den Betrieb abwickeln und dann auch für allfällige Realeinsätze zur Verfügung stehen.

Vergleichbar mit dem AOEC ist der sog. 'X-Test' - ein Crossbandtest in den USA, bei dem die Funkamateure auf Amateurfunkfrequenzen senden und auf kommerziellen Frequenzen der Partner hören. Die Partner (z.B. MARS) senden auf deren zugewiesenen Frequenzen und hören auf Amateurfunkfrequenzen. Somit entstehen Crossbandverbindungen, bei denen jeder Beteiligte Sendebetrieb nur entsprechend seiner Lizenz durchführt.

GSET:

GSET heisst 'Global Simulated Emcomm Test' und bedeutet soviel wie globaler simulierter Katfunktest. Im Rahmen dieses von Greg Mossup, G0DUB ins Leben gerufenen Tests verfassen und versenden die teilnehmenden Emcomm Stationen aus allen drei IARU-Regionen standardisierte Meldungen. Die Kette der Weiterleitung von Sprachmeldungen und die Abgabe von digitalen Meldungen endet in einer Emailadresse an der die einlangenen Nachrichten nach Laufzeit und Vollständigleit ausgewertet werden.

Eine der wichtigsten Erkenntnisse der letzten Tests haben gezeigt, dass die Übermittlung von Emails über Kurzwelle über das Winlinknetzwerk die Weiterleitung und Aufnahme von Sprachnachrichten an Sicherheit, Vollständigkeit und Geschwindigkeit bei Weitem übertrifft!

Regionale Übungen:

In vielen Bundesländern werden sog. Katfielddays abgehalten. Dabei wird über eine Dauer von einigen Stunden bis zu einigen Tagen von Orten ohne Infrastruktur katfunkmässiger Betrieb abgewickelt. Die eingesetzte Ausrüstung wie Stromerzeuger, Solarpanele, speziell gefertigte Katfunkkoffer, einfache Drahtantennen, sowie Laptops und Software werden auf Einsatztauglichkeit getestet.

Dabei wurden schon einige Erkenntnisse gewonnen, die zu Verbesserungen oder Änderungen der eigenen oder fremden Ausrüstung oder Betriebsabwicklung geführt haben.

Notfunk Checkliste

Integrierte Übungen mit BOS:

Vereinzelt haben bereits regionale Katschutzbehörden wie z.B. die Bezirkshauptmannschaft Gmünd oder einige Gemeinden den Amateurfunkdienst bei sog. Stabsrahmenübungen in die Kommunikationsabläufe integriert. Das erhöhnt natürlich das Vertrauen in die Verlässlichkeit und in die Kompetenz der Funkamateure bei den Teilnehmern.

Seminare:

Seminare und Workshops vermitteln vertiefende Kenntnisse in Spezialbereichen. Beispielsweise wird die Theorie, der Aufbau und Betrieb von einfachen Drahtantennen in Katlagen erarbeitet.

Auch die im Katfunk eingesetzten Verfahren der Nachrichtenübermittlung über Pactor oder Packet Radio mit evt. Weiterleitung über das Winlinknetzwerk wird bei solchen Veranstaltungen den interessierten Katfunkern in Theorie und Praxis näher gebracht.

Präsentationen:

Die Veranstalter von Sicherheitstagen (österreichweit), Tag der offenen Türen (z.B. Bundesheer), Messen (z.B. Rettermesse Wels), Leistungsschauen (z.B. Rotes Kreuz) bieten dem Amateurfunkdienst eine Plattform, seine Möglichkeiten in der Krisentelekommunikation einem breiteren Publikum zu präsentieren. Hier werden die Emcomm-Ausrüstungen in Betrieb genommen und die damit möglichen Varianten der Verbindungsaufnahmen demonstriert.

Ansprechpartner in den Landesverbänden

Grundsätzlich sind die Ansprechpartner in den Landesverbänden unter der Adresse 'notfunk. oex@oevsv.at' zu erreichen!

Das 'oex' steht für den jeweiligen LV, z.B. OE1

Notfunkrunde

jeden ersten Mittwoch im Monat 19:45 Uhr Lokalzeit auf 3.643 KHz (+/- QRM)

IARU und Notfunk in anderen Ländern

- Amateur Radio Emergency Communications International [24]
- IARU-Region 1 Emergency Communication [25]
- Deutschland DARC Notfunk-Referat [26]
- Schweiz IG Notfunk [27]
- Holland DARES [28] & [29]
- ARRL Emergency Radio [30] Amateur Radio Today Youtube Video [31]
- England RAYNET [32]
- IRESC International Radio Emergency Support Coalition [33]
- Italien RNRE [34]
- Frankreich F.N.R.A.S.E.C. [35]
- Australien WICEN [36]
- Vereinigte Staaten von Amerika ARES [37]

Links

Amateurfunkstationen in Österreich [38]

Unwetterwarnungen für Österreich - Skywarn [39]

Unwetterwarnungen für Österreich - Unwetterzentrale [40]

Alarm-Pagernetz in Ost-Österreich [41]

Kontakt

Not- und Katfunkreferat im DV: Michael Maringer, OE1MMU oe1mmu@oevsv.at

Kategorie: NOTFUNK: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 1. Oktober 2010, 20:20 Uhr (Quelltext anzeigen)

OE1FEA (Diskussion | Beiträge)

K (→Partnerorganisationen)

← Zum vorherigen Versionsunterschied

Zeile 5:	Zeile 5:

ARENA - The Amateur Radio Emergency
Network Austria is a national voluntary
service that is provided to the community
by licensed radio amateurs. ARENA is part
of the OEVSV and IARU - the national and
international amateur radio associations.
Our focus is to support the public in the
event of crises when conventional
communication systems fail. Many of our
members are volunteers in organizations
such as the Austrian Red Cross, Civil
Defense, fire brigades, military and related
institutions.

Unique EmComm support is provided by use of the HF, VHF and UHF frequency spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink and APRS. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Ausgabe: 26.04.2024

Version vom 1. Januar 2011, 12:19 Uhr (Q uelltext anzeigen)

Anonym (Diskussion | Beiträge)
Zum nächsten Versionsunterschied →

ARENA - The Amateur Radio Emergency
Network Austria is a national voluntary
service that is provided to the community
by licensed radio amateurs. ARENA is part
of the OEVSV and IARU - the national and
international amateur radio associations.
Our focus is to support the public in the
event of crises when conventional
communication systems fail. Many of our
members are volunteers in organizations
such as the Austrian Red Cross, Civil
Defense, fire brigades, military and related
institutions.

use of the HF, VHF and UHF frequency spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink, APRS and HAM NET. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Unique EmComm support is provided by

Version vom 1. Januar 2011, 12:19 Uhr

NOTFUNK-OE

AMATEUR RADIO EMERGENCY NETWORK AUSTRIA

English Summary

ARENA - The Amateur Radio Emergency Network Austria is a national voluntary service that is provided to the community by licensed radio amateurs. ARENA is part of the OEVSV and IARU - the national and international amateur radio associations. Our focus is to support the public in the event of crises when conventional communication systems fail. Many of our members are volunteers in organizations such as the Austrian Red Cross, Civil Defense, fire brigades, military and related institutions. Unique EmComm support is provided by use of the HF, VHF and UHF frequency spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink, APRS and HAMNET. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Inhaltsverzeichnis

1 Allgemeines	172
2 Kompetenz der Funkamateure	173
3 Richtlinien	173
3.1 Aufnehmen und Weiterleiten einer Notfallmeldung	173
3.2 Richtlinien für den Not- und Katastrophenfunk	173
4 Alarm- und Warnsignale, Notruf	177

5 Frequenzen	178
6 Betriebsarten	178
7 Globale Netzwerke	179
7.1 Winlink	179
7.2 Echolink	179
7.3 APRS	
8 Partnerorganisationen	180
9 Übungen, Seminare, Weiterbildung, Schulungen usw	180
10 Ansprechpartner in den Landesverbänden	182
11 Notfunkrunde	183
12 IARU und Notfunk in anderen Ländern	183
13 Links	183
14 Kontakt	183

Allgemeines

Katastrophenfunkverkehr

Katastrophenfunkverkehr ist die Übermittlung von Nachrichten, die den nationalen oder internationalen Hilfeleistungsverkehr betreffen, zwischen Funkstellen innerhalb eines Katastrophengebietes sowie zwischen einer Funkstelle im Katastrophengebiet und Hilfe leistenden Organisationen.

Notfunkverkehr

Notfunkverkehr ist die Übermittlung von Nachrichten zwischen einer Funkstelle, die selbst in Not ist oder an einem Notfall beteiligt oder Zeuge des Notfalles ist, und einer oder mehreren Hilfe leistenden Funkstellen.

Unsere Aufgaben als Funkamateure

Funkamateure unterstützen Hilfsorganisationen und andere Behörden und Organisationen mit Sicherheitsaufgaben, oder leiten empfangene Notrufe an diese weiter.

Von jeher haben Funkamateure weltweit ihre Gerätschaften und ihr Wissen für Hilfeleistungen zur Verfügung gestellt. Für Notrufe, bei Naturkatastrophen, in Entwicklungsländern, bei Kriegen, dringend benötigten Medikamenten, Seenotfällen, etc. Egal bei welcher Krisenlage, Funkamateure sind bei einem Ausfall der kommerziellen Telekommunikationsnetze weltweit oft die ersten, die wieder Kontakt zur Außenwelt herstellen können.

Funkamateure als Kommunikationsspezialisten

Um z.B. eine interkontinentale Funkverbindung auf Kurzwelle aufzubauen reichen neben den nötigen Kenntnissen über die Ausbreitungsbedingungen, einige Meter Draht als Antenne notfalls zwischen Trümmern und Bäumen gespannt, eine (Auto-) Batterie/ Solarzelle, und ein (selbstgebautes) Funkgerät mit rund 1–5 Watt Sendeleistung und eine Morsetaste bzw. Mikrofon aus. Bei über zwei Millionen Funkamateuren weltweit, die dank der Zeitverschiebung rund um die Uhr aktiv sind, erreicht man immer jemanden.

Hochwasser, Erdbeben, Stürme, Großfeuer und andere schwere Katastrophen zerstören und beschädigen fast immer Telekommunikationseinrichtungen. Dabei ist es irrelevant, ob die Technik neu oder alt ist. Ohne die entsprechende Infrastruktur und ohne Strom- und Telefonleitungen funktioniert sie nicht mehr. Besonders hier zeigt sich die Stärke des Amateurfunks. Funkamateure betreiben ihre Station unabhängig von einer Infrastruktur. Sie verfügen regional und länderübergreifend über zahlreiche Kontakte und leisten damit eine der wichtigsten Beiträge bei der Unterstützung von Behörden und Hilfsorganisationen in der Notfallkommunikation.

Ein großer Vorteil des Amateurfunkdienstes sind hierbei weltweit zugewiesene Frequenzbereiche. Somit ist eine unkomplizierte grenzüberschreitende Kommunikation jederzeit möglich, während es bei der Zusammenarbeit verschiedener Hilfskräfte wie z.B. BOS, Bundesheer, örtliche Energieversorger, etc. schon bei regionalen/ nationalen Großschadenslagen immer wieder an den unterschiedlichen Funkdiensten und Frequenzen scheitert. Ein weiterer Vorteil besteht darin, dass der Funkamateur seine Geräte bestens kennt, da er durch den laufenden Betrieb praktisch immer am Üben ist.

Ausgabe: 26.04.2024 Dieses Dokument wurde erzeugt mit BlueSpice

Erinnern Sie sich noch?

• 12. Jänner 2010 - Erdbebenkatastrophe in Haiti

BH-Einsatz

- April 2009 Erdbebenkatastrophe in l'Aquila, Italien
- 1. Jänner 2005 Tsunami in Südostasien
- 23. August 2005 Überschwemmung in Bezau
- 23. Februar 1999 Lawinenunglück in Galtür
- Weitere Notfunkaktionen der Funkamateure [1]

Kompetenz der Funkamateure

Diese ist von der Internationalen Fernmeldeunion (ITU) in zwei Bereichen festgelegt:

- Alarmierung Empfangen und Verteilen von Alarmmeldungen
- Entlastung bzw. Unterstützung von Einsatzorganisationen (bei der Organisation von Hilfe in Gebieten, in denen andere [Telekom] Dienste noch nicht verfügbar sind).

Siehe ITU-EmComm: [2]

Richtlinien

Aufnehmen und Weiterleiten einer Notfallmeldung

- Wer? Name und Standort des Melders
- Wo? Orts des Notfalls
- Was? Was ist passiert, was ist zu tun, welche Hilfe wird angefordert und ist erforderlich?
- Wieviele? Verletze, Betroffene, etc.
- Welche? Art der vermutlichen Verletzung, Erkrankung und eingetretene Schäden
- Die Notrufzentrale, die Funkleitstation oder die den Notruf aufnehmende Station beendet die Verbindung erst dann, wenn sie alle Informationen bekommen hat, die für eine Hilfeleistung erforderlich sind.

Notfallkarte [3]

Richtlinien für den Not- und Katastrophenfunk

Am Beispiel Niederösterreich:

Teil 1 Allgemeiner Teil

Not- und Katastrophenfunk Referat des Landesverband Niederösterreich des ÖVSV

Not- und Katastrophenfunk-Konzept Version 1.1 vom 18.5.2007

Not- und Katastrophenfunk Referat des Landesverbandes Niederösterreich des ÖVSV

OE- Richtlinie

Not- und Katastrophenfunk

Teil 1

Allgemeines

Revisionshistorie:

Ausgabe	Datum	Änderung	Autor
1.0	3.4.2007	Initialversion	G. Scholz
1.1	18.05.2007	Überarbeitet für OE-Version	M.Maringer

Ausgabe 1.1 vom 18.5.2007

Seite 1 von 14

Teil 2 Niederösterreich

Not- und Katastrophenfunk Referat des Landesverband Niederösterreich des ÖVSV

Not- und Katastrophenfunk-Konzept Version 2.5 vom 17.7.2009

Not- und Katastrophenfunk Referat des Landesverbandes Niederösterreich des ÖVSV

Richtlinie

Not- und Katastrophenfunk

Teil 2

NIEDERÖSTERREICH

Revisionshistorie:

Ausgabe	Datum	Änderung	Autor
1.0	3.4.2007	Initialversion	G. Scholz
2.0	27.8.2007	Ergänzung Pager-Alarmierung	G. Scholz
2.1	9.1.2008	Korrektur Tel.Nummer	G. Scholz
2.2	5.9.2008	Ergänzung ADL 324, div. Korrekturen	G. Scholz
2.3	20.12.2008	Adressänderung OE3CJB	G. Scholz
2.4	29.1.2009	Korrektur Notruf144	G. Scholz
2.5	17.7.2009	kleinere Korrekturen	G. Scholz

Ausgabe 2.5 vom17.7.2009

Seite 1 von 7

Für einige weitere Bundesländer bestehen bereits angepasste Versionen (z.B. Tirol) in denen länderspezifische Besonderheiten (z.B. Ansprechpartner, Adressen, technische Ausstattung usw.) eingearbeitet wurden. Bei Bedarf werden diese Richtlinien ergänzt oder überarbeitet!

IARU Notfunk Prozedur (Deutsch)

IARU

INTERNATIONALE NOTFUNK PROZEDUR FÜR KURZWELLE

Wie von allen 3 Regionen angenommen

Alarm- und Warnsignale, Notruf

DER NOTRUF [4]

Frequenzen

Für die weltweite 'Kompatibilität' wurden von der IARU-Konferenz Frequenzen beschlossen, die von allen Regionen benutzt werden können. Sprechfunkbetrieb findet auf der Kurzwelle nicht auf einer Frequenz (Kanal) statt, sondern rund um die 'Center of Activity'-Frequenzen (CoA). Im Regelfall bewegt man sich +/-5kHz um CoA - je nach Belegung und/oder Störungen.

Selbstverständlich kann jede passende Frequenz im Bedarfsfall zur Katfunkfrequenz ernannt werden.

Auflistung der Notfunkfrequenzen > Notfunk Frequenzen

Betriebsarten

Im Katfunk kommt in der ersten Phase einer Katlage die Verbindungsaufnahme meist per **Sprache** zu stande. In weiterer Folge ist die Übermittlung von schriftlichen und bildlichen Informationen per **Email** via Kurzwelle/Ultrakurzwelle[5] ein essentieller Teil einer sicheren und stabilen Krisentelekommunikation.

Andere Betriebsarten spielen nur am Rande oder bei besonderen Lagen eine Rolle: In den Betriebsarten **CW**[6] und **PSK31**[7] sind bei Bedarf mit Minimalequipment und geringen Sendeleistungen weltweite Verbindungen möglich. Leider fehlt hier die Möglichkeit der fehlerfreien Informationsübertragung. SSTV oder **ATV** [8] zur Bildübertragung wird immer mehr ein wichtiges Element in der Führungsunterstützung für Einsatzleitungen, die durch den Amateurfunkdienst unterstützt werden.

Globale Netzwerke

Winlink

Winlink 2000 (WL2K) [9] ist ein weltweites "Email via Funk" System welches ausschließlich von lizensierten Funkamateuren auf nicht kommerzieller Basis betrieben wird. Das Winlink-System liefert wertvolle Dienste für die Not- und Krisenkommunikation, nämlich überall dort wo es keinen Internet Zugang (mehr) gibt. Mit Hilfe moderner Computer- und Netzwerktechnik und unter strikter Beachtung der Internet RFC-Empfehlungen ist das Winlink Development Team (WDT) um eine ständige Verbesserung für lokale, regionale und internationale Anwendungen bemüht. Um das WL2K System zu verwenden, müssen Sie eine Amateur-Funklizenz besitzen. Die Nutzung des Systems und aller Software ist kostenlos. [10] WL2K ist ein Non-Profit-Projekt der Amateur Radio Safety Foundation,Inc. [11]

WL2K Zugänge in OE:

Betriebsart **Pactor** OE3XEC[12] - Betriebsart AX.25 Packet Radio OE7XLR-13 und OE3XAR-10[13]

In der Betriebsart **Winmor** sind in EU meist nur 2-4 Stationen aktiv. Es ist jedoch anzunehmen, daß die gegenüber Pactor kostengünstigere Betriebsart (eine Soundkarte, wie bei PSK31 oder RTTY eingesetzt, genügt) eine rasche Verbreitung finden wird. Derzeit (Stand 1.10.2010) sind halbwegs sicher erreichbar: OE5XCL-5 in Wels (Dial 3612 kHz USB) und DA5UHR-5 in Frankfurt (Dial 7048,4 kHz USB), gelegentlich auch PD4U-5 in Apeldoorn (Dial 14109 kHz USB) und LA3F-5 in Sofiemyr (Dial 3596 kHz USB). Aber auch User-zu-User Verbindungen (Peer-to-Peer) sind im Notfunk, wenn keine Email-Vermittlung über Internet verfügbar, möglich. Als Client Software kann derzeit nur **RMS Express** [14] eingesetzt werden.

