

Inhaltsverzeichnis

1. MeshCom/MeshCom 2.0	14
2. Benutzer Diskussion:Oe3mzc	5
3. Benutzer:Oe1kbc	8
4. Benutzer:Oe3mzc	11

MeshCom/MeshCom 2.0

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 10. Juni 2022, 13:20 Uhr (Qu elltext anzeigen)

Oe3mzc (Diskussion | Beiträge) (→Grundlegende Spezifikationen) Markierung: Visuelle Bearbeitung

← Zum vorherigen Versionsunterschied

Version vom 10. Juni 2022, 15:05 Uhr (Qu elltext anzeigen)

Oe1kbc (Diskussion | Beiträge)

Markierung: Visuelle Bearbeitung

Zum nächsten Versionsunterschied →

Zeile 13:

- ** unverschlüsselt
- ** Adress-Header (FromCALL, ToCALL, VIA) komprimiert und mit CRC (kompatibel zu AX25v2)
- * "'Gateway-Schnittstelle"
- ** MQTT-Protokoll mit üblicher Feldstruktur aufbauen
- ** UDP-Übertragung
- ** **Hardbeat** zur **Partner**-ONLINE Erkennung
 - ** Tiefe der Meldung vom und zum Gateway einstellbar (Test- und Entwicklungs-Erleichterung)
 - ** Nach neustart eines Gateways automatischer Übertragung von Grunddaten wie aktive NODES, Letzter Meldungs-ID Stack, ...

- * '''Modul-Schnittstellen'''
- ** Serial via USB

Zeile 13:

- ** unverschlüsselt
- ** Adress-Header (FromCALL, ToCALL, VIA) komprimiert und mit CRC (kompatibel zu AX25v2)
- ** Nachrichten Priorisierung
- * "'Gateway-Schnittstelle"
- ** MQTT-Protokoll mit üblicher Feldstruktur aufbauen
- ** UDP-Übertragung
- ** **Heartbeat** zur **Client/Server**-ONLINE Erkennung
- ** Tiefe der Meldung vom und zum Gateway einstellbar (Test- und Entwicklungs-Erleichterung)
- ** Nach **Neustart** eines Gateways automatischer Übertragung von Grunddaten wie:
- *** aktive NODES
- + *** letzte Meldungen
 - *** Anstoßen der Store & Forward Meldungen
 - * "'Modul-Schnittstellen"
 - ** Serial via USB

MeshCom 2\.0

Grundlegende Spezifikationen

Luftschnittstelle

- O Mesh Netzwerk selbst bildend und selbstheilend
- O AFU kompatibel der Source, Node, Gateway, Destination Kennung als Rufzeichen
- Path-Kontrollstruktur (nur für Testzwecke)
- Struktur der Payload in die Struktur der Meldung eingebettet
- Zusätzlich zur Übertragungs-Sicherung durch die Hardware sind CRC und FEC in der Struktur der Meldung einzuplanen
- Meldung und Payload komprimiert übertragen
- O Node, Digipeater-only, Gateway-only, Point-to-Point (Netzerweiterungen)
- unverschlüsselt
- Adress-Header (FromCALL, ToCALL, VIA) komprimiert und mit CRC (kompatibel zu AX25v2)
- Nachrichten Priorisierung

Gateway-Schnittstelle

- O MQTT-Protokoll mit üblicher Feldstruktur aufbauen
- UDP-Übertragung
- O Heartbeat zur Client/Server-ONLINE Erkennung
- Tiefe der Meldung vom und zum Gateway einstellbar (Test- und Entwicklungs-Erleichterung)
- O Nach Neustart eines Gateways automatischer Übertragung von Grunddaten wie:
 - aktive NODES
 - letzte Meldungen
 - Anstoßen der Store & Forward Meldungen

Modul-Schnittstellen

- Serial via USB
- O GPIO für externe Hardware und Steuerungen
- O GPS intern, extern, fix
- O WiFi
 - Userschnittstelle
 - Gateway-Schnittstelle
- Bluetooth
 - APP-Schnittstelle
- ETH-Schnittstelle optional

- O Broadcast
- Group Call
- Private Call
- Store & Forward
- Entwicklungs- und Debug-Meldungen

- O Die Verwendung der kompatibler MCU sollte eingehalten werden
- ESP32
- Fertigmodule MCU, HF, GPS gemeinsam
- wie TTGO, TLORA, HELTEC, ...
- O Bevorzugterweise Aufbau Basisplatine, Steckmodule
- wie RAK WisBlock
- O Vorhandene Hardware aus dem LoRa-APRS Projekt
- Semtech SX1262 LoRa-Transceiver oder kompatibel
- ETH-Modulblock mit IP-Stack für Gateways

Firmware

- Grundstruktur für Entwicklung in der Gruppe vorbereitet
- Leicht zu erweitern, pflegen
- Klare Funktionsgliederung
- O Keine direkte Hardware-Bezogenheit in der Logik-Struktur
- Logik-Struktur mit klaren Schnittstellen aufgebaut um funktionelle Erweiterungen jederzeit einzubauen ohne die getestete Basisfunktionalität zu beeinflussen

Welche Service bietet MeshCom 2.0 an?