Zeitweise sind noch bemannte Stationen QRV, die ein Gateway zum WL2K-Netzwerk in RobustPacketRadio (RPR) zur Verfügung stellen. Zur Zeit sind das Versuche wobei kein 24/7 Betrieb gewährleistet werden kann. Bei Erfolg, könnte die eine oder andere Station als unbemannte Station dauerhaft onair gehen.

Echolink

Seit Inkrafttreten der neuen Amateurfunkverordnung ist es gestattet, Amateurfunkgeräte mit dem Internet zu verbinden.

EchoLink ist ein Internetprogramm, mithilfe dessen sich lizensierte Funkamateure der ganzen Welt mittels Computer über das Internet miteinander unterhalten können. Wie oben erwähnt, können nun auch Amateurfunkgeräte mit EchoLink verbunden werden. Jeder EchoLink-Station wird beim erstmaligen Einloggen eine sogenannte (nur einmalig vergebene) Node-Nummer zugewiesen (meistens vier- bis sechsstellig). Mittels DTMF-Tönen sind diese Stationen dann bei Betrieb über Funk durch Eingabe der Node-Nummer oder des Rufzeichens erreichbar. Weitere Informationen [15] und [16]

APRS

Im Amateurfunk wird APRS (Automatic Packet Reporting System) dazu verwendet, um Informationen und Meßdaten, egal welcher Art, weltweit zu übertragen. Die Verbreitung (Digipeating) der APRS-Daten erfolgt auf der europaweit einheitlichen Frequenz 144.800 MHz im 2m-Amateurfunkband mit 1200 Baud. [17]

Partnerorganisationen

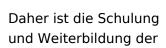
Unter Partnerorganisationen sind jene zu verstehen, die entweder die Unterstützung des Amateurfunkdienstes in Anspruch nehmen und/oder selber Funkamateure mit entsprechenden Funktionen beschäftigen.

Beim Österreichischen Roten Kreuz[18] sind in allen Bundesländern Telekomeinheiten mit lizensierten Funkamateuren integriert, die im Katfall auch auf den Amateurfunkdienst als Rückfallebene zurückgreifen können. Damit ist bei Bedarf die Kommunikation mit externen Funkamateuren sichergestellt.

Die **Landeswarnzentralen (LWZ)** der Landesregierungen (z.B. Tirol[19]) bzw. in der **Katastrophenleitzentrale** der Gemeinde Wien (KLZ) sind im Katfall für die Krisentelekommunikation innerhalb des jeweiligen Bundeslandes und mit der Bundeswarnzentrale (BWZ[20]) beim BMI zuständig. Auch in den LWZ's und der KLZ wird Schritt für Schritt oder ist bereits der Amateurfunkdienst als unterstützendes Führungsmittel integriert.

Das **österreichische Bundesheer** hat schon seit vielen Jahren eine eigene Amateurfunkgruppierung AMRS[21] die aus Heeresangehörigen mit Amateurfunklizenz besteht und ebenfalls im Katfall über den Amateurfunkdienst auf die große Anzahl externer Funkamateure weltweit zugreifen kann!

Allen Partnerorganisationen wurden durch die oberste Fernmeldbehörde (OFMB[22]) Rufzeichen (z.B. OEH, OEK, OEY) als sog. Staatsfunkstellen zugewiesen. Diese Staatsfunkstellen betreiben abseits des Amateurfunkdienstes Kurzwellenbetrieb auf eigenen Frequenzen innerhalb Österreichs.


Im Krisenfall sind diese Staatsfunkstellen befugt mit Funkamateuren auf Amateurfunkfrequenzen Funkbetrieb abzuwickeln.

Übungen, Seminare, Weiterbildung, Schulungen usw.

Funkamateure sind durch die regelmäßige Ausübung ihres Hobbys

in der Bedienung ihrer Ausrüstung bestens geschult. Jedoch erfordert die Abwicklung von Not- und Katfunkbetrieb spezielle Kenntnisse über Abläufe, über die Organisation der BOS [23] und deren Notwendigkeiten, sowie auch den Umgang mit Meldungen. Auch der Betrieb der eigenen Ausrüstung weicht oftmals vom Üblichen ab.

an der Katastrophentelekommunikation beteiligten Funkamateure ein wichtiger Punkt. Einerseits wird das theoretische Rüstzeug in Seminaren und Workshops vermittelt und andererseits werden diese Kenntnisse in praktischen Übungen erprobt und verbessert.

AOEC:

Eine - zumindest in Europa - einzigartige Besonderheit stellt der AOEC (All_OE_Contest) jeweils am 1. Mai jeden Jahres dar. Dabei ist es den Funkamateuren und den OP's der Staatsfunkstellen erlaubt, miteinander auf Amateurfunkfrequenzen Verbindungen aufzunehmen. Diese Katfunkübung - die zwar als Contest ausgeschrieben ist - soll den 'nicht_lizensierten' OP's der Staatsfunkstellen die Möglichkeit geben, sich mit den Eigenheiten des Amateurfunkbetriebes vertraut zu machen. Umgekehrt natürlich ebenso!

Mittlerweile sind bei diesen Organisationen ebenfalls zahlreiche Funkamateure im Einsatz, die den Betrieb abwickeln und dann auch für allfällige Realeinsätze zur Verfügung stehen.

Vergleichbar mit dem AOEC ist der sog. 'X-Test' - ein Crossbandtest in den USA, bei dem die Funkamateure auf Amateurfunkfrequenzen senden und auf kommerziellen Frequenzen der Partner hören. Die Partner (z.B. MARS) senden auf deren zugewiesenen Frequenzen und hören auf Amateurfunkfrequenzen. Somit entstehen Crossbandverbindungen, bei denen jeder Beteiligte Sendebetrieb nur entsprechend seiner Lizenz durchführt.

GSET:

GSET heisst 'Global Simulated Emcomm Test' und bedeutet soviel wie globaler simulierter Katfunktest. Im Rahmen dieses von Greg Mossup, G0DUB ins Leben gerufenen Tests verfassen und versenden die teilnehmenden Emcomm Stationen aus allen drei IARU-Regionen standardisierte Meldungen. Die Kette der Weiterleitung von Sprachmeldungen und die Abgabe von digitalen Meldungen endet in einer Emailadresse an der die einlangenen Nachrichten nach Laufzeit und Vollständigleit ausgewertet werden.

Eine der wichtigsten Erkenntnisse der letzten Tests haben gezeigt, dass die Übermittlung von Emails über Kurzwelle über das Winlinknetzwerk die Weiterleitung und Aufnahme von Sprachnachrichten an Sicherheit, Vollständigkeit und Geschwindigkeit bei Weitem übertrifft!

Regionale Übungen:

In vielen Bundesländern werden sog. Katfielddays abgehalten. Dabei wird über eine Dauer von einigen Stunden bis zu einigen Tagen von Orten ohne Infrastruktur katfunkmässiger Betrieb abgewickelt. Die eingesetzte Ausrüstung wie Stromerzeuger, Solarpanele, speziell gefertigte Katfunkkoffer, einfache Drahtantennen, sowie Laptops und Software werden auf Einsatztauglichkeit getestet.

Dabei wurden schon einige Erkenntnisse gewonnen, die zu Verbesserungen oder Änderungen der eigenen oder fremden Ausrüstung oder Betriebsabwicklung geführt haben.

Notfunk Checkliste

Integrierte Übungen mit BOS:

Vereinzelt haben bereits regionale Katschutzbehörden wie z.B. die Bezirkshauptmannschaft Gmünd oder einige Gemeinden den Amateurfunkdienst bei sog. Stabsrahmenübungen in die Kommunikationsabläufe integriert. Das erhöhnt natürlich das Vertrauen in die Verlässlichkeit und in die Kompetenz der Funkamateure bei den Teilnehmern.

Seminare:

Seminare und Workshops vermitteln vertiefende Kenntnisse in Spezialbereichen. Beispielsweise wird die Theorie, der Aufbau und Betrieb von einfachen Drahtantennen in Katlagen erarbeitet.

Auch die im Katfunk eingesetzten Verfahren der Nachrichtenübermittlung über Pactor oder Packet Radio mit evt. Weiterleitung über das Winlinknetzwerk wird bei solchen Veranstaltungen den interessierten Katfunkern in Theorie und Praxis näher gebracht.

Präsentationen:

Die Veranstalter von Sicherheitstagen (österreichweit), Tag der offenen Türen (z.B. Bundesheer), Messen (z.B. Rettermesse Wels), Leistungsschauen (z.B. Rotes Kreuz) bieten dem Amateurfunkdienst eine Plattform, seine Möglichkeiten in der Krisentelekommunikation einem breiteren Publikum zu präsentieren. Hier werden die Emcomm-Ausrüstungen in Betrieb genommen und die damit möglichen Varianten der Verbindungsaufnahmen demonstriert.

Ansprechpartner in den Landesverbänden

Grundsätzlich sind die Ansprechpartner in den Landesverbänden unter der Adresse 'notfunk. oex@oevsv.at' zu erreichen!

Das 'oex' steht für den jeweiligen LV, z.B. OE1

Notfunkrunde

jeden ersten Mittwoch im Monat 19:45 Uhr Lokalzeit auf 3.643 KHz (+/- QRM)

IARU und Notfunk in anderen Ländern

- Amateur Radio Emergency Communications International [24]
- IARU-Region 1 Emergency Communication [25]
- Deutschland DARC Notfunk-Referat [26]
- Schweiz IG Notfunk [27]
- Holland DARES [28] & [29]
- ARRL Emergency Radio [30] Amateur Radio Today Youtube Video [31]
- England RAYNET [32]
- IRESC International Radio Emergency Support Coalition [33]
- Italien RNRE [34]
- Frankreich F.N.R.A.S.E.C. [35]
- Australien WICEN [36]
- Vereinigte Staaten von Amerika ARES [37]

Links

Amateurfunkstationen in Österreich [38]

Unwetterwarnungen für Österreich - Skywarn [39]

Unwetterwarnungen für Österreich - Unwetterzentrale [40]

Alarm-Pagernetz in Ost-Österreich [41]

Kontakt

Not- und Katfunkreferat im DV: Michael Maringer, OE1MMU oe1mmu@oevsv.at

Kategorie: NOTFUNK: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 1. Oktober 2010, 20:20 Uhr (Quelltext anzeigen)

OE1FEA (Diskussion | Beiträge)

K (→Partnerorganisationen)

← Zum vorherigen Versionsunterschied

v ei sioii	voiii 1. jailuai	2011, 12.1	, o o o o	Č
	uelltext ar	nzeigen)		
_				

Anonym (Diskussion | Beiträge)
Zum nächsten Versionsunterschied →

Zeile 5:

ARENA - The Amateur Radio Emergency
Network Austria is a national voluntary
service that is provided to the community
by licensed radio amateurs. ARENA is part
of the OEVSV and IARU - the national and
international amateur radio associations.
Our focus is to support the public in the
event of crises when conventional
communication systems fail. Many of our
members are volunteers in organizations
such as the Austrian Red Cross, Civil
Defense, fire brigades, military and related
institutions.

Unique EmComm support is provided by use of the HF, VHF and UHF frequency spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink and APRS. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Zeile 5:

ARENA - The Amateur Radio Emergency
Network Austria is a national voluntary
service that is provided to the community
by licensed radio amateurs. ARENA is part
of the OEVSV and IARU - the national and
international amateur radio associations.
Our focus is to support the public in the
event of crises when conventional
communication systems fail. Many of our
members are volunteers in organizations
such as the Austrian Red Cross, Civil
Defense, fire brigades, military and related
institutions.

Unique EmComm support is provided by

use of the HF, VHF and UHF frequency

spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink, APRS and HAM NET. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Version vom 1. Januar 2011, 12:19 Uhr

NOTFUNK-OE

AMATEUR RADIO EMERGENCY NETWORK AUSTRIA

English Summary

ARENA - The Amateur Radio Emergency Network Austria is a national voluntary service that is provided to the community by licensed radio amateurs. ARENA is part of the OEVSV and IARU - the national and international amateur radio associations. Our focus is to support the public in the event of crises when conventional communication systems fail. Many of our members are volunteers in organizations such as the Austrian Red Cross, Civil Defense, fire brigades, military and related institutions. Unique EmComm support is provided by use of the HF, VHF and UHF frequency spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink, APRS and HAMNET. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Inhaltsverzeichnis

1 Allgemeines	187
2 Kompetenz der Funkamateure	188
3 Richtlinien	188
3.1 Aufnehmen und Weiterleiten einer Notfallmeldung	188
3.2 Richtlinien für den Not- und Katastrophenfunk	188
4 Alarm- und Warnsignale, Notruf	192

5 Frequenzen	193
6 Betriebsarten	
7 Globale Netzwerke	194
7.1 Winlink	194
7.2 Echolink	194
7.3 APRS	195
8 Partnerorganisationen	195
9 Übungen, Seminare, Weiterbildung, Schulungen usw	
10 Ansprechpartner in den Landesverbänden	197
11 Notfunkrunde	
12 IARU und Notfunk in anderen Ländern	198
13 Links	198
14 Kontakt	198

Allgemeines

Katastrophenfunkverkehr

Katastrophenfunkverkehr ist die Übermittlung von Nachrichten, die den nationalen oder internationalen Hilfeleistungsverkehr betreffen, zwischen Funkstellen innerhalb eines Katastrophengebietes sowie zwischen einer Funkstelle im Katastrophengebiet und Hilfe leistenden Organisationen.

Notfunkverkehr

Notfunkverkehr ist die Übermittlung von Nachrichten zwischen einer Funkstelle, die selbst in Not ist oder an einem Notfall beteiligt oder Zeuge des Notfalles ist, und einer oder mehreren Hilfe leistenden Funkstellen.

Unsere Aufgaben als Funkamateure

Funkamateure unterstützen Hilfsorganisationen und andere Behörden und Organisationen mit Sicherheitsaufgaben, oder leiten empfangene Notrufe an diese weiter.

Von jeher haben Funkamateure weltweit ihre Gerätschaften und ihr Wissen für Hilfeleistungen zur Verfügung gestellt. Für Notrufe, bei Naturkatastrophen, in Entwicklungsländern, bei Kriegen, dringend benötigten Medikamenten, Seenotfällen, etc. Egal bei welcher Krisenlage, Funkamateure sind bei einem Ausfall der kommerziellen Telekommunikationsnetze weltweit oft die ersten, die wieder Kontakt zur Außenwelt herstellen können.

Funkamateure als Kommunikationsspezialisten

Um z.B. eine interkontinentale Funkverbindung auf Kurzwelle aufzubauen reichen neben den nötigen Kenntnissen über die Ausbreitungsbedingungen, einige Meter Draht als Antenne notfalls zwischen Trümmern und Bäumen gespannt, eine (Auto-) Batterie/ Solarzelle, und ein (selbstgebautes) Funkgerät mit rund 1–5 Watt Sendeleistung und eine Morsetaste bzw. Mikrofon aus. Bei über zwei Millionen Funkamateuren weltweit, die dank der Zeitverschiebung rund um die Uhr aktiv sind, erreicht man immer jemanden.

Hochwasser, Erdbeben, Stürme, Großfeuer und andere schwere Katastrophen zerstören und beschädigen fast immer Telekommunikationseinrichtungen. Dabei ist es irrelevant, ob die Technik neu oder alt ist. Ohne die entsprechende Infrastruktur und ohne Strom- und Telefonleitungen funktioniert sie nicht mehr. Besonders hier zeigt sich die Stärke des Amateurfunks. Funkamateure betreiben ihre Station unabhängig von einer Infrastruktur. Sie verfügen regional und länderübergreifend über zahlreiche Kontakte und leisten damit eine der wichtigsten Beiträge bei der Unterstützung von Behörden und Hilfsorganisationen in der Notfallkommunikation.

Ein großer Vorteil des Amateurfunkdienstes sind hierbei weltweit zugewiesene Frequenzbereiche. Somit ist eine unkomplizierte grenzüberschreitende Kommunikation jederzeit möglich, während es bei der Zusammenarbeit verschiedener Hilfskräfte wie z.B. BOS, Bundesheer, örtliche Energieversorger, etc. schon bei regionalen/ nationalen Großschadenslagen immer wieder an den unterschiedlichen Funkdiensten und Frequenzen scheitert. Ein weiterer Vorteil besteht darin, dass der Funkamateur seine Geräte bestens kennt, da er durch den laufenden Betrieb praktisch immer am Üben ist.

Ausgabe: 26.04.2024 Dieses Dokument wurde erzeugt mit BlueSpice

Erinnern Sie sich noch?

• 12. Jänner 2010 - Erdbebenkatastrophe in Haiti

BH-Einsatz

- April 2009 Erdbebenkatastrophe in l'Aquila, Italien
- 1. Jänner 2005 Tsunami in Südostasien
- 23. August 2005 Überschwemmung in Bezau
- 23. Februar 1999 Lawinenunglück in Galtür
- Weitere Notfunkaktionen der Funkamateure [1]

Kompetenz der Funkamateure

Diese ist von der Internationalen Fernmeldeunion (ITU) in zwei Bereichen festgelegt:

- Alarmierung Empfangen und Verteilen von Alarmmeldungen
- Entlastung bzw. Unterstützung von Einsatzorganisationen (bei der Organisation von Hilfe in Gebieten, in denen andere [Telekom] Dienste noch nicht verfügbar sind).

Siehe ITU-EmComm: [2]

Richtlinien

Aufnehmen und Weiterleiten einer Notfallmeldung

- Wer? Name und Standort des Melders
- Wo? Orts des Notfalls
- Was? Was ist passiert, was ist zu tun, welche Hilfe wird angefordert und ist erforderlich?
- Wieviele? Verletze, Betroffene, etc.
- Welche? Art der vermutlichen Verletzung, Erkrankung und eingetretene Schäden
- Die Notrufzentrale, die Funkleitstation oder die den Notruf aufnehmende Station beendet die Verbindung erst dann, wenn sie alle Informationen bekommen hat, die für eine Hilfeleistung erforderlich sind.

Notfallkarte [3]

Richtlinien für den Not- und Katastrophenfunk

Am Beispiel Niederösterreich:

Teil 1 Allgemeiner Teil

Not- und Katastrophenfunk Referat des Landesverband Niederösterreich des ÖVSV

Not- und Katastrophenfunk-Konzept Version 1.1 vom 18.5.2007

Not- und Katastrophenfunk Referat des Landesverbandes Niederösterreich des ÖVSV

OE- Richtlinie

Not- und Katastrophenfunk

Teil 1

Allgemeines

Revisionshistorie:

Ausgabe	Datum	Änderung	Autor
1.0	3.4.2007	Initialversion	G. Scholz
1.1	18.05.2007	Überarbeitet für OE-Version	M.Maringer

Ausgabe 1.1 vom 18.5.2007

Seite 1 von 14

Teil 2 Niederösterreich

Not- und Katastrophenfunk Referat des Landesverband Niederösterreich des ÖVSV

Not- und Katastrophenfunk-Konzept Version 2.5 vom 17.7.2009

Not- und Katastrophenfunk Referat des Landesverbandes Niederösterreich des ÖVSV

Richtlinie

Not- und Katastrophenfunk

Teil 2

NIEDERÖSTERREICH

Revisionshistorie:

Ausgabe	Datum	Änderung	Autor
1.0	3.4.2007	Initialversion	G. Scholz
2.0	27.8.2007	Ergänzung Pager-Alarmierung	G. Scholz
2.1	9.1.2008	Korrektur Tel.Nummer	G. Scholz
2.2	5.9.2008	Ergänzung ADL 324, div. Korrekturen	G. Scholz
2.3	20.12.2008	Adressänderung OE3CJB	G. Scholz
2.4	29.1.2009	Korrektur Notruf144	G. Scholz
2.5	17.7.2009	kleinere Korrekturen	G. Scholz

Ausgabe 2.5 vom17.7.2009

Seite 1 von 7

Für einige weitere Bundesländer bestehen bereits angepasste Versionen (z.B. Tirol) in denen länderspezifische Besonderheiten (z.B. Ansprechpartner, Adressen, technische Ausstattung usw.) eingearbeitet wurden. Bei Bedarf werden diese Richtlinien ergänzt oder überarbeitet!

IARU Notfunk Prozedur (Deutsch)

IARU

INTERNATIONALE NOTFUNK PROZEDUR FÜR KURZWELLE

Wie von allen 3 Regionen angenommen

Alarm- und Warnsignale, Notruf

DER NOTRUF [4]

Frequenzen

Für die weltweite 'Kompatibilität' wurden von der IARU-Konferenz Frequenzen beschlossen, die von allen Regionen benutzt werden können. Sprechfunkbetrieb findet auf der Kurzwelle nicht auf einer Frequenz (Kanal) statt, sondern rund um die 'Center of Activity'-Frequenzen (CoA). Im Regelfall bewegt man sich +/-5kHz um CoA - je nach Belegung und/oder Störungen.

Selbstverständlich kann jede passende Frequenz im Bedarfsfall zur Katfunkfrequenz ernannt werden.

Auflistung der Notfunkfrequenzen > Notfunk Frequenzen

Betriebsarten

Im Katfunk kommt in der ersten Phase einer Katlage die Verbindungsaufnahme meist per **Sprache** zu stande. In weiterer Folge ist die Übermittlung von schriftlichen und bildlichen Informationen per **Email** via Kurzwelle/Ultrakurzwelle[5] ein essentieller Teil einer sicheren und stabilen Krisentelekommunikation.

Andere Betriebsarten spielen nur am Rande oder bei besonderen Lagen eine Rolle: In den Betriebsarten **CW**[6] und **PSK31**[7] sind bei Bedarf mit Minimalequipment und geringen Sendeleistungen weltweite Verbindungen möglich. Leider fehlt hier die Möglichkeit der fehlerfreien Informationsübertragung. SSTV oder **ATV** [8] zur Bildübertragung wird immer mehr ein wichtiges Element in der Führungsunterstützung für Einsatzleitungen, die durch den Amateurfunkdienst unterstützt werden.

Globale Netzwerke

Winlink

Winlink 2000 (WL2K) [9] ist ein weltweites "Email via Funk" System welches ausschließlich von lizensierten Funkamateuren auf nicht kommerzieller Basis betrieben wird. Das Winlink-System liefert wertvolle Dienste für die Not- und Krisenkommunikation, nämlich überall dort wo es keinen Internet Zugang (mehr) gibt. Mit Hilfe moderner Computer- und Netzwerktechnik und unter strikter Beachtung der Internet RFC-Empfehlungen ist das Winlink Development Team (WDT) um eine ständige Verbesserung für lokale, regionale und internationale Anwendungen bemüht. Um das WL2K System zu verwenden, müssen Sie eine Amateur-Funklizenz besitzen. Die Nutzung des Systems und aller Software ist kostenlos. [10] WL2K ist ein Non-Profit-Projekt der Amateur Radio Safety Foundation,Inc. [11]

WL2K Zugänge in OE:

Betriebsart **Pactor** OE3XEC[12] - Betriebsart AX.25 Packet Radio OE7XLR-13 und OE3XAR-10[13]

In der Betriebsart **Winmor** sind in EU meist nur 2-4 Stationen aktiv. Es ist jedoch anzunehmen, daß die gegenüber Pactor kostengünstigere Betriebsart (eine Soundkarte, wie bei PSK31 oder RTTY eingesetzt, genügt) eine rasche Verbreitung finden wird. Derzeit (Stand 1.10.2010) sind halbwegs sicher erreichbar: OE5XCL-5 in Wels (Dial 3612 kHz USB) und DA5UHR-5 in Frankfurt (Dial 7048,4 kHz USB), gelegentlich auch PD4U-5 in Apeldoorn (Dial 14109 kHz USB) und LA3F-5 in Sofiemyr (Dial 3596 kHz USB). Aber auch User-zu-User Verbindungen (Peer-to-Peer) sind im Notfunk, wenn keine Email-Vermittlung über Internet verfügbar, möglich. Als Client Software kann derzeit nur **RMS Express** [14] eingesetzt werden.

Zeitweise sind noch bemannte Stationen QRV, die ein Gateway zum WL2K-Netzwerk in RobustPacketRadio (RPR) zur Verfügung stellen. Zur Zeit sind das Versuche wobei kein 24/7 Betrieb gewährleistet werden kann. Bei Erfolg, könnte die eine oder andere Station als unbemannte Station dauerhaft onair gehen.

Echolink

Seit Inkrafttreten der neuen Amateurfunkverordnung ist es gestattet, Amateurfunkgeräte mit dem Internet zu verbinden.

EchoLink ist ein Internetprogramm, mithilfe dessen sich lizensierte Funkamateure der ganzen Welt mittels Computer über das Internet miteinander unterhalten können. Wie oben erwähnt, können nun auch Amateurfunkgeräte mit EchoLink verbunden werden. Jeder EchoLink-Station wird beim erstmaligen Einloggen eine sogenannte (nur einmalig vergebene) Node-Nummer zugewiesen (meistens vier- bis sechsstellig). Mittels DTMF-Tönen sind diese Stationen dann bei Betrieb über Funk durch Eingabe der Node-Nummer oder des Rufzeichens erreichbar. Weitere Informationen [15] und [16]

APRS

Im Amateurfunk wird APRS (Automatic Packet Reporting System) dazu verwendet, um Informationen und Meßdaten, egal welcher Art, weltweit zu übertragen. Die Verbreitung (Digipeating) der APRS-Daten erfolgt auf der europaweit einheitlichen Frequenz 144.800 MHz im 2m-Amateurfunkband mit 1200 Baud. [17]

Partnerorganisationen

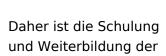
Unter Partnerorganisationen sind jene zu verstehen, die entweder die Unterstützung des Amateurfunkdienstes in Anspruch nehmen und/oder selber Funkamateure mit entsprechenden Funktionen beschäftigen.

Beim Österreichischen Roten Kreuz[18] sind in allen Bundesländern Telekomeinheiten mit lizensierten Funkamateuren integriert, die im Katfall auch auf den Amateurfunkdienst als Rückfallebene zurückgreifen können. Damit ist bei Bedarf die Kommunikation mit externen Funkamateuren sichergestellt.

Die **Landeswarnzentralen (LWZ)** der Landesregierungen (z.B. Tirol[19]) bzw. in der **Katastrophenleitzentrale** der Gemeinde Wien (KLZ) sind im Katfall für die Krisentelekommunikation innerhalb des jeweiligen Bundeslandes und mit der Bundeswarnzentrale (BWZ[20]) beim BMI zuständig. Auch in den LWZ's und der KLZ wird Schritt für Schritt oder ist bereits der Amateurfunkdienst als unterstützendes Führungsmittel integriert.

Das **österreichische Bundesheer** hat schon seit vielen Jahren eine eigene Amateurfunkgruppierung AMRS[21] die aus Heeresangehörigen mit Amateurfunklizenz besteht und ebenfalls im Katfall über den Amateurfunkdienst auf die große Anzahl externer Funkamateure weltweit zugreifen kann!

Allen Partnerorganisationen wurden durch die oberste Fernmeldbehörde (OFMB[22]) Rufzeichen (z.B. OEH, OEK, OEY) als sog. Staatsfunkstellen zugewiesen. Diese Staatsfunkstellen betreiben abseits des Amateurfunkdienstes Kurzwellenbetrieb auf eigenen Frequenzen innerhalb Österreichs.


Im Krisenfall sind diese Staatsfunkstellen befugt mit Funkamateuren auf Amateurfunkfrequenzen Funkbetrieb abzuwickeln.

Übungen, Seminare, Weiterbildung, Schulungen usw.

Funkamateure sind durch die regelmäßige Ausübung ihres Hobbys

in der Bedienung ihrer Ausrüstung bestens geschult. Jedoch erfordert die Abwicklung von Not- und Katfunkbetrieb spezielle Kenntnisse über Abläufe, über die Organisation der BOS [23] und deren Notwendigkeiten, sowie auch den Umgang mit Meldungen. Auch der Betrieb der eigenen Ausrüstung weicht oftmals vom Üblichen ab.

an der Katastrophentelekommunikation beteiligten Funkamateure ein wichtiger Punkt. Einerseits wird das theoretische Rüstzeug in Seminaren und Workshops vermittelt und andererseits werden diese Kenntnisse in praktischen Übungen erprobt und verbessert.

AOEC:

Eine - zumindest in Europa - einzigartige Besonderheit stellt der AOEC (All_OE_Contest) jeweils am 1. Mai jeden Jahres dar. Dabei ist es den Funkamateuren und den OP's der Staatsfunkstellen erlaubt, miteinander auf Amateurfunkfrequenzen Verbindungen aufzunehmen. Diese Katfunkübung - die zwar als Contest ausgeschrieben ist - soll den 'nicht_lizensierten' OP's der Staatsfunkstellen die Möglichkeit geben, sich mit den Eigenheiten des Amateurfunkbetriebes vertraut zu machen. Umgekehrt natürlich ebenso!

Mittlerweile sind bei diesen Organisationen ebenfalls zahlreiche Funkamateure im Einsatz, die den Betrieb abwickeln und dann auch für allfällige Realeinsätze zur Verfügung stehen.

Vergleichbar mit dem AOEC ist der sog. 'X-Test' - ein Crossbandtest in den USA, bei dem die Funkamateure auf Amateurfunkfrequenzen senden und auf kommerziellen Frequenzen der Partner hören. Die Partner (z.B. MARS) senden auf deren zugewiesenen Frequenzen und hören auf Amateurfunkfrequenzen. Somit entstehen Crossbandverbindungen, bei denen jeder Beteiligte Sendebetrieb nur entsprechend seiner Lizenz durchführt.

GSET:

Ausgabe: 26.04.2024

GSET heisst 'Global Simulated Emcomm Test' und bedeutet soviel wie globaler simulierter Katfunktest. Im Rahmen dieses von Greg Mossup, G0DUB ins Leben gerufenen Tests verfassen und versenden die teilnehmenden Emcomm Stationen aus allen drei IARU-Regionen standardisierte Meldungen. Die Kette der Weiterleitung von Sprachmeldungen und die Abgabe von digitalen Meldungen endet in einer Emailadresse an der die einlangenen Nachrichten nach Laufzeit und Vollständigleit ausgewertet werden.

Eine der wichtigsten Erkenntnisse der letzten Tests haben gezeigt, dass die Übermittlung von Emails über Kurzwelle über das Winlinknetzwerk die Weiterleitung und Aufnahme von Sprachnachrichten an Sicherheit, Vollständigkeit und Geschwindigkeit bei Weitem übertrifft!

Regionale Übungen:

In vielen Bundesländern werden sog. Katfielddays abgehalten. Dabei wird über eine Dauer von einigen Stunden bis zu einigen Tagen von Orten ohne Infrastruktur katfunkmässiger Betrieb abgewickelt. Die eingesetzte Ausrüstung wie Stromerzeuger, Solarpanele, speziell gefertigte Katfunkkoffer, einfache Drahtantennen, sowie Laptops und Software werden auf Einsatztauglichkeit getestet.

Dabei wurden schon einige Erkenntnisse gewonnen, die zu Verbesserungen oder Änderungen der eigenen oder fremden Ausrüstung oder Betriebsabwicklung geführt haben.

Notfunk Checkliste

Integrierte Übungen mit BOS:

Vereinzelt haben bereits regionale Katschutzbehörden wie z.B. die Bezirkshauptmannschaft Gmünd oder einige Gemeinden den Amateurfunkdienst bei sog. Stabsrahmenübungen in die Kommunikationsabläufe integriert. Das erhöhnt natürlich das Vertrauen in die Verlässlichkeit und in die Kompetenz der Funkamateure bei den Teilnehmern.

Seminare:

Seminare und Workshops vermitteln vertiefende Kenntnisse in Spezialbereichen. Beispielsweise wird die Theorie, der Aufbau und Betrieb von einfachen Drahtantennen in Katlagen erarbeitet.

Auch die im Katfunk eingesetzten Verfahren der Nachrichtenübermittlung über Pactor oder Packet Radio mit evt. Weiterleitung über das Winlinknetzwerk wird bei solchen Veranstaltungen den interessierten Katfunkern in Theorie und Praxis näher gebracht.

Präsentationen:

Die Veranstalter von Sicherheitstagen (österreichweit), Tag der offenen Türen (z.B. Bundesheer), Messen (z.B. Rettermesse Wels), Leistungsschauen (z.B. Rotes Kreuz) bieten dem Amateurfunkdienst eine Plattform, seine Möglichkeiten in der Krisentelekommunikation einem breiteren Publikum zu präsentieren. Hier werden die Emcomm-Ausrüstungen in Betrieb genommen und die damit möglichen Varianten der Verbindungsaufnahmen demonstriert.

Ansprechpartner in den Landesverbänden

Grundsätzlich sind die Ansprechpartner in den Landesverbänden unter der Adresse 'notfunk. oex@oevsv.at' zu erreichen!

Das 'oex' steht für den jeweiligen LV, z.B. OE1

Notfunkrunde

jeden ersten Mittwoch im Monat 19:45 Uhr Lokalzeit auf 3.643 KHz (+/- QRM)

IARU und Notfunk in anderen Ländern

- Amateur Radio Emergency Communications International [24]
- IARU-Region 1 Emergency Communication [25]
- Deutschland DARC Notfunk-Referat [26]
- Schweiz IG Notfunk [27]
- Holland DARES [28] & [29]
- ARRL Emergency Radio [30] Amateur Radio Today Youtube Video [31]
- England RAYNET [32]
- IRESC International Radio Emergency Support Coalition [33]
- Italien RNRE [34]
- Frankreich F.N.R.A.S.E.C. [35]
- Australien WICEN [36]
- Vereinigte Staaten von Amerika ARES [37]

Links

Amateurfunkstationen in Österreich [38]

Unwetterwarnungen für Österreich - Skywarn [39]

Unwetterwarnungen für Österreich - Unwetterzentrale [40]

Alarm-Pagernetz in Ost-Österreich [41]

Kontakt

Not- und Katfunkreferat im DV: Michael Maringer, OE1MMU oe1mmu@oevsv.at

Kategorie: NOTFUNK: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 1. Oktober 2010, 20:20 Uhr (Quelltext anzeigen)

OE1FEA (Diskussion | Beiträge)

K (→Partnerorganisationen)

← Zum vorherigen Versionsunterschied

Zeil	le	5:

Zeile 5:

ARENA - The Amateur Radio Emergency
Network Austria is a national voluntary
service that is provided to the community
by licensed radio amateurs. ARENA is part
of the OEVSV and IARU - the national and
international amateur radio associations.
Our focus is to support the public in the
event of crises when conventional
communication systems fail. Many of our
members are volunteers in organizations
such as the Austrian Red Cross, Civil
Defense, fire brigades, military and related
institutions.

Unique EmComm support is provided by use of the HF, VHF and UHF frequency spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink and APRS. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Ausgabe: 26.04.2024

ARENA - The Amateur Radio Emergency
Network Austria is a national voluntary
service that is provided to the community
by licensed radio amateurs. ARENA is part
of the OEVSV and IARU - the national and
international amateur radio associations.
Our focus is to support the public in the
event of crises when conventional
communication systems fail. Many of our
members are volunteers in organizations
such as the Austrian Red Cross, Civil
Defense, fire brigades, military and related
institutions.

Version vom 1. Januar 2011, 12:19 Uhr (Q

uelltext anzeigen)

Anonym (Diskussion | Beiträge)

Zum nächsten Versionsunterschied →

spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink, APRS and HAM NET. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Unique EmComm support is provided by

use of the HF, VHF and UHF frequency

Version vom 1. Januar 2011, 12:19 Uhr

NOTFUNK-OE

AMATEUR RADIO EMERGENCY NETWORK AUSTRIA

English Summary

ARENA - The Amateur Radio Emergency Network Austria is a national voluntary service that is provided to the community by licensed radio amateurs. ARENA is part of the OEVSV and IARU - the national and international amateur radio associations. Our focus is to support the public in the event of crises when conventional communication systems fail. Many of our members are volunteers in organizations such as the Austrian Red Cross, Civil Defense, fire brigades, military and related institutions. Unique EmComm support is provided by use of the HF, VHF and UHF frequency spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink, APRS and HAMNET. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Inhaltsverzeichnis

1 Allgemeines	202
2 Kompetenz der Funkamateure	203
3 Richtlinien	203
3.1 Aufnehmen und Weiterleiten einer Notfallmeldung	203
3.2 Richtlinien für den Not- und Katastrophenfunk	203
4 Alarm- und Warnsignale, Notruf	207

5 Frequenzen	208
6 Betriebsarten	208
7 Globale Netzwerke	209
7.1 Winlink	209
7.2 Echolink	209
7.3 APRS	210
8 Partnerorganisationen	210
9 Übungen, Seminare, Weiterbildung, Schulungen usw	210
10 Ansprechpartner in den Landesverbänden	212
11 Notfunkrunde	213
12 IARU und Notfunk in anderen Ländern	213
13 Links	213
14 Kontakt	213

Allgemeines

Katastrophenfunkverkehr

Katastrophenfunkverkehr ist die Übermittlung von Nachrichten, die den nationalen oder internationalen Hilfeleistungsverkehr betreffen, zwischen Funkstellen innerhalb eines Katastrophengebietes sowie zwischen einer Funkstelle im Katastrophengebiet und Hilfe leistenden Organisationen.

Notfunkverkehr

Notfunkverkehr ist die Übermittlung von Nachrichten zwischen einer Funkstelle, die selbst in Not ist oder an einem Notfall beteiligt oder Zeuge des Notfalles ist, und einer oder mehreren Hilfe leistenden Funkstellen.

Unsere Aufgaben als Funkamateure

Funkamateure unterstützen Hilfsorganisationen und andere Behörden und Organisationen mit Sicherheitsaufgaben, oder leiten empfangene Notrufe an diese weiter.

Von jeher haben Funkamateure weltweit ihre Gerätschaften und ihr Wissen für Hilfeleistungen zur Verfügung gestellt. Für Notrufe, bei Naturkatastrophen, in Entwicklungsländern, bei Kriegen, dringend benötigten Medikamenten, Seenotfällen, etc. Egal bei welcher Krisenlage, Funkamateure sind bei einem Ausfall der kommerziellen Telekommunikationsnetze weltweit oft die ersten, die wieder Kontakt zur Außenwelt herstellen können.

Funkamateure als Kommunikationsspezialisten

Um z.B. eine interkontinentale Funkverbindung auf Kurzwelle aufzubauen reichen neben den nötigen Kenntnissen über die Ausbreitungsbedingungen, einige Meter Draht als Antenne notfalls zwischen Trümmern und Bäumen gespannt, eine (Auto-) Batterie/ Solarzelle, und ein (selbstgebautes) Funkgerät mit rund 1–5 Watt Sendeleistung und eine Morsetaste bzw. Mikrofon aus. Bei über zwei Millionen Funkamateuren weltweit, die dank der Zeitverschiebung rund um die Uhr aktiv sind, erreicht man immer jemanden.

Hochwasser, Erdbeben, Stürme, Großfeuer und andere schwere Katastrophen zerstören und beschädigen fast immer Telekommunikationseinrichtungen. Dabei ist es irrelevant, ob die Technik neu oder alt ist. Ohne die entsprechende Infrastruktur und ohne Strom- und Telefonleitungen funktioniert sie nicht mehr. Besonders hier zeigt sich die Stärke des Amateurfunks. Funkamateure betreiben ihre Station unabhängig von einer Infrastruktur. Sie verfügen regional und länderübergreifend über zahlreiche Kontakte und leisten damit eine der wichtigsten Beiträge bei der Unterstützung von Behörden und Hilfsorganisationen in der Notfallkommunikation.

Ein großer Vorteil des Amateurfunkdienstes sind hierbei weltweit zugewiesene Frequenzbereiche. Somit ist eine unkomplizierte grenzüberschreitende Kommunikation jederzeit möglich, während es bei der Zusammenarbeit verschiedener Hilfskräfte wie z.B. BOS, Bundesheer, örtliche Energieversorger, etc. schon bei regionalen/ nationalen Großschadenslagen immer wieder an den unterschiedlichen Funkdiensten und Frequenzen scheitert. Ein weiterer Vorteil besteht darin, dass der Funkamateur seine Geräte bestens kennt, da er durch den laufenden Betrieb praktisch immer am Üben ist.

Ausgabe: 26.04.2024 Dieses Dokument wurde erzeugt mit BlueSpice

Erinnern Sie sich noch?

• 12. Jänner 2010 - Erdbebenkatastrophe in Haiti

BH-Einsatz

- April 2009 Erdbebenkatastrophe in l'Aquila, Italien
- 1. Jänner 2005 Tsunami in Südostasien
- 23. August 2005 Überschwemmung in Bezau
- 23. Februar 1999 Lawinenunglück in Galtür
- Weitere Notfunkaktionen der Funkamateure [1]

Kompetenz der Funkamateure

Diese ist von der Internationalen Fernmeldeunion (ITU) in zwei Bereichen festgelegt:

- Alarmierung Empfangen und Verteilen von Alarmmeldungen
- Entlastung bzw. Unterstützung von Einsatzorganisationen (bei der Organisation von Hilfe in Gebieten, in denen andere [Telekom] Dienste noch nicht verfügbar sind).

Siehe ITU-EmComm: [2]

Richtlinien

Aufnehmen und Weiterleiten einer Notfallmeldung

- Wer? Name und Standort des Melders
- Wo? Orts des Notfalls
- Was? Was ist passiert, was ist zu tun, welche Hilfe wird angefordert und ist erforderlich?
- Wieviele? Verletze, Betroffene, etc.
- Welche? Art der vermutlichen Verletzung, Erkrankung und eingetretene Schäden
- Die Notrufzentrale, die Funkleitstation oder die den Notruf aufnehmende Station beendet die Verbindung erst dann, wenn sie alle Informationen bekommen hat, die für eine Hilfeleistung erforderlich sind.

Notfallkarte [3]

Richtlinien für den Not- und Katastrophenfunk

Am Beispiel Niederösterreich:

Teil 1 Allgemeiner Teil

Not- und Katastrophenfunk Referat des Landesverband Niederösterreich des ÖVSV

Not- und Katastrophenfunk-Konzept Version 1.1 vom 18.5.2007

Not- und Katastrophenfunk Referat des Landesverbandes Niederösterreich des ÖVSV

OE- Richtlinie

Not- und Katastrophenfunk

Teil 1

Allgemeines

Revisionshistorie:

Ausgabe	Datum	Änderung	Autor
1.0	3.4.2007	Initialversion	G. Scholz
1.1	18.05.2007	Überarbeitet für OE-Version	M.Maringer

Ausgabe 1.1 vom 18.5.2007

Seite 1 von 14

Teil 2 Niederösterreich

Not- und Katastrophenfunk Referat des Landesverband Niederösterreich des ÖVSV

Not- und Katastrophenfunk-Konzept Version 2.5 vom 17.7.2009

Not- und Katastrophenfunk Referat des Landesverbandes Niederösterreich des ÖVSV

Richtlinie

Not- und Katastrophenfunk

Teil 2

NIEDERÖSTERREICH

Revisionshistorie:

Ausgabe	Datum	Änderung	Autor
1.0	3.4.2007	Initialversion	G. Scholz
2.0	27.8.2007	Ergänzung Pager-Alarmierung	G. Scholz
2.1	9.1.2008	Korrektur Tel.Nummer	G. Scholz
2.2	5.9.2008	Ergänzung ADL 324, div. Korrekturen	G. Scholz
2.3	20.12.2008	Adressänderung OE3CJB	G. Scholz
2.4	29.1.2009	Korrektur Notruf144	G. Scholz
2.5	17.7.2009	kleinere Korrekturen	G. Scholz

Ausgabe 2.5 vom17.7.2009

Seite 1 von 7

Für einige weitere Bundesländer bestehen bereits angepasste Versionen (z.B. Tirol) in denen länderspezifische Besonderheiten (z.B. Ansprechpartner, Adressen, technische Ausstattung usw.) eingearbeitet wurden. Bei Bedarf werden diese Richtlinien ergänzt oder überarbeitet!

IARU Notfunk Prozedur (Deutsch)

IARU

INTERNATIONALE NOTFUNK PROZEDUR FÜR KURZWELLE

Wie von allen 3 Regionen angenommen

Alarm- und Warnsignale, Notruf

DER NOTRUF [4]

Frequenzen

Für die weltweite 'Kompatibilität' wurden von der IARU-Konferenz Frequenzen beschlossen, die von allen Regionen benutzt werden können. Sprechfunkbetrieb findet auf der Kurzwelle nicht auf einer Frequenz (Kanal) statt, sondern rund um die 'Center of Activity'-Frequenzen (CoA). Im Regelfall bewegt man sich +/-5kHz um CoA - je nach Belegung und/oder Störungen.

Selbstverständlich kann jede passende Frequenz im Bedarfsfall zur Katfunkfrequenz ernannt werden.

Auflistung der Notfunkfrequenzen > Notfunk Frequenzen

Betriebsarten

Im Katfunk kommt in der ersten Phase einer Katlage die Verbindungsaufnahme meist per **Sprache** zu stande. In weiterer Folge ist die Übermittlung von schriftlichen und bildlichen Informationen per **Email** via Kurzwelle/Ultrakurzwelle[5] ein essentieller Teil einer sicheren und stabilen Krisentelekommunikation.

Andere Betriebsarten spielen nur am Rande oder bei besonderen Lagen eine Rolle: In den Betriebsarten **CW**[6] und **PSK31**[7] sind bei Bedarf mit Minimalequipment und geringen Sendeleistungen weltweite Verbindungen möglich. Leider fehlt hier die Möglichkeit der fehlerfreien Informationsübertragung. SSTV oder **ATV** [8] zur Bildübertragung wird immer mehr ein wichtiges Element in der Führungsunterstützung für Einsatzleitungen, die durch den Amateurfunkdienst unterstützt werden.

Globale Netzwerke

Winlink

Winlink 2000 (WL2K) [9] ist ein weltweites "Email via Funk" System welches ausschließlich von lizensierten Funkamateuren auf nicht kommerzieller Basis betrieben wird. Das Winlink-System liefert wertvolle Dienste für die Not- und Krisenkommunikation, nämlich überall dort wo es keinen Internet Zugang (mehr) gibt. Mit Hilfe moderner Computer- und Netzwerktechnik und unter strikter Beachtung der Internet RFC-Empfehlungen ist das Winlink Development Team (WDT) um eine ständige Verbesserung für lokale, regionale und internationale Anwendungen bemüht. Um das WL2K System zu verwenden, müssen Sie eine Amateur-Funklizenz besitzen. Die Nutzung des Systems und aller Software ist kostenlos. [10] WL2K ist ein Non-Profit-Projekt der Amateur Radio Safety Foundation,Inc. [11]

WL2K Zugänge in OE:

Betriebsart **Pactor** OE3XEC[12] - Betriebsart AX.25 Packet Radio OE7XLR-13 und OE3XAR-10[13]

In der Betriebsart **Winmor** sind in EU meist nur 2-4 Stationen aktiv. Es ist jedoch anzunehmen, daß die gegenüber Pactor kostengünstigere Betriebsart (eine Soundkarte, wie bei PSK31 oder RTTY eingesetzt, genügt) eine rasche Verbreitung finden wird. Derzeit (Stand 1.10.2010) sind halbwegs sicher erreichbar: OE5XCL-5 in Wels (Dial 3612 kHz USB) und DA5UHR-5 in Frankfurt (Dial 7048,4 kHz USB), gelegentlich auch PD4U-5 in Apeldoorn (Dial 14109 kHz USB) und LA3F-5 in Sofiemyr (Dial 3596 kHz USB). Aber auch User-zu-User Verbindungen (Peer-to-Peer) sind im Notfunk, wenn keine Email-Vermittlung über Internet verfügbar, möglich. Als Client Software kann derzeit nur **RMS Express** [14] eingesetzt werden.

Zeitweise sind noch bemannte Stationen QRV, die ein Gateway zum WL2K-Netzwerk in RobustPacketRadio (RPR) zur Verfügung stellen. Zur Zeit sind das Versuche wobei kein 24/7 Betrieb gewährleistet werden kann. Bei Erfolg, könnte die eine oder andere Station als unbemannte Station dauerhaft onair gehen.

Echolink

Seit Inkrafttreten der neuen Amateurfunkverordnung ist es gestattet, Amateurfunkgeräte mit dem Internet zu verbinden.

EchoLink ist ein Internetprogramm, mithilfe dessen sich lizensierte Funkamateure der ganzen Welt mittels Computer über das Internet miteinander unterhalten können. Wie oben erwähnt, können nun auch Amateurfunkgeräte mit EchoLink verbunden werden. Jeder EchoLink-Station wird beim erstmaligen Einloggen eine sogenannte (nur einmalig vergebene) Node-Nummer zugewiesen (meistens vier- bis sechsstellig). Mittels DTMF-Tönen sind diese Stationen dann bei Betrieb über Funk durch Eingabe der Node-Nummer oder des Rufzeichens erreichbar. Weitere Informationen [15] und [16]

APRS

Im Amateurfunk wird APRS (Automatic Packet Reporting System) dazu verwendet, um Informationen und Meßdaten, egal welcher Art, weltweit zu übertragen. Die Verbreitung (Digipeating) der APRS-Daten erfolgt auf der europaweit einheitlichen Frequenz 144.800 MHz im 2m-Amateurfunkband mit 1200 Baud. [17]

Partnerorganisationen

Unter Partnerorganisationen sind jene zu verstehen, die entweder die Unterstützung des Amateurfunkdienstes in Anspruch nehmen und/oder selber Funkamateure mit entsprechenden Funktionen beschäftigen.

Beim Österreichischen Roten Kreuz[18] sind in allen Bundesländern Telekomeinheiten mit lizensierten Funkamateuren integriert, die im Katfall auch auf den Amateurfunkdienst als Rückfallebene zurückgreifen können. Damit ist bei Bedarf die Kommunikation mit externen Funkamateuren sichergestellt.

Die **Landeswarnzentralen (LWZ)** der Landesregierungen (z.B. Tirol[19]) bzw. in der **Katastrophenleitzentrale** der Gemeinde Wien (KLZ) sind im Katfall für die Krisentelekommunikation innerhalb des jeweiligen Bundeslandes und mit der Bundeswarnzentrale (BWZ[20]) beim BMI zuständig. Auch in den LWZ's und der KLZ wird Schritt für Schritt oder ist bereits der Amateurfunkdienst als unterstützendes Führungsmittel integriert.

Das **österreichische Bundesheer** hat schon seit vielen Jahren eine eigene Amateurfunkgruppierung AMRS[21] die aus Heeresangehörigen mit Amateurfunklizenz besteht und ebenfalls im Katfall über den Amateurfunkdienst auf die große Anzahl externer Funkamateure weltweit zugreifen kann!

Allen Partnerorganisationen wurden durch die oberste Fernmeldbehörde (OFMB[22]) Rufzeichen (z.B. OEH, OEK, OEY) als sog. Staatsfunkstellen zugewiesen. Diese Staatsfunkstellen betreiben abseits des Amateurfunkdienstes Kurzwellenbetrieb auf eigenen Frequenzen innerhalb Österreichs.

Im Krisenfall sind diese Staatsfunkstellen befugt mit Funkamateuren auf Amateurfunkfrequenzen Funkbetrieb abzuwickeln.

Übungen, Seminare, Weiterbildung, Schulungen usw.

Funkamateure sind durch die regelmäßige Ausübung ihres Hobbys

in der Bedienung ihrer Ausrüstung bestens geschult. Jedoch erfordert die Abwicklung von Not- und Katfunkbetrieb spezielle Kenntnisse über Abläufe, über die Organisation der BOS [23] und deren Notwendigkeiten, sowie auch den Umgang mit Meldungen. Auch der Betrieb der eigenen Ausrüstung weicht oftmals vom Üblichen ab.

Daher ist die Schulung und Weiterbildung der

an der Katastrophentelekommunikation beteiligten Funkamateure ein wichtiger Punkt. Einerseits wird das theoretische Rüstzeug in Seminaren und Workshops vermittelt und andererseits werden diese Kenntnisse in praktischen Übungen erprobt und verbessert.

AOEC:

Eine - zumindest in Europa - einzigartige Besonderheit stellt der AOEC (All_OE_Contest) jeweils am 1. Mai jeden Jahres dar. Dabei ist es den Funkamateuren und den OP's der Staatsfunkstellen erlaubt, miteinander auf Amateurfunkfrequenzen Verbindungen aufzunehmen. Diese Katfunkübung - die zwar als Contest ausgeschrieben ist - soll den 'nicht_lizensierten' OP's der Staatsfunkstellen die Möglichkeit geben, sich mit den Eigenheiten des Amateurfunkbetriebes vertraut zu machen. Umgekehrt natürlich ebenso!

Mittlerweile sind bei diesen Organisationen ebenfalls zahlreiche Funkamateure im Einsatz, die den Betrieb abwickeln und dann auch für allfällige Realeinsätze zur Verfügung stehen.

Vergleichbar mit dem AOEC ist der sog. 'X-Test' - ein Crossbandtest in den USA, bei dem die Funkamateure auf Amateurfunkfrequenzen senden und auf kommerziellen Frequenzen der Partner hören. Die Partner (z.B. MARS) senden auf deren zugewiesenen Frequenzen und hören auf Amateurfunkfrequenzen. Somit entstehen Crossbandverbindungen, bei denen jeder Beteiligte Sendebetrieb nur entsprechend seiner Lizenz durchführt.

GSET:

GSET heisst 'Global Simulated Emcomm Test' und bedeutet soviel wie globaler simulierter Katfunktest. Im Rahmen dieses von Greg Mossup, G0DUB ins Leben gerufenen Tests verfassen und versenden die teilnehmenden Emcomm Stationen aus allen drei IARU-Regionen standardisierte Meldungen. Die Kette der Weiterleitung von Sprachmeldungen und die Abgabe von digitalen Meldungen endet in einer Emailadresse an der die einlangenen Nachrichten nach Laufzeit und Vollständigleit ausgewertet werden.

Eine der wichtigsten Erkenntnisse der letzten Tests haben gezeigt, dass die Übermittlung von Emails über Kurzwelle über das Winlinknetzwerk die Weiterleitung und Aufnahme von Sprachnachrichten an Sicherheit, Vollständigkeit und Geschwindigkeit bei Weitem übertrifft!

Regionale Übungen:

In vielen Bundesländern werden sog. Katfielddays abgehalten. Dabei wird über eine Dauer von einigen Stunden bis zu einigen Tagen von Orten ohne Infrastruktur katfunkmässiger Betrieb abgewickelt. Die eingesetzte Ausrüstung wie Stromerzeuger, Solarpanele, speziell gefertigte Katfunkkoffer, einfache Drahtantennen, sowie Laptops und Software werden auf Einsatztauglichkeit getestet.

Dabei wurden schon einige Erkenntnisse gewonnen, die zu Verbesserungen oder Änderungen der eigenen oder fremden Ausrüstung oder Betriebsabwicklung geführt haben.

Notfunk Checkliste

Integrierte Übungen mit BOS:

Vereinzelt haben bereits regionale Katschutzbehörden wie z.B. die Bezirkshauptmannschaft Gmünd oder einige Gemeinden den Amateurfunkdienst bei sog. Stabsrahmenübungen in die Kommunikationsabläufe integriert. Das erhöhnt natürlich das Vertrauen in die Verlässlichkeit und in die Kompetenz der Funkamateure bei den Teilnehmern.

Seminare:

Seminare und Workshops vermitteln vertiefende Kenntnisse in Spezialbereichen. Beispielsweise wird die Theorie, der Aufbau und Betrieb von einfachen Drahtantennen in Katlagen erarbeitet.

Auch die im Katfunk eingesetzten Verfahren der Nachrichtenübermittlung über Pactor oder Packet Radio mit evt. Weiterleitung über das Winlinknetzwerk wird bei solchen Veranstaltungen den interessierten Katfunkern in Theorie und Praxis näher gebracht.

Präsentationen:

Die Veranstalter von Sicherheitstagen (österreichweit), Tag der offenen Türen (z.B. Bundesheer), Messen (z.B. Rettermesse Wels), Leistungsschauen (z.B. Rotes Kreuz) bieten dem Amateurfunkdienst eine Plattform, seine Möglichkeiten in der Krisentelekommunikation einem breiteren Publikum zu präsentieren. Hier werden die Emcomm-Ausrüstungen in Betrieb genommen und die damit möglichen Varianten der Verbindungsaufnahmen demonstriert.

Ansprechpartner in den Landesverbänden

Grundsätzlich sind die Ansprechpartner in den Landesverbänden unter der Adresse 'notfunk. oex@oevsv.at' zu erreichen!

Das 'oex' steht für den jeweiligen LV, z.B. OE1

Notfunkrunde

jeden ersten Mittwoch im Monat 19:45 Uhr Lokalzeit auf 3.643 KHz (+/- QRM)

IARU und Notfunk in anderen Ländern

- Amateur Radio Emergency Communications International [24]
- IARU-Region 1 Emergency Communication [25]
- Deutschland DARC Notfunk-Referat [26]
- Schweiz IG Notfunk [27]
- Holland DARES [28] & [29]
- ARRL Emergency Radio [30] Amateur Radio Today Youtube Video [31]
- England RAYNET [32]
- IRESC International Radio Emergency Support Coalition [33]
- Italien RNRE [34]
- Frankreich F.N.R.A.S.E.C. [35]
- Australien WICEN [36]
- Vereinigte Staaten von Amerika ARES [37]

Links

Amateurfunkstationen in Österreich [38]

Unwetterwarnungen für Österreich - Skywarn [39]

Unwetterwarnungen für Österreich - Unwetterzentrale [40]

Alarm-Pagernetz in Ost-Österreich [41]

Kontakt

Not- und Katfunkreferat im DV: Michael Maringer, OE1MMU oe1mmu@oevsv.at

Kategorie: NOTFUNK: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 1. Oktober 2010, 20:20 Uhr (Quelltext anzeigen)

OE1FEA (Diskussion | Beiträge)

K (→Partnerorganisationen)

← Zum vorherigen Versionsunterschied

Version	vom	1. Janua	ar 2011	., 12:19	Uhr	(Q
	u	elltext a	anzeige	en)		

Anonym (Diskussion | Beiträge)
Zum nächsten Versionsunterschied →

Zeile 5:

ARENA - The Amateur Radio Emergency
Network Austria is a national voluntary
service that is provided to the community
by licensed radio amateurs. ARENA is part
of the OEVSV and IARU - the national and
international amateur radio associations.
Our focus is to support the public in the
event of crises when conventional
communication systems fail. Many of our
members are volunteers in organizations
such as the Austrian Red Cross, Civil
Defense, fire brigades, military and related
institutions.

Unique EmComm support is provided by use of the HF, VHF and UHF frequency spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink and APRS. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Zeile 5:

ARENA - The Amateur Radio Emergency
Network Austria is a national voluntary
service that is provided to the community
by licensed radio amateurs. ARENA is part
of the OEVSV and IARU - the national and
international amateur radio associations.
Our focus is to support the public in the
event of crises when conventional
communication systems fail. Many of our
members are volunteers in organizations
such as the Austrian Red Cross, Civil
Defense, fire brigades, military and related
institutions.

spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink, APRS and HAM NET. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Unique EmComm support is provided by

use of the HF, VHF and UHF frequency

Version vom 1. Januar 2011, 12:19 Uhr

NOTFUNK-OE

AMATEUR RADIO EMERGENCY NETWORK AUSTRIA

English Summary

ARENA - The Amateur Radio Emergency Network Austria is a national voluntary service that is provided to the community by licensed radio amateurs. ARENA is part of the OEVSV and IARU - the national and international amateur radio associations. Our focus is to support the public in the event of crises when conventional communication systems fail. Many of our members are volunteers in organizations such as the Austrian Red Cross, Civil Defense, fire brigades, military and related institutions. Unique EmComm support is provided by use of the HF, VHF and UHF frequency spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink, APRS and HAMNET. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Inhaltsverzeichnis

1 Allgemeines	217
2 Kompetenz der Funkamateure	218
3 Richtlinien	218
3.1 Aufnehmen und Weiterleiten einer Notfallmeldung	218
3.2 Richtlinien für den Not- und Katastrophenfunk	218
4 Alarm- und Warnsignale, Notruf	222

5 Frequenzen	223
6 Betriebsarten	223
7 Globale Netzwerke	224
7.1 Winlink	224
7.2 Echolink	224
7.3 APRS	225
8 Partnerorganisationen	225
9 Übungen, Seminare, Weiterbildung, Schulungen usw	225
10 Ansprechpartner in den Landesverbänden	227
11 Notfunkrunde	228
12 IARU und Notfunk in anderen Ländern	228
13 Links	228
14 Kontakt	228

Allgemeines

Katastrophenfunkverkehr

Katastrophenfunkverkehr ist die Übermittlung von Nachrichten, die den nationalen oder internationalen Hilfeleistungsverkehr betreffen, zwischen Funkstellen innerhalb eines Katastrophengebietes sowie zwischen einer Funkstelle im Katastrophengebiet und Hilfe leistenden Organisationen.

Notfunkverkehr

Notfunkverkehr ist die Übermittlung von Nachrichten zwischen einer Funkstelle, die selbst in Not ist oder an einem Notfall beteiligt oder Zeuge des Notfalles ist, und einer oder mehreren Hilfe leistenden Funkstellen.

Unsere Aufgaben als Funkamateure

Funkamateure unterstützen Hilfsorganisationen und andere Behörden und Organisationen mit Sicherheitsaufgaben, oder leiten empfangene Notrufe an diese weiter.

Von jeher haben Funkamateure weltweit ihre Gerätschaften und ihr Wissen für Hilfeleistungen zur Verfügung gestellt. Für Notrufe, bei Naturkatastrophen, in Entwicklungsländern, bei Kriegen, dringend benötigten Medikamenten, Seenotfällen, etc. Egal bei welcher Krisenlage, Funkamateure sind bei einem Ausfall der kommerziellen Telekommunikationsnetze weltweit oft die ersten, die wieder Kontakt zur Außenwelt herstellen können.

Funkamateure als Kommunikationsspezialisten

Um z.B. eine interkontinentale Funkverbindung auf Kurzwelle aufzubauen reichen neben den nötigen Kenntnissen über die Ausbreitungsbedingungen, einige Meter Draht als Antenne notfalls zwischen Trümmern und Bäumen gespannt, eine (Auto-) Batterie/ Solarzelle, und ein (selbstgebautes) Funkgerät mit rund 1–5 Watt Sendeleistung und eine Morsetaste bzw. Mikrofon aus. Bei über zwei Millionen Funkamateuren weltweit, die dank der Zeitverschiebung rund um die Uhr aktiv sind, erreicht man immer jemanden.

Hochwasser, Erdbeben, Stürme, Großfeuer und andere schwere Katastrophen zerstören und beschädigen fast immer Telekommunikationseinrichtungen. Dabei ist es irrelevant, ob die Technik neu oder alt ist. Ohne die entsprechende Infrastruktur und ohne Strom- und Telefonleitungen funktioniert sie nicht mehr. Besonders hier zeigt sich die Stärke des Amateurfunks. Funkamateure betreiben ihre Station unabhängig von einer Infrastruktur. Sie verfügen regional und länderübergreifend über zahlreiche Kontakte und leisten damit eine der wichtigsten Beiträge bei der Unterstützung von Behörden und Hilfsorganisationen in der Notfallkommunikation.

Ein großer Vorteil des Amateurfunkdienstes sind hierbei weltweit zugewiesene Frequenzbereiche. Somit ist eine unkomplizierte grenzüberschreitende Kommunikation jederzeit möglich, während es bei der Zusammenarbeit verschiedener Hilfskräfte wie z.B. BOS, Bundesheer, örtliche Energieversorger, etc. schon bei regionalen/ nationalen Großschadenslagen immer wieder an den unterschiedlichen Funkdiensten und Frequenzen scheitert. Ein weiterer Vorteil besteht darin, dass der Funkamateur seine Geräte bestens kennt, da er durch den laufenden Betrieb praktisch immer am Üben ist.

Ausgabe: 26.04.2024 Dieses Dokument wurde erzeugt mit BlueSpice

Erinnern Sie sich noch?

• 12. Jänner 2010 - Erdbebenkatastrophe in Haiti

BH-Einsatz

- April 2009 Erdbebenkatastrophe in l'Aquila, Italien
- 1. Jänner 2005 Tsunami in Südostasien
- 23. August 2005 Überschwemmung in Bezau
- 23. Februar 1999 Lawinenunglück in Galtür
- Weitere Notfunkaktionen der Funkamateure [1]

Kompetenz der Funkamateure

Diese ist von der Internationalen Fernmeldeunion (ITU) in zwei Bereichen festgelegt:

- Alarmierung Empfangen und Verteilen von Alarmmeldungen
- Entlastung bzw. Unterstützung von Einsatzorganisationen (bei der Organisation von Hilfe in Gebieten, in denen andere [Telekom] Dienste noch nicht verfügbar sind).

Siehe ITU-EmComm: [2]

Richtlinien

Aufnehmen und Weiterleiten einer Notfallmeldung

- Wer? Name und Standort des Melders
- Wo? Orts des Notfalls
- Was? Was ist passiert, was ist zu tun, welche Hilfe wird angefordert und ist erforderlich?
- Wieviele? Verletze, Betroffene, etc.
- Welche? Art der vermutlichen Verletzung, Erkrankung und eingetretene Schäden
- Die Notrufzentrale, die Funkleitstation oder die den Notruf aufnehmende Station beendet die Verbindung erst dann, wenn sie alle Informationen bekommen hat, die für eine Hilfeleistung erforderlich sind.

Notfallkarte [3]

Richtlinien für den Not- und Katastrophenfunk

Am Beispiel Niederösterreich:

Teil 1 Allgemeiner Teil

Not- und Katastrophenfunk Referat des Landesverband Niederösterreich des ÖVSV

Not- und Katastrophenfunk-Konzept Version 1.1 vom 18.5.2007

Not- und Katastrophenfunk Referat des Landesverbandes Niederösterreich des ÖVSV

OE- Richtlinie

Not- und Katastrophenfunk

Teil 1

Allgemeines

Revisionshistorie:

Ausgabe	Datum	Änderung	Autor
1.0	3.4.2007	Initialversion	G. Scholz
1.1	18.05.2007	Überarbeitet für OE-Version	M.Maringer

Ausgabe 1.1 vom 18.5.2007

Seite 1 von 14

Teil 2 Niederösterreich

Not- und Katastrophenfunk Referat des Landesverband Niederösterreich des ÖVSV

Not- und Katastrophenfunk-Konzept Version 2.5 vom 17.7.2009

Not- und Katastrophenfunk Referat des Landesverbandes Niederösterreich des ÖVSV

Richtlinie

Not- und Katastrophenfunk

Teil 2 NIEDERÖSTERREICH

Revisionshistorie:

Ausgabe	Datum	Änderung	Autor
1.0	3.4.2007	Initialversion	G. Scholz
2.0		Ergänzung Pager-Alarmierung	G. Scholz
2.1	9.1.2008	Korrektur Tel.Nummer	G. Scholz
2.2	5.9.2008	Ergänzung ADL 324, div. Korrekturen	G. Scholz
2.3	20.12.2008	Adressänderung OE3CJB	G. Scholz
2.4	29.1.2009	Korrektur Notruf144	G. Scholz
2.5	17.7.2009	kleinere Korrekturen	G. Scholz

Ausgabe 2.5 vom17.7.2009

Seite 1 von 7

Für einige weitere Bundesländer bestehen bereits angepasste Versionen (z.B. Tirol) in denen länderspezifische Besonderheiten (z.B. Ansprechpartner, Adressen, technische Ausstattung usw.) eingearbeitet wurden. Bei Bedarf werden diese Richtlinien ergänzt oder überarbeitet!

IARU Notfunk Prozedur (Deutsch)

IARU

INTERNATIONALE NOTFUNK PROZEDUR FÜR KURZWELLE

Wie von allen 3 Regionen angenommen

Alarm- und Warnsignale, Notruf

DER NOTRUF [4]

Frequenzen

Für die weltweite 'Kompatibilität' wurden von der IARU-Konferenz Frequenzen beschlossen, die von allen Regionen benutzt werden können. Sprechfunkbetrieb findet auf der Kurzwelle nicht auf einer Frequenz (Kanal) statt, sondern rund um die 'Center of Activity'-Frequenzen (CoA). Im Regelfall bewegt man sich +/-5kHz um CoA - je nach Belegung und/oder Störungen.

Selbstverständlich kann jede passende Frequenz im Bedarfsfall zur Katfunkfrequenz ernannt werden.

Auflistung der Notfunkfrequenzen > Notfunk Frequenzen

Betriebsarten

Im Katfunk kommt in der ersten Phase einer Katlage die Verbindungsaufnahme meist per **Sprache** zu stande. In weiterer Folge ist die Übermittlung von schriftlichen und bildlichen Informationen per **Email** via Kurzwelle/Ultrakurzwelle[5] ein essentieller Teil einer sicheren und stabilen Krisentelekommunikation.

Andere Betriebsarten spielen nur am Rande oder bei besonderen Lagen eine Rolle: In den Betriebsarten **CW**[6] und **PSK31**[7] sind bei Bedarf mit Minimalequipment und geringen Sendeleistungen weltweite Verbindungen möglich. Leider fehlt hier die Möglichkeit der fehlerfreien Informationsübertragung. SSTV oder **ATV** [8] zur Bildübertragung wird immer mehr ein wichtiges Element in der Führungsunterstützung für Einsatzleitungen, die durch den Amateurfunkdienst unterstützt werden.

Globale Netzwerke

Winlink

Winlink 2000 (WL2K) [9] ist ein weltweites "Email via Funk" System welches ausschließlich von lizensierten Funkamateuren auf nicht kommerzieller Basis betrieben wird. Das Winlink-System liefert wertvolle Dienste für die Not- und Krisenkommunikation, nämlich überall dort wo es keinen Internet Zugang (mehr) gibt. Mit Hilfe moderner Computer- und Netzwerktechnik und unter strikter Beachtung der Internet RFC-Empfehlungen ist das Winlink Development Team (WDT) um eine ständige Verbesserung für lokale, regionale und internationale Anwendungen bemüht. Um das WL2K System zu verwenden, müssen Sie eine Amateur-Funklizenz besitzen. Die Nutzung des Systems und aller Software ist kostenlos. [10] WL2K ist ein Non-Profit-Projekt der Amateur Radio Safety Foundation,Inc. [11]

WL2K Zugänge in OE:

Betriebsart **Pactor** OE3XEC[12] - Betriebsart AX.25 Packet Radio OE7XLR-13 und OE3XAR-10[13]

In der Betriebsart **Winmor** sind in EU meist nur 2-4 Stationen aktiv. Es ist jedoch anzunehmen, daß die gegenüber Pactor kostengünstigere Betriebsart (eine Soundkarte, wie bei PSK31 oder RTTY eingesetzt, genügt) eine rasche Verbreitung finden wird. Derzeit (Stand 1.10.2010) sind halbwegs sicher erreichbar: OE5XCL-5 in Wels (Dial 3612 kHz USB) und DA5UHR-5 in Frankfurt (Dial 7048,4 kHz USB), gelegentlich auch PD4U-5 in Apeldoorn (Dial 14109 kHz USB) und LA3F-5 in Sofiemyr (Dial 3596 kHz USB). Aber auch User-zu-User Verbindungen (Peer-to-Peer) sind im Notfunk, wenn keine Email-Vermittlung über Internet verfügbar, möglich. Als Client Software kann derzeit nur **RMS Express** [14] eingesetzt werden.

Zeitweise sind noch bemannte Stationen QRV, die ein Gateway zum WL2K-Netzwerk in RobustPacketRadio (RPR) zur Verfügung stellen. Zur Zeit sind das Versuche wobei kein 24/7 Betrieb gewährleistet werden kann. Bei Erfolg, könnte die eine oder andere Station als unbemannte Station dauerhaft onair gehen.

Echolink

Seit Inkrafttreten der neuen Amateurfunkverordnung ist es gestattet, Amateurfunkgeräte mit dem Internet zu verbinden.

EchoLink ist ein Internetprogramm, mithilfe dessen sich lizensierte Funkamateure der ganzen Welt mittels Computer über das Internet miteinander unterhalten können. Wie oben erwähnt, können nun auch Amateurfunkgeräte mit EchoLink verbunden werden. Jeder EchoLink-Station wird beim erstmaligen Einloggen eine sogenannte (nur einmalig vergebene) Node-Nummer zugewiesen (meistens vier- bis sechsstellig). Mittels DTMF-Tönen sind diese Stationen dann bei Betrieb über Funk durch Eingabe der Node-Nummer oder des Rufzeichens erreichbar. Weitere Informationen [15] und [16]

APRS

Im Amateurfunk wird APRS (Automatic Packet Reporting System) dazu verwendet, um Informationen und Meßdaten, egal welcher Art, weltweit zu übertragen. Die Verbreitung (Digipeating) der APRS-Daten erfolgt auf der europaweit einheitlichen Frequenz 144.800 MHz im 2m-Amateurfunkband mit 1200 Baud. [17]

Partnerorganisationen

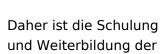
Unter Partnerorganisationen sind jene zu verstehen, die entweder die Unterstützung des Amateurfunkdienstes in Anspruch nehmen und/oder selber Funkamateure mit entsprechenden Funktionen beschäftigen.

Beim Österreichischen Roten Kreuz[18] sind in allen Bundesländern Telekomeinheiten mit lizensierten Funkamateuren integriert, die im Katfall auch auf den Amateurfunkdienst als Rückfallebene zurückgreifen können. Damit ist bei Bedarf die Kommunikation mit externen Funkamateuren sichergestellt.

Die **Landeswarnzentralen (LWZ)** der Landesregierungen (z.B. Tirol[19]) bzw. in der **Katastrophenleitzentrale** der Gemeinde Wien (KLZ) sind im Katfall für die Krisentelekommunikation innerhalb des jeweiligen Bundeslandes und mit der Bundeswarnzentrale (BWZ[20]) beim BMI zuständig. Auch in den LWZ's und der KLZ wird Schritt für Schritt oder ist bereits der Amateurfunkdienst als unterstützendes Führungsmittel integriert.

Das **österreichische Bundesheer** hat schon seit vielen Jahren eine eigene Amateurfunkgruppierung AMRS[21] die aus Heeresangehörigen mit Amateurfunklizenz besteht und ebenfalls im Katfall über den Amateurfunkdienst auf die große Anzahl externer Funkamateure weltweit zugreifen kann!

Allen Partnerorganisationen wurden durch die oberste Fernmeldbehörde (OFMB[22]) Rufzeichen (z.B. OEH, OEK, OEY) als sog. Staatsfunkstellen zugewiesen. Diese Staatsfunkstellen betreiben abseits des Amateurfunkdienstes Kurzwellenbetrieb auf eigenen Frequenzen innerhalb Österreichs.


Im Krisenfall sind diese Staatsfunkstellen befugt mit Funkamateuren auf Amateurfunkfrequenzen Funkbetrieb abzuwickeln.

Übungen, Seminare, Weiterbildung, Schulungen usw.

Funkamateure sind durch die regelmäßige Ausübung ihres Hobbys

in der Bedienung ihrer Ausrüstung bestens geschult. Jedoch erfordert die Abwicklung von Not- und Katfunkbetrieb spezielle Kenntnisse über Abläufe, über die Organisation der BOS [23] und deren Notwendigkeiten, sowie auch den Umgang mit Meldungen. Auch der Betrieb der eigenen Ausrüstung weicht oftmals vom Üblichen ab.

an der Katastrophentelekommunikation beteiligten Funkamateure ein wichtiger Punkt. Einerseits wird das theoretische Rüstzeug in Seminaren und Workshops vermittelt und andererseits werden diese Kenntnisse in praktischen Übungen erprobt und verbessert.

AOEC:

Eine - zumindest in Europa - einzigartige Besonderheit stellt der AOEC (All_OE_Contest) jeweils am 1. Mai jeden Jahres dar. Dabei ist es den Funkamateuren und den OP's der Staatsfunkstellen erlaubt, miteinander auf Amateurfunkfrequenzen Verbindungen aufzunehmen. Diese Katfunkübung - die zwar als Contest ausgeschrieben ist - soll den 'nicht_lizensierten' OP's der Staatsfunkstellen die Möglichkeit geben, sich mit den Eigenheiten des Amateurfunkbetriebes vertraut zu machen. Umgekehrt natürlich ebenso!

Mittlerweile sind bei diesen Organisationen ebenfalls zahlreiche Funkamateure im Einsatz, die den Betrieb abwickeln und dann auch für allfällige Realeinsätze zur Verfügung stehen.

Vergleichbar mit dem AOEC ist der sog. 'X-Test' - ein Crossbandtest in den USA, bei dem die Funkamateure auf Amateurfunkfrequenzen senden und auf kommerziellen Frequenzen der Partner hören. Die Partner (z.B. MARS) senden auf deren zugewiesenen Frequenzen und hören auf Amateurfunkfrequenzen. Somit entstehen Crossbandverbindungen, bei denen jeder Beteiligte Sendebetrieb nur entsprechend seiner Lizenz durchführt.

GSET:

Ausgabe: 26.04.2024

GSET heisst 'Global Simulated Emcomm Test' und bedeutet soviel wie globaler simulierter Katfunktest. Im Rahmen dieses von Greg Mossup, G0DUB ins Leben gerufenen Tests verfassen und versenden die teilnehmenden Emcomm Stationen aus allen drei IARU-Regionen standardisierte Meldungen. Die Kette der Weiterleitung von Sprachmeldungen und die Abgabe von digitalen Meldungen endet in einer Emailadresse an der die einlangenen Nachrichten nach Laufzeit und Vollständigleit ausgewertet werden.

Eine der wichtigsten Erkenntnisse der letzten Tests haben gezeigt, dass die Übermittlung von Emails über Kurzwelle über das Winlinknetzwerk die Weiterleitung und Aufnahme von Sprachnachrichten an Sicherheit, Vollständigkeit und Geschwindigkeit bei Weitem übertrifft!

Regionale Übungen:

In vielen Bundesländern werden sog. Katfielddays abgehalten. Dabei wird über eine Dauer von einigen Stunden bis zu einigen Tagen von Orten ohne Infrastruktur katfunkmässiger Betrieb abgewickelt. Die eingesetzte Ausrüstung wie Stromerzeuger, Solarpanele, speziell gefertigte Katfunkkoffer, einfache Drahtantennen, sowie Laptops und Software werden auf Einsatztauglichkeit getestet.

Dabei wurden schon einige Erkenntnisse gewonnen, die zu Verbesserungen oder Änderungen der eigenen oder fremden Ausrüstung oder Betriebsabwicklung geführt haben.

Notfunk Checkliste

Integrierte Übungen mit BOS:

Vereinzelt haben bereits regionale Katschutzbehörden wie z.B. die Bezirkshauptmannschaft Gmünd oder einige Gemeinden den Amateurfunkdienst bei sog. Stabsrahmenübungen in die Kommunikationsabläufe integriert. Das erhöhnt natürlich das Vertrauen in die Verlässlichkeit und in die Kompetenz der Funkamateure bei den Teilnehmern.

Seminare:

Seminare und Workshops vermitteln vertiefende Kenntnisse in Spezialbereichen. Beispielsweise wird die Theorie, der Aufbau und Betrieb von einfachen Drahtantennen in Katlagen erarbeitet.

Auch die im Katfunk eingesetzten Verfahren der Nachrichtenübermittlung über Pactor oder Packet Radio mit evt. Weiterleitung über das Winlinknetzwerk wird bei solchen Veranstaltungen den interessierten Katfunkern in Theorie und Praxis näher gebracht.

Präsentationen:

Die Veranstalter von Sicherheitstagen (österreichweit), Tag der offenen Türen (z.B. Bundesheer), Messen (z.B. Rettermesse Wels), Leistungsschauen (z.B. Rotes Kreuz) bieten dem Amateurfunkdienst eine Plattform, seine Möglichkeiten in der Krisentelekommunikation einem breiteren Publikum zu präsentieren. Hier werden die Emcomm-Ausrüstungen in Betrieb genommen und die damit möglichen Varianten der Verbindungsaufnahmen demonstriert.

Ansprechpartner in den Landesverbänden

Grundsätzlich sind die Ansprechpartner in den Landesverbänden unter der Adresse 'notfunk. oex@oevsv.at' zu erreichen!

Das 'oex' steht für den jeweiligen LV, z.B. OE1

Notfunkrunde

jeden ersten Mittwoch im Monat 19:45 Uhr Lokalzeit auf 3.643 KHz (+/- QRM)

IARU und Notfunk in anderen Ländern

- Amateur Radio Emergency Communications International [24]
- IARU-Region 1 Emergency Communication [25]
- Deutschland DARC Notfunk-Referat [26]
- Schweiz IG Notfunk [27]
- Holland DARES [28] & [29]
- ARRL Emergency Radio [30] Amateur Radio Today Youtube Video [31]
- England RAYNET [32]
- IRESC International Radio Emergency Support Coalition [33]
- Italien RNRE [34]
- Frankreich F.N.R.A.S.E.C. [35]
- Australien WICEN [36]
- Vereinigte Staaten von Amerika ARES [37]

Links

Amateurfunkstationen in Österreich [38]

Unwetterwarnungen für Österreich - Skywarn [39]

Unwetterwarnungen für Österreich - Unwetterzentrale [40]

Alarm-Pagernetz in Ost-Österreich [41]

Kontakt

Not- und Katfunkreferat im DV: Michael Maringer, OE1MMU oe1mmu@oevsv.at

Kategorie: NOTFUNK: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 1. Oktober 2010, 20:20 Uhr (Quelltext anzeigen)

OE1FEA (Diskussion | Beiträge)

K (→Partnerorganisationen)

← Zum vorherigen Versionsunterschied

Zeile 5: Zeile 5:

ARENA - The Amateur Radio Emergency
Network Austria is a national voluntary
service that is provided to the community
by licensed radio amateurs. ARENA is part
of the OEVSV and IARU - the national and
international amateur radio associations.
Our focus is to support the public in the
event of crises when conventional
communication systems fail. Many of our
members are volunteers in organizations
such as the Austrian Red Cross, Civil
Defense, fire brigades, military and related
institutions.

Unique EmComm support is provided by use of the HF, VHF and UHF frequency spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink and APRS. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Ausgabe: 26.04.2024

Version vom 1. Januar 2011, 12:19 Uhr (Q uelltext anzeigen)

Anonym (Diskussion | Beiträge)
Zum nächsten Versionsunterschied →

ARENA - The Amateur Radio Emergency
Network Austria is a national voluntary
service that is provided to the community
by licensed radio amateurs. ARENA is part
of the OEVSV and IARU - the national and
international amateur radio associations.
Our focus is to support the public in the
event of crises when conventional
communication systems fail. Many of our
members are volunteers in organizations
such as the Austrian Red Cross, Civil
Defense, fire brigades, military and related
institutions.

use of the HF, VHF and UHF frequency spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink, APRS and HAM NET. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Unique EmComm support is provided by

Version vom 1. Januar 2011, 12:19 Uhr

NOTFUNK-OE

AMATEUR RADIO EMERGENCY NETWORK AUSTRIA

English Summary

ARENA - The Amateur Radio Emergency Network Austria is a national voluntary service that is provided to the community by licensed radio amateurs. ARENA is part of the OEVSV and IARU - the national and international amateur radio associations. Our focus is to support the public in the event of crises when conventional communication systems fail. Many of our members are volunteers in organizations such as the Austrian Red Cross, Civil Defense, fire brigades, military and related institutions. Unique EmComm support is provided by use of the HF, VHF and UHF frequency spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink, APRS and HAMNET. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Inhaltsverzeichnis

1 Allgemeines	232
2 Kompetenz der Funkamateure	233
3 Richtlinien	233
3.1 Aufnehmen und Weiterleiten einer Notfallmeldung	233
3.2 Richtlinien für den Not- und Katastrophenfunk	233
4 Alarm- und Warnsignale, Notruf	237

5 Frequenzen	238
6 Betriebsarten	238
7 Globale Netzwerke	239
7.1 Winlink	239
7.2 Echolink	239
7.3 APRS	240
8 Partnerorganisationen	240
9 Übungen, Seminare, Weiterbildung, Schulungen usw	240
10 Ansprechpartner in den Landesverbänden	242
11 Notfunkrunde	243
12 IARU und Notfunk in anderen Ländern	243
13 Links	243
14 Kontakt	243

Allgemeines

Katastrophenfunkverkehr

Katastrophenfunkverkehr ist die Übermittlung von Nachrichten, die den nationalen oder internationalen Hilfeleistungsverkehr betreffen, zwischen Funkstellen innerhalb eines Katastrophengebietes sowie zwischen einer Funkstelle im Katastrophengebiet und Hilfe leistenden Organisationen.

Notfunkverkehr

Notfunkverkehr ist die Übermittlung von Nachrichten zwischen einer Funkstelle, die selbst in Not ist oder an einem Notfall beteiligt oder Zeuge des Notfalles ist, und einer oder mehreren Hilfe leistenden Funkstellen.

Unsere Aufgaben als Funkamateure

Funkamateure unterstützen Hilfsorganisationen und andere Behörden und Organisationen mit Sicherheitsaufgaben, oder leiten empfangene Notrufe an diese weiter.

Von jeher haben Funkamateure weltweit ihre Gerätschaften und ihr Wissen für Hilfeleistungen zur Verfügung gestellt. Für Notrufe, bei Naturkatastrophen, in Entwicklungsländern, bei Kriegen, dringend benötigten Medikamenten, Seenotfällen, etc. Egal bei welcher Krisenlage, Funkamateure sind bei einem Ausfall der kommerziellen Telekommunikationsnetze weltweit oft die ersten, die wieder Kontakt zur Außenwelt herstellen können.

Funkamateure als Kommunikationsspezialisten

Um z.B. eine interkontinentale Funkverbindung auf Kurzwelle aufzubauen reichen neben den nötigen Kenntnissen über die Ausbreitungsbedingungen, einige Meter Draht als Antenne notfalls zwischen Trümmern und Bäumen gespannt, eine (Auto-) Batterie/ Solarzelle, und ein (selbstgebautes) Funkgerät mit rund 1–5 Watt Sendeleistung und eine Morsetaste bzw. Mikrofon aus. Bei über zwei Millionen Funkamateuren weltweit, die dank der Zeitverschiebung rund um die Uhr aktiv sind, erreicht man immer jemanden.

Hochwasser, Erdbeben, Stürme, Großfeuer und andere schwere Katastrophen zerstören und beschädigen fast immer Telekommunikationseinrichtungen. Dabei ist es irrelevant, ob die Technik neu oder alt ist. Ohne die entsprechende Infrastruktur und ohne Strom- und Telefonleitungen funktioniert sie nicht mehr. Besonders hier zeigt sich die Stärke des Amateurfunks. Funkamateure betreiben ihre Station unabhängig von einer Infrastruktur. Sie verfügen regional und länderübergreifend über zahlreiche Kontakte und leisten damit eine der wichtigsten Beiträge bei der Unterstützung von Behörden und Hilfsorganisationen in der Notfallkommunikation.

Ein großer Vorteil des Amateurfunkdienstes sind hierbei weltweit zugewiesene Frequenzbereiche. Somit ist eine unkomplizierte grenzüberschreitende Kommunikation jederzeit möglich, während es bei der Zusammenarbeit verschiedener Hilfskräfte wie z.B. BOS, Bundesheer, örtliche Energieversorger, etc. schon bei regionalen/ nationalen Großschadenslagen immer wieder an den unterschiedlichen Funkdiensten und Frequenzen scheitert. Ein weiterer Vorteil besteht darin, dass der Funkamateur seine Geräte bestens kennt, da er durch den laufenden Betrieb praktisch immer am Üben ist.

Ausgabe: 26.04.2024 Dieses Dokument wurde erzeugt mit BlueSpice

Erinnern Sie sich noch?

• 12. Jänner 2010 - Erdbebenkatastrophe in Haiti

BH-Einsatz

- April 2009 Erdbebenkatastrophe in l'Aquila, Italien
- 1. Jänner 2005 Tsunami in Südostasien
- 23. August 2005 Überschwemmung in Bezau
- 23. Februar 1999 Lawinenunglück in Galtür
- Weitere Notfunkaktionen der Funkamateure [1]

Kompetenz der Funkamateure

Diese ist von der Internationalen Fernmeldeunion (ITU) in zwei Bereichen festgelegt:

- Alarmierung Empfangen und Verteilen von Alarmmeldungen
- Entlastung bzw. Unterstützung von Einsatzorganisationen (bei der Organisation von Hilfe in Gebieten, in denen andere [Telekom] Dienste noch nicht verfügbar sind).

Siehe ITU-EmComm: [2]

Richtlinien

Aufnehmen und Weiterleiten einer Notfallmeldung

- Wer? Name und Standort des Melders
- Wo? Orts des Notfalls
- Was? Was ist passiert, was ist zu tun, welche Hilfe wird angefordert und ist erforderlich?
- Wieviele? Verletze, Betroffene, etc.
- Welche? Art der vermutlichen Verletzung, Erkrankung und eingetretene Schäden
- Die Notrufzentrale, die Funkleitstation oder die den Notruf aufnehmende Station beendet die Verbindung erst dann, wenn sie alle Informationen bekommen hat, die für eine Hilfeleistung erforderlich sind.

Notfallkarte [3]

Richtlinien für den Not- und Katastrophenfunk

Am Beispiel Niederösterreich:

Teil 1 Allgemeiner Teil

Not- und Katastrophenfunk Referat des Landesverband Niederösterreich des ÖVSV

Not- und Katastrophenfunk-Konzept Version 1.1 vom 18.5.2007

Not- und Katastrophenfunk Referat des Landesverbandes Niederösterreich des ÖVSV

OE- Richtlinie

Not- und Katastrophenfunk

Teil 1

Allgemeines

Revisionshistorie:

Ausgabe	Datum	Änderung	Autor
1.0	3.4.2007	Initialversion	G. Scholz
1.1	18.05.2007	Überarbeitet für OE-Version	M.Maringer

Ausgabe 1.1 vom 18.5.2007

Seite 1 von 14

Teil 2 Niederösterreich

Not- und Katastrophenfunk Referat des Landesverband Niederösterreich des ÖVSV

Not- und Katastrophenfunk-Konzept Version 2.5 vom 17.7.2009

Not- und Katastrophenfunk Referat des Landesverbandes Niederösterreich des ÖVSV

Richtlinie

Not- und Katastrophenfunk

Teil 2

NIEDERÖSTERREICH

Revisionshistorie:

Ausgabe	Datum	Änderung	Autor
1.0	3.4.2007	Initialversion	G. Scholz
2.0	27.8.2007	Ergänzung Pager-Alarmierung	G. Scholz
2.1	9.1.2008	Korrektur Tel.Nummer	G. Scholz
2.2	5.9.2008	Ergänzung ADL 324, div. Korrekturen	G. Scholz
2.3	20.12.2008	Adressänderung OE3CJB	G. Scholz
2.4	29.1.2009	Korrektur Notruf144	G. Scholz
2.5	17.7.2009	kleinere Korrekturen	G. Scholz

Ausgabe 2.5 vom17.7.2009

Seite 1 von 7

Für einige weitere Bundesländer bestehen bereits angepasste Versionen (z.B. Tirol) in denen länderspezifische Besonderheiten (z.B. Ansprechpartner, Adressen, technische Ausstattung usw.) eingearbeitet wurden. Bei Bedarf werden diese Richtlinien ergänzt oder überarbeitet!

IARU Notfunk Prozedur (Deutsch)

IARU

INTERNATIONALE NOTFUNK PROZEDUR FÜR KURZWELLE

Wie von allen 3 Regionen angenommen

Alarm- und Warnsignale, Notruf

DER NOTRUF [4]

Frequenzen

Für die weltweite 'Kompatibilität' wurden von der IARU-Konferenz Frequenzen beschlossen, die von allen Regionen benutzt werden können. Sprechfunkbetrieb findet auf der Kurzwelle nicht auf einer Frequenz (Kanal) statt, sondern rund um die 'Center of Activity'-Frequenzen (CoA). Im Regelfall bewegt man sich +/-5kHz um CoA - je nach Belegung und/oder Störungen.

Selbstverständlich kann jede passende Frequenz im Bedarfsfall zur Katfunkfrequenz ernannt werden.

Auflistung der Notfunkfrequenzen > Notfunk Frequenzen

Betriebsarten

Im Katfunk kommt in der ersten Phase einer Katlage die Verbindungsaufnahme meist per **Sprache** zu stande. In weiterer Folge ist die Übermittlung von schriftlichen und bildlichen Informationen per **Email** via Kurzwelle/Ultrakurzwelle[5] ein essentieller Teil einer sicheren und stabilen Krisentelekommunikation.

Andere Betriebsarten spielen nur am Rande oder bei besonderen Lagen eine Rolle: In den Betriebsarten **CW**[6] und **PSK31**[7] sind bei Bedarf mit Minimalequipment und geringen Sendeleistungen weltweite Verbindungen möglich. Leider fehlt hier die Möglichkeit der fehlerfreien Informationsübertragung. SSTV oder **ATV** [8] zur Bildübertragung wird immer mehr ein wichtiges Element in der Führungsunterstützung für Einsatzleitungen, die durch den Amateurfunkdienst unterstützt werden.

Globale Netzwerke

Winlink

Winlink 2000 (WL2K) [9] ist ein weltweites "Email via Funk" System welches ausschließlich von lizensierten Funkamateuren auf nicht kommerzieller Basis betrieben wird. Das Winlink-System liefert wertvolle Dienste für die Not- und Krisenkommunikation, nämlich überall dort wo es keinen Internet Zugang (mehr) gibt. Mit Hilfe moderner Computer- und Netzwerktechnik und unter strikter Beachtung der Internet RFC-Empfehlungen ist das Winlink Development Team (WDT) um eine ständige Verbesserung für lokale, regionale und internationale Anwendungen bemüht. Um das WL2K System zu verwenden, müssen Sie eine Amateur-Funklizenz besitzen. Die Nutzung des Systems und aller Software ist kostenlos. [10] WL2K ist ein Non-Profit-Projekt der Amateur Radio Safety Foundation,Inc. [11]

WL2K Zugänge in OE:

Betriebsart **Pactor** OE3XEC[12] - Betriebsart AX.25 Packet Radio OE7XLR-13 und OE3XAR-10[13]

In der Betriebsart **Winmor** sind in EU meist nur 2-4 Stationen aktiv. Es ist jedoch anzunehmen, daß die gegenüber Pactor kostengünstigere Betriebsart (eine Soundkarte, wie bei PSK31 oder RTTY eingesetzt, genügt) eine rasche Verbreitung finden wird. Derzeit (Stand 1.10.2010) sind halbwegs sicher erreichbar: OE5XCL-5 in Wels (Dial 3612 kHz USB) und DA5UHR-5 in Frankfurt (Dial 7048,4 kHz USB), gelegentlich auch PD4U-5 in Apeldoorn (Dial 14109 kHz USB) und LA3F-5 in Sofiemyr (Dial 3596 kHz USB). Aber auch User-zu-User Verbindungen (Peer-to-Peer) sind im Notfunk, wenn keine Email-Vermittlung über Internet verfügbar, möglich. Als Client Software kann derzeit nur **RMS Express** [14] eingesetzt werden.

Zeitweise sind noch bemannte Stationen QRV, die ein Gateway zum WL2K-Netzwerk in RobustPacketRadio (RPR) zur Verfügung stellen. Zur Zeit sind das Versuche wobei kein 24/7 Betrieb gewährleistet werden kann. Bei Erfolg, könnte die eine oder andere Station als unbemannte Station dauerhaft onair gehen.

Echolink

Seit Inkrafttreten der neuen Amateurfunkverordnung ist es gestattet, Amateurfunkgeräte mit dem Internet zu verbinden.

EchoLink ist ein Internetprogramm, mithilfe dessen sich lizensierte Funkamateure der ganzen Welt mittels Computer über das Internet miteinander unterhalten können. Wie oben erwähnt, können nun auch Amateurfunkgeräte mit EchoLink verbunden werden. Jeder EchoLink-Station wird beim erstmaligen Einloggen eine sogenannte (nur einmalig vergebene) Node-Nummer zugewiesen (meistens vier- bis sechsstellig). Mittels DTMF-Tönen sind diese Stationen dann bei Betrieb über Funk durch Eingabe der Node-Nummer oder des Rufzeichens erreichbar. Weitere Informationen [15] und [16]

APRS

Im Amateurfunk wird APRS (Automatic Packet Reporting System) dazu verwendet, um Informationen und Meßdaten, egal welcher Art, weltweit zu übertragen. Die Verbreitung (Digipeating) der APRS-Daten erfolgt auf der europaweit einheitlichen Frequenz 144.800 MHz im 2m-Amateurfunkband mit 1200 Baud. [17]

Partnerorganisationen

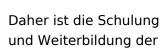
Unter Partnerorganisationen sind jene zu verstehen, die entweder die Unterstützung des Amateurfunkdienstes in Anspruch nehmen und/oder selber Funkamateure mit entsprechenden Funktionen beschäftigen.

Beim Österreichischen Roten Kreuz[18] sind in allen Bundesländern Telekomeinheiten mit lizensierten Funkamateuren integriert, die im Katfall auch auf den Amateurfunkdienst als Rückfallebene zurückgreifen können. Damit ist bei Bedarf die Kommunikation mit externen Funkamateuren sichergestellt.

Die **Landeswarnzentralen (LWZ)** der Landesregierungen (z.B. Tirol[19]) bzw. in der **Katastrophenleitzentrale** der Gemeinde Wien (KLZ) sind im Katfall für die Krisentelekommunikation innerhalb des jeweiligen Bundeslandes und mit der Bundeswarnzentrale (BWZ[20]) beim BMI zuständig. Auch in den LWZ's und der KLZ wird Schritt für Schritt oder ist bereits der Amateurfunkdienst als unterstützendes Führungsmittel integriert.

Das **österreichische Bundesheer** hat schon seit vielen Jahren eine eigene Amateurfunkgruppierung AMRS[21] die aus Heeresangehörigen mit Amateurfunklizenz besteht und ebenfalls im Katfall über den Amateurfunkdienst auf die große Anzahl externer Funkamateure weltweit zugreifen kann!

Allen Partnerorganisationen wurden durch die oberste Fernmeldbehörde (OFMB[22]) Rufzeichen (z.B. OEH, OEK, OEY) als sog. Staatsfunkstellen zugewiesen. Diese Staatsfunkstellen betreiben abseits des Amateurfunkdienstes Kurzwellenbetrieb auf eigenen Frequenzen innerhalb Österreichs.


Im Krisenfall sind diese Staatsfunkstellen befugt mit Funkamateuren auf Amateurfunkfrequenzen Funkbetrieb abzuwickeln.

Übungen, Seminare, Weiterbildung, Schulungen usw.

Funkamateure sind durch die regelmäßige Ausübung ihres Hobbys

in der Bedienung ihrer Ausrüstung bestens geschult. Jedoch erfordert die Abwicklung von Not- und Katfunkbetrieb spezielle Kenntnisse über Abläufe, über die Organisation der BOS [23] und deren Notwendigkeiten, sowie auch den Umgang mit Meldungen. Auch der Betrieb der eigenen Ausrüstung weicht oftmals vom Üblichen ab.

an der Katastrophentelekommunikation beteiligten Funkamateure ein wichtiger Punkt. Einerseits wird das theoretische Rüstzeug in Seminaren und Workshops vermittelt und andererseits werden diese Kenntnisse in praktischen Übungen erprobt und verbessert.

AOEC:

Eine - zumindest in Europa - einzigartige Besonderheit stellt der AOEC (All_OE_Contest) jeweils am 1. Mai jeden Jahres dar. Dabei ist es den Funkamateuren und den OP's der Staatsfunkstellen erlaubt, miteinander auf Amateurfunkfrequenzen Verbindungen aufzunehmen. Diese Katfunkübung - die zwar als Contest ausgeschrieben ist - soll den 'nicht_lizensierten' OP's der Staatsfunkstellen die Möglichkeit geben, sich mit den Eigenheiten des Amateurfunkbetriebes vertraut zu machen. Umgekehrt natürlich ebenso!

Mittlerweile sind bei diesen Organisationen ebenfalls zahlreiche Funkamateure im Einsatz, die den Betrieb abwickeln und dann auch für allfällige Realeinsätze zur Verfügung stehen.

Vergleichbar mit dem AOEC ist der sog. 'X-Test' - ein Crossbandtest in den USA, bei dem die Funkamateure auf Amateurfunkfrequenzen senden und auf kommerziellen Frequenzen der Partner hören. Die Partner (z.B. MARS) senden auf deren zugewiesenen Frequenzen und hören auf Amateurfunkfrequenzen. Somit entstehen Crossbandverbindungen, bei denen jeder Beteiligte Sendebetrieb nur entsprechend seiner Lizenz durchführt.

GSET:

GSET heisst 'Global Simulated Emcomm Test' und bedeutet soviel wie globaler simulierter Katfunktest. Im Rahmen dieses von Greg Mossup, G0DUB ins Leben gerufenen Tests verfassen und versenden die teilnehmenden Emcomm Stationen aus allen drei IARU-Regionen standardisierte Meldungen. Die Kette der Weiterleitung von Sprachmeldungen und die Abgabe von digitalen Meldungen endet in einer Emailadresse an der die einlangenen Nachrichten nach Laufzeit und Vollständigleit ausgewertet werden.

Eine der wichtigsten Erkenntnisse der letzten Tests haben gezeigt, dass die Übermittlung von Emails über Kurzwelle über das Winlinknetzwerk die Weiterleitung und Aufnahme von Sprachnachrichten an Sicherheit, Vollständigkeit und Geschwindigkeit bei Weitem übertrifft!

Regionale Übungen:

In vielen Bundesländern werden sog. Katfielddays abgehalten. Dabei wird über eine Dauer von einigen Stunden bis zu einigen Tagen von Orten ohne Infrastruktur katfunkmässiger Betrieb abgewickelt. Die eingesetzte Ausrüstung wie Stromerzeuger, Solarpanele, speziell gefertigte Katfunkkoffer, einfache Drahtantennen, sowie Laptops und Software werden auf Einsatztauglichkeit getestet.

Dabei wurden schon einige Erkenntnisse gewonnen, die zu Verbesserungen oder Änderungen der eigenen oder fremden Ausrüstung oder Betriebsabwicklung geführt haben.

Notfunk Checkliste

Integrierte Übungen mit BOS:

Vereinzelt haben bereits regionale Katschutzbehörden wie z.B. die Bezirkshauptmannschaft Gmünd oder einige Gemeinden den Amateurfunkdienst bei sog. Stabsrahmenübungen in die Kommunikationsabläufe integriert. Das erhöhnt natürlich das Vertrauen in die Verlässlichkeit und in die Kompetenz der Funkamateure bei den Teilnehmern.

Seminare:

Seminare und Workshops vermitteln vertiefende Kenntnisse in Spezialbereichen. Beispielsweise wird die Theorie, der Aufbau und Betrieb von einfachen Drahtantennen in Katlagen erarbeitet.

Auch die im Katfunk eingesetzten Verfahren der Nachrichtenübermittlung über Pactor oder Packet Radio mit evt. Weiterleitung über das Winlinknetzwerk wird bei solchen Veranstaltungen den interessierten Katfunkern in Theorie und Praxis näher gebracht.

Präsentationen:

Die Veranstalter von Sicherheitstagen (österreichweit), Tag der offenen Türen (z.B. Bundesheer), Messen (z.B. Rettermesse Wels), Leistungsschauen (z.B. Rotes Kreuz) bieten dem Amateurfunkdienst eine Plattform, seine Möglichkeiten in der Krisentelekommunikation einem breiteren Publikum zu präsentieren. Hier werden die Emcomm-Ausrüstungen in Betrieb genommen und die damit möglichen Varianten der Verbindungsaufnahmen demonstriert.

Ansprechpartner in den Landesverbänden

Grundsätzlich sind die Ansprechpartner in den Landesverbänden unter der Adresse 'notfunk. oex@oevsv.at' zu erreichen!

Das 'oex' steht für den jeweiligen LV, z.B. OE1

Notfunkrunde

jeden ersten Mittwoch im Monat 19:45 Uhr Lokalzeit auf 3.643 KHz (+/- QRM)

IARU und Notfunk in anderen Ländern

- Amateur Radio Emergency Communications International [24]
- IARU-Region 1 Emergency Communication [25]
- Deutschland DARC Notfunk-Referat [26]
- Schweiz IG Notfunk [27]
- Holland DARES [28] & [29]
- ARRL Emergency Radio [30] Amateur Radio Today Youtube Video [31]
- England RAYNET [32]
- IRESC International Radio Emergency Support Coalition [33]
- Italien RNRE [34]
- Frankreich F.N.R.A.S.E.C. [35]
- Australien WICEN [36]
- Vereinigte Staaten von Amerika ARES [37]

Links

Amateurfunkstationen in Österreich [38]

Unwetterwarnungen für Österreich - Skywarn [39]

Unwetterwarnungen für Österreich - Unwetterzentrale [40]

Alarm-Pagernetz in Ost-Österreich [41]

Kontakt

Not- und Katfunkreferat im DV: Michael Maringer, OE1MMU oe1mmu@oevsv.at

Kategorie: NOTFUNK: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 1. Oktober 2010, 20:20 Uhr (Quelltext anzeigen)

OE1FEA (Diskussion | Beiträge)

K (→Partnerorganisationen)

← Zum vorherigen Versionsunterschied

Zeile 5:	Zeile 5:

ARENA - The Amateur Radio Emergency
Network Austria is a national voluntary
service that is provided to the community
by licensed radio amateurs. ARENA is part
of the OEVSV and IARU - the national and
international amateur radio associations.
Our focus is to support the public in the
event of crises when conventional
communication systems fail. Many of our
members are volunteers in organizations
such as the Austrian Red Cross, Civil
Defense, fire brigades, military and related
institutions.

Unique EmComm support is provided by use of the HF, VHF and UHF frequency spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink and APRS. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Ausgabe: 26.04.2024

Version vom 1. Januar 2011, 12:19 Uhr (Quelltext anzeigen)

Anonym (Diskussion | Beiträge)
Zum nächsten Versionsunterschied →

ARENA - The Amateur Radio Emergency
Network Austria is a national voluntary
service that is provided to the community
by licensed radio amateurs. ARENA is part
of the OEVSV and IARU - the national and
international amateur radio associations.
Our focus is to support the public in the
event of crises when conventional
communication systems fail. Many of our
members are volunteers in organizations
such as the Austrian Red Cross, Civil
Defense, fire brigades, military and related
institutions.

use of the HF, VHF and UHF frequency spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink, APRS and HAM NET. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Unique EmComm support is provided by

Version vom 1. Januar 2011, 12:19 Uhr

NOTFUNK-OE

AMATEUR RADIO EMERGENCY NETWORK AUSTRIA

English Summary

ARENA - The Amateur Radio Emergency Network Austria is a national voluntary service that is provided to the community by licensed radio amateurs. ARENA is part of the OEVSV and IARU - the national and international amateur radio associations. Our focus is to support the public in the event of crises when conventional communication systems fail. Many of our members are volunteers in organizations such as the Austrian Red Cross, Civil Defense, fire brigades, military and related institutions. Unique EmComm support is provided by use of the HF, VHF and UHF frequency spectrums and many operating modes for voice and data communications. Besides usual point-to-point communications, we rely on repeaters, international networks such as Winlink, Echolink, APRS and HAMNET. For instance, one of the 5 mirror-redundant Winlink common message servers is located in Vienna. To increase the skill level of our members in being first responders, exercise and training is done regularly, and ongoing contact with government and non- government organizations is also maintained.

Inhaltsverzeichnis

1 Allgemeines	247
2 Kompetenz der Funkamateure	248
3 Richtlinien	248
3.1 Aufnehmen und Weiterleiten einer Notfallmeldung	248
3.2 Richtlinien für den Not- und Katastrophenfunk	248
4 Alarm- und Warnsignale, Notruf	252

5 Frequenzen	253
6 Betriebsarten	253
7 Globale Netzwerke	254
7.1 Winlink	254
7.2 Echolink	254
7.3 APRS	255
8 Partnerorganisationen	255
9 Übungen, Seminare, Weiterbildung, Schulungen usw	255
10 Ansprechpartner in den Landesverbänden	257
11 Notfunkrunde	258
12 IARU und Notfunk in anderen Ländern	258
13 Links	258
14 Kontakt	258

Allgemeines

Katastrophenfunkverkehr

Katastrophenfunkverkehr ist die Übermittlung von Nachrichten, die den nationalen oder internationalen Hilfeleistungsverkehr betreffen, zwischen Funkstellen innerhalb eines Katastrophengebietes sowie zwischen einer Funkstelle im Katastrophengebiet und Hilfe leistenden Organisationen.

Notfunkverkehr

Notfunkverkehr ist die Übermittlung von Nachrichten zwischen einer Funkstelle, die selbst in Not ist oder an einem Notfall beteiligt oder Zeuge des Notfalles ist, und einer oder mehreren Hilfe leistenden Funkstellen.

Unsere Aufgaben als Funkamateure

Funkamateure unterstützen Hilfsorganisationen und andere Behörden und Organisationen mit Sicherheitsaufgaben, oder leiten empfangene Notrufe an diese weiter.

Von jeher haben Funkamateure weltweit ihre Gerätschaften und ihr Wissen für Hilfeleistungen zur Verfügung gestellt. Für Notrufe, bei Naturkatastrophen, in Entwicklungsländern, bei Kriegen, dringend benötigten Medikamenten, Seenotfällen, etc. Egal bei welcher Krisenlage, Funkamateure sind bei einem Ausfall der kommerziellen Telekommunikationsnetze weltweit oft die ersten, die wieder Kontakt zur Außenwelt herstellen können.

Funkamateure als Kommunikationsspezialisten

Um z.B. eine interkontinentale Funkverbindung auf Kurzwelle aufzubauen reichen neben den nötigen Kenntnissen über die Ausbreitungsbedingungen, einige Meter Draht als Antenne notfalls zwischen Trümmern und Bäumen gespannt, eine (Auto-) Batterie/ Solarzelle, und ein (selbstgebautes) Funkgerät mit rund 1–5 Watt Sendeleistung und eine Morsetaste bzw. Mikrofon aus. Bei über zwei Millionen Funkamateuren weltweit, die dank der Zeitverschiebung rund um die Uhr aktiv sind, erreicht man immer jemanden.

Hochwasser, Erdbeben, Stürme, Großfeuer und andere schwere Katastrophen zerstören und beschädigen fast immer Telekommunikationseinrichtungen. Dabei ist es irrelevant, ob die Technik neu oder alt ist. Ohne die entsprechende Infrastruktur und ohne Strom- und Telefonleitungen funktioniert sie nicht mehr. Besonders hier zeigt sich die Stärke des Amateurfunks. Funkamateure betreiben ihre Station unabhängig von einer Infrastruktur. Sie verfügen regional und länderübergreifend über zahlreiche Kontakte und leisten damit eine der wichtigsten Beiträge bei der Unterstützung von Behörden und Hilfsorganisationen in der Notfallkommunikation.

Ein großer Vorteil des Amateurfunkdienstes sind hierbei weltweit zugewiesene Frequenzbereiche. Somit ist eine unkomplizierte grenzüberschreitende Kommunikation jederzeit möglich, während es bei der Zusammenarbeit verschiedener Hilfskräfte wie z.B. BOS, Bundesheer, örtliche Energieversorger, etc. schon bei regionalen/ nationalen Großschadenslagen immer wieder an den unterschiedlichen Funkdiensten und Frequenzen scheitert. Ein weiterer Vorteil besteht darin, dass der Funkamateur seine Geräte bestens kennt, da er durch den laufenden Betrieb praktisch immer am Üben ist.

Ausgabe: 26.04.2024 Dieses Dokument wurde erzeugt mit BlueSpice

Erinnern Sie sich noch?

• 12. Jänner 2010 - Erdbebenkatastrophe in Haiti

BH-Einsatz

- April 2009 Erdbebenkatastrophe in l'Aquila, Italien
- 1. Jänner 2005 Tsunami in Südostasien
- 23. August 2005 Überschwemmung in Bezau
- 23. Februar 1999 Lawinenunglück in Galtür
- Weitere Notfunkaktionen der Funkamateure [1]

Kompetenz der Funkamateure

Diese ist von der Internationalen Fernmeldeunion (ITU) in zwei Bereichen festgelegt:

- Alarmierung Empfangen und Verteilen von Alarmmeldungen
- Entlastung bzw. Unterstützung von Einsatzorganisationen (bei der Organisation von Hilfe in Gebieten, in denen andere [Telekom] Dienste noch nicht verfügbar sind).

Siehe ITU-EmComm: [2]

Richtlinien

Aufnehmen und Weiterleiten einer Notfallmeldung

- Wer? Name und Standort des Melders
- Wo? Orts des Notfalls
- Was? Was ist passiert, was ist zu tun, welche Hilfe wird angefordert und ist erforderlich?
- Wieviele? Verletze, Betroffene, etc.
- Welche? Art der vermutlichen Verletzung, Erkrankung und eingetretene Schäden
- Die Notrufzentrale, die Funkleitstation oder die den Notruf aufnehmende Station beendet die Verbindung erst dann, wenn sie alle Informationen bekommen hat, die für eine Hilfeleistung erforderlich sind.

Notfallkarte [3]

Richtlinien für den Not- und Katastrophenfunk

Am Beispiel Niederösterreich:

Teil 1 Allgemeiner Teil

Not- und Katastrophenfunk Referat des Landesverband Niederösterreich des ÖVSV

Not- und Katastrophenfunk-Konzept Version 1.1 vom 18.5.2007

Not- und Katastrophenfunk Referat des Landesverbandes Niederösterreich des ÖVSV

OE- Richtlinie

Not- und Katastrophenfunk

Teil 1

Allgemeines

Revisionshistorie:

Ausgabe	Datum	Änderung	Autor
1.0	3.4.2007	Initialversion	G. Scholz
1.1	18.05.2007	Überarbeitet für OE-Version	M.Maringer

Ausgabe 1.1 vom 18.5.2007

Seite 1 von 14

Teil 2 Niederösterreich

Not- und Katastrophenfunk Referat des Landesverband Niederösterreich des ÖVSV

Not- und Katastrophenfunk-Konzept Version 2.5 vom 17.7.2009

Not- und Katastrophenfunk Referat des Landesverbandes Niederösterreich des ÖVSV

Richtlinie

Not- und Katastrophenfunk

Teil 2 NIEDERÖSTERREICH

Revisionshistorie:

Ausgabe	Datum	Änderung	Autor
1.0	3.4.2007	Initialversion	G. Scholz
2.0	27.8.2007	Ergänzung Pager-Alarmierung	G. Scholz
2.1	9.1.2008	Korrektur Tel.Nummer	G. Scholz
2.2	5.9.2008	Ergänzung ADL 324, div. Korrekturen	G. Scholz
2.3	20.12.2008	Adressänderung OE3CJB	G. Scholz
2.4	29.1.2009	Korrektur Notruf144	G. Scholz
2.5	17.7.2009	kleinere Korrekturen	G. Scholz
		_	

Ausgabe 2.5 vom17.7.2009

Seite 1 von 7

Für einige weitere Bundesländer bestehen bereits angepasste Versionen (z.B. Tirol) in denen länderspezifische Besonderheiten (z.B. Ansprechpartner, Adressen, technische Ausstattung usw.) eingearbeitet wurden. Bei Bedarf werden diese Richtlinien ergänzt oder überarbeitet!

IARU Notfunk Prozedur (Deutsch)

IARU

INTERNATIONALE NOTFUNK PROZEDUR FÜR KURZWELLE

Wie von allen 3 Regionen angenommen

Alarm- und Warnsignale, Notruf

DER NOTRUF [4]

Frequenzen

Für die weltweite 'Kompatibilität' wurden von der IARU-Konferenz Frequenzen beschlossen, die von allen Regionen benutzt werden können. Sprechfunkbetrieb findet auf der Kurzwelle nicht auf einer Frequenz (Kanal) statt, sondern rund um die 'Center of Activity'-Frequenzen (CoA). Im Regelfall bewegt man sich +/-5kHz um CoA - je nach Belegung und/oder Störungen.

Selbstverständlich kann jede passende Frequenz im Bedarfsfall zur Katfunkfrequenz ernannt werden.

Auflistung der Notfunkfrequenzen > Notfunk Frequenzen

Betriebsarten

Im Katfunk kommt in der ersten Phase einer Katlage die Verbindungsaufnahme meist per **Sprache** zu stande. In weiterer Folge ist die Übermittlung von schriftlichen und bildlichen Informationen per **Email** via Kurzwelle/Ultrakurzwelle[5] ein essentieller Teil einer sicheren und stabilen Krisentelekommunikation.

Andere Betriebsarten spielen nur am Rande oder bei besonderen Lagen eine Rolle: In den Betriebsarten **CW**[6] und **PSK31**[7] sind bei Bedarf mit Minimalequipment und geringen Sendeleistungen weltweite Verbindungen möglich. Leider fehlt hier die Möglichkeit der fehlerfreien Informationsübertragung. SSTV oder **ATV** [8] zur Bildübertragung wird immer mehr ein wichtiges Element in der Führungsunterstützung für Einsatzleitungen, die durch den Amateurfunkdienst unterstützt werden.

Globale Netzwerke

Winlink

Winlink 2000 (WL2K) [9] ist ein weltweites "Email via Funk" System welches ausschließlich von lizensierten Funkamateuren auf nicht kommerzieller Basis betrieben wird. Das Winlink-System liefert wertvolle Dienste für die Not- und Krisenkommunikation, nämlich überall dort wo es keinen Internet Zugang (mehr) gibt. Mit Hilfe moderner Computer- und Netzwerktechnik und unter strikter Beachtung der Internet RFC-Empfehlungen ist das Winlink Development Team (WDT) um eine ständige Verbesserung für lokale, regionale und internationale Anwendungen bemüht. Um das WL2K System zu verwenden, müssen Sie eine Amateur-Funklizenz besitzen. Die Nutzung des Systems und aller Software ist kostenlos. [10] WL2K ist ein Non-Profit-Projekt der Amateur Radio Safety Foundation,Inc. [11]

WL2K Zugänge in OE:

Betriebsart **Pactor** OE3XEC[12] - Betriebsart AX.25 Packet Radio OE7XLR-13 und OE3XAR-10[13]

In der Betriebsart **Winmor** sind in EU meist nur 2-4 Stationen aktiv. Es ist jedoch anzunehmen, daß die gegenüber Pactor kostengünstigere Betriebsart (eine Soundkarte, wie bei PSK31 oder RTTY eingesetzt, genügt) eine rasche Verbreitung finden wird. Derzeit (Stand 1.10.2010) sind halbwegs sicher erreichbar: OE5XCL-5 in Wels (Dial 3612 kHz USB) und DA5UHR-5 in Frankfurt (Dial 7048,4 kHz USB), gelegentlich auch PD4U-5 in Apeldoorn (Dial 14109 kHz USB) und LA3F-5 in Sofiemyr (Dial 3596 kHz USB). Aber auch User-zu-User Verbindungen (Peer-to-Peer) sind im Notfunk, wenn keine Email-Vermittlung über Internet verfügbar, möglich. Als Client Software kann derzeit nur **RMS Express** [14] eingesetzt werden.

Zeitweise sind noch bemannte Stationen QRV, die ein Gateway zum WL2K-Netzwerk in RobustPacketRadio (RPR) zur Verfügung stellen. Zur Zeit sind das Versuche wobei kein 24/7 Betrieb gewährleistet werden kann. Bei Erfolg, könnte die eine oder andere Station als unbemannte Station dauerhaft onair gehen.

Echolink

Seit Inkrafttreten der neuen Amateurfunkverordnung ist es gestattet, Amateurfunkgeräte mit dem Internet zu verbinden.

EchoLink ist ein Internetprogramm, mithilfe dessen sich lizensierte Funkamateure der ganzen Welt mittels Computer über das Internet miteinander unterhalten können. Wie oben erwähnt, können nun auch Amateurfunkgeräte mit EchoLink verbunden werden. Jeder EchoLink-Station wird beim erstmaligen Einloggen eine sogenannte (nur einmalig vergebene) Node-Nummer zugewiesen (meistens vier- bis sechsstellig). Mittels DTMF-Tönen sind diese Stationen dann bei Betrieb über Funk durch Eingabe der Node-Nummer oder des Rufzeichens erreichbar. Weitere Informationen [15] und [16]

APRS

Im Amateurfunk wird APRS (Automatic Packet Reporting System) dazu verwendet, um Informationen und Meßdaten, egal welcher Art, weltweit zu übertragen. Die Verbreitung (Digipeating) der APRS-Daten erfolgt auf der europaweit einheitlichen Frequenz 144.800 MHz im 2m-Amateurfunkband mit 1200 Baud. [17]

Partnerorganisationen

Unter Partnerorganisationen sind jene zu verstehen, die entweder die Unterstützung des Amateurfunkdienstes in Anspruch nehmen und/oder selber Funkamateure mit entsprechenden Funktionen beschäftigen.

Beim Österreichischen Roten Kreuz[18] sind in allen Bundesländern Telekomeinheiten mit lizensierten Funkamateuren integriert, die im Katfall auch auf den Amateurfunkdienst als Rückfallebene zurückgreifen können. Damit ist bei Bedarf die Kommunikation mit externen Funkamateuren sichergestellt.

Die **Landeswarnzentralen (LWZ)** der Landesregierungen (z.B. Tirol[19]) bzw. in der **Katastrophenleitzentrale** der Gemeinde Wien (KLZ) sind im Katfall für die Krisentelekommunikation innerhalb des jeweiligen Bundeslandes und mit der Bundeswarnzentrale (BWZ[20]) beim BMI zuständig. Auch in den LWZ's und der KLZ wird Schritt für Schritt oder ist bereits der Amateurfunkdienst als unterstützendes Führungsmittel integriert.

Das **österreichische Bundesheer** hat schon seit vielen Jahren eine eigene Amateurfunkgruppierung AMRS[21] die aus Heeresangehörigen mit Amateurfunklizenz besteht und ebenfalls im Katfall über den Amateurfunkdienst auf die große Anzahl externer Funkamateure weltweit zugreifen kann!

Allen Partnerorganisationen wurden durch die oberste Fernmeldbehörde (OFMB[22]) Rufzeichen (z.B. OEH, OEK, OEY) als sog. Staatsfunkstellen zugewiesen. Diese Staatsfunkstellen betreiben abseits des Amateurfunkdienstes Kurzwellenbetrieb auf eigenen Frequenzen innerhalb Österreichs.

Im Krisenfall sind diese Staatsfunkstellen befugt mit Funkamateuren auf Amateurfunkfrequenzen Funkbetrieb abzuwickeln.

Übungen, Seminare, Weiterbildung, Schulungen usw.

Funkamateure sind durch die regelmäßige Ausübung ihres Hobbys

in der Bedienung ihrer
Ausrüstung bestens
geschult. Jedoch
erfordert die Abwicklung
von Not- und
Katfunkbetrieb spezielle
Kenntnisse über Abläufe,
über die Organisation
der BOS [23] und deren
Notwendigkeiten, sowie
auch den Umgang mit
Meldungen. Auch der
Betrieb der eigenen
Ausrüstung weicht
oftmals vom Üblichen

an der Katastrophentelekommunikation beteiligten Funkamateure ein wichtiger Punkt. Einerseits wird das theoretische Rüstzeug in Seminaren und Workshops vermittelt und andererseits werden diese Kenntnisse in praktischen Übungen erprobt und verbessert.

AOEC:

Eine - zumindest in Europa - einzigartige Besonderheit stellt der AOEC (All_OE_Contest) jeweils am 1. Mai jeden Jahres dar. Dabei ist es den Funkamateuren und den OP's der Staatsfunkstellen erlaubt, miteinander auf Amateurfunkfrequenzen Verbindungen aufzunehmen. Diese Katfunkübung - die zwar als Contest ausgeschrieben ist - soll den 'nicht_lizensierten' OP's der Staatsfunkstellen die Möglichkeit geben, sich mit den Eigenheiten des Amateurfunkbetriebes vertraut zu machen. Umgekehrt natürlich ebenso!

Mittlerweile sind bei diesen Organisationen ebenfalls zahlreiche Funkamateure im Einsatz, die den Betrieb abwickeln und dann auch für allfällige Realeinsätze zur Verfügung stehen.

Vergleichbar mit dem AOEC ist der sog. 'X-Test' - ein Crossbandtest in den USA, bei dem die Funkamateure auf Amateurfunkfrequenzen senden und auf kommerziellen Frequenzen der Partner hören. Die Partner (z.B. MARS) senden auf deren zugewiesenen Frequenzen und hören auf Amateurfunkfrequenzen. Somit entstehen Crossbandverbindungen, bei denen jeder Beteiligte Sendebetrieb nur entsprechend seiner Lizenz durchführt.

GSET:

Ausgabe: 26.04.2024

GSET heisst 'Global Simulated Emcomm Test' und bedeutet soviel wie globaler simulierter Katfunktest. Im Rahmen dieses von Greg Mossup, G0DUB ins Leben gerufenen Tests verfassen und versenden die teilnehmenden Emcomm Stationen aus allen drei IARU-Regionen standardisierte Meldungen. Die Kette der Weiterleitung von Sprachmeldungen und die Abgabe von digitalen Meldungen endet in einer Emailadresse an der die einlangenen Nachrichten nach Laufzeit und Vollständigleit ausgewertet werden.

Eine der wichtigsten Erkenntnisse der letzten Tests haben gezeigt, dass die Übermittlung von Emails über Kurzwelle über das Winlinknetzwerk die Weiterleitung und Aufnahme von Sprachnachrichten an Sicherheit, Vollständigkeit und Geschwindigkeit bei Weitem übertrifft!

Regionale Übungen:

In vielen Bundesländern werden sog. Katfielddays abgehalten. Dabei wird über eine Dauer von einigen Stunden bis zu einigen Tagen von Orten ohne Infrastruktur katfunkmässiger Betrieb abgewickelt. Die eingesetzte Ausrüstung wie Stromerzeuger, Solarpanele, speziell gefertigte Katfunkkoffer, einfache Drahtantennen, sowie Laptops und Software werden auf Einsatztauglichkeit getestet.

Dabei wurden schon einige Erkenntnisse gewonnen, die zu Verbesserungen oder Änderungen der eigenen oder fremden Ausrüstung oder Betriebsabwicklung geführt haben.

Notfunk Checkliste

Integrierte Übungen mit BOS:

Vereinzelt haben bereits regionale Katschutzbehörden wie z.B. die Bezirkshauptmannschaft Gmünd oder einige Gemeinden den Amateurfunkdienst bei sog. Stabsrahmenübungen in die Kommunikationsabläufe integriert. Das erhöhnt natürlich das Vertrauen in die Verlässlichkeit und in die Kompetenz der Funkamateure bei den Teilnehmern.

Seminare:

Seminare und Workshops vermitteln vertiefende Kenntnisse in Spezialbereichen. Beispielsweise wird die Theorie, der Aufbau und Betrieb von einfachen Drahtantennen in Katlagen erarbeitet.

Auch die im Katfunk eingesetzten Verfahren der Nachrichtenübermittlung über Pactor oder Packet Radio mit evt. Weiterleitung über das Winlinknetzwerk wird bei solchen Veranstaltungen den interessierten Katfunkern in Theorie und Praxis näher gebracht.

Präsentationen:

Die Veranstalter von Sicherheitstagen (österreichweit), Tag der offenen Türen (z.B. Bundesheer), Messen (z.B. Rettermesse Wels), Leistungsschauen (z.B. Rotes Kreuz) bieten dem Amateurfunkdienst eine Plattform, seine Möglichkeiten in der Krisentelekommunikation einem breiteren Publikum zu präsentieren. Hier werden die Emcomm-Ausrüstungen in Betrieb genommen und die damit möglichen Varianten der Verbindungsaufnahmen demonstriert.

Ansprechpartner in den Landesverbänden

Grundsätzlich sind die Ansprechpartner in den Landesverbänden unter der Adresse 'notfunk. oex@oevsv.at' zu erreichen!

Das 'oex' steht für den jeweiligen LV, z.B. OE1

Notfunkrunde

jeden ersten Mittwoch im Monat 19:45 Uhr Lokalzeit auf 3.643 KHz (+/- QRM)

IARU und Notfunk in anderen Ländern

- Amateur Radio Emergency Communications International [24]
- IARU-Region 1 Emergency Communication [25]
- Deutschland DARC Notfunk-Referat [26]
- Schweiz IG Notfunk [27]
- Holland DARES [28] & [29]
- ARRL Emergency Radio [30] Amateur Radio Today Youtube Video [31]
- England RAYNET [32]
- IRESC International Radio Emergency Support Coalition [33]
- Italien RNRE [34]
- Frankreich F.N.R.A.S.E.C. [35]
- Australien WICEN [36]
- Vereinigte Staaten von Amerika ARES [37]

Links

Amateurfunkstationen in Österreich [38]

Unwetterwarnungen für Österreich - Skywarn [39]

Unwetterwarnungen für Österreich - Unwetterzentrale [40]

Alarm-Pagernetz in Ost-Österreich [41]

Kontakt

Not- und Katfunkreferat im DV: Michael Maringer, OE1MMU oe1mmu@oevsv.at