- Textübertragung
- Positionsübertragung (Smart Beaconing)
- Frei definierbare Payload

Feature-List

- Konfiguration über USB-Serial-Schnittstelle
- O Rufzeichen mit APRS-konformen SSID
- Frequenzeinstellung und Anzeige
- Feldstärkeanzeige (S-Meter, RSSI, MER)
- O LoRa-Modulationsparameter auch detailliert
- Fix-Position
- Batterie-Management Stufen
- Scannen nach verfügbarem MeshCom-Channel

Use Cases

- allg. Amateurfunknachrichtendienst
- Not-Katfunk
- Infodienste z.B. mit Wetterbericht, SolarFlux, Radioactivität, Blitzortung, DXCluster, Skeds, SOTA,...

Entwurf: Kurt OE1KBC

Ausgabe: 28.04.2024

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 10. Juni 2022, 13:20 Uhr (Qu elltext anzeigen)

Oe3mzc (Diskussion | Beiträge) (→Grundlegende Spezifikationen) Markierung: Visuelle Bearbeitung

← Zum vorherigen Versionsunterschied

Version vom 10. Juni 2022, 15:05 Uhr (Qu elltext anzeigen)

Oe1kbc (Diskussion | Beiträge)
Markierung: Visuelle Bearbeitung
Zum nächsten Versionsunterschied →

Zeile 13:

- ** unverschlüsselt
- ** Adress-Header (FromCALL, ToCALL, VIA) komprimiert und mit CRC (kompatibel zu AX25v2)
- * "Gateway-Schnittstelle"
- ** MQTT-Protokoll mit üblicher Feldstruktur aufbauen
- ** UDP-Übertragung
- ** **Hardbeat** zur **Partner**-ONLINE Erkennung
 - ** Tiefe der Meldung vom und zum Gateway einstellbar (Test- und Entwicklungs-Erleichterung)
 - ** Nach neustart eines Gateways automatischer Übertragung von Grunddaten wie aktive NODES, Letzter Meldungs-ID Stack, ...

- Zeile 13:
 - ** unverschlüsselt
 - ** Adress-Header (FromCALL, ToCALL, VIA) komprimiert und mit CRC (kompatibel zu AX25v2)
 - ** Nachrichten Priorisierung
 - * "'Gateway-Schnittstelle"
 - ** MQTT-Protokoll mit üblicher Feldstruktur aufbauen
 - ** UDP-Übertragung
 - ** **Heartbeat** zur **Client/Server**-ONLINE Erkennung
 - ** Tiefe der Meldung vom und zum Gateway einstellbar (Test- und Entwicklungs-Erleichterung)
 - ** Nach **Neustart** eines Gateways automatischer Übertragung von Grunddaten wie:
- + *** aktive NODES
- + *** letzte Meldungen
 - *** Anstoßen der Store & Forward Meldungen
 - * '''Modul-Schnittstellen'''
 - ** Serial via USB

- * "'Modul-Schnittstellen"
- ** Serial via USB

MeshCom 2\.0

Grundlegende Spezifikationen

Luftschnittstelle

- O Mesh Netzwerk selbst bildend und selbstheilend
- O AFU kompatibel der Source, Node, Gateway, Destination Kennung als Rufzeichen
- O Path-Kontrollstruktur (nur für Testzwecke)
- O Struktur der Payload in die Struktur der Meldung eingebettet
- Zusätzlich zur Übertragungs-Sicherung durch die Hardware sind CRC und FEC in der Struktur der Meldung einzuplanen
- O Meldung und Payload komprimiert übertragen
- O Node, Digipeater-only, Gateway-only, Point-to-Point (Netzerweiterungen)
- unverschlüsselt
- Adress-Header (FromCALL, ToCALL, VIA) komprimiert und mit CRC (kompatibel zu AX25v2)
- Nachrichten Priorisierung

Gateway-Schnittstelle

- O MQTT-Protokoll mit üblicher Feldstruktur aufbauen
- UDP-Übertragung
- O Heartbeat zur Client/Server-ONLINE Erkennung
- Tiefe der Meldung vom und zum Gateway einstellbar (Test- und Entwicklungs-Erleichterung)
- O Nach Neustart eines Gateways automatischer Übertragung von Grunddaten wie:
 - aktive NODES
 - letzte Meldungen
 - Anstoßen der Store & Forward Meldungen

Modul-Schnittstellen

- Serial via USB
- O GPIO für externe Hardware und Steuerungen
- O GPS intern, extern, fix
- O WiFi
 - Userschnittstelle
 - Gateway-Schnittstelle
- Bluetooth
 - APP-Schnittstelle
- ETH-Schnittstelle optional

- O Broadcast
- Group Call
- Private Call
- Store & Forward
- Entwicklungs- und Debug-Meldungen

- O Die Verwendung der kompatibler MCU sollte eingehalten werden
- ESP32
- $^{\circ}$ Fertigmodule MCU, HF, GPS gemeinsam
- wie TTGO, TLORA, HELTEC, ...
- O Bevorzugterweise Aufbau Basisplatine, Steckmodule
- wie RAK WisBlock
- O Vorhandene Hardware aus dem LoRa-APRS Projekt
- Semtech SX1262 LoRa-Transceiver oder kompatibel
- ETH-Modulblock mit IP-Stack für Gateways

Firmware

- Grundstruktur für Entwicklung in der Gruppe vorbereitet
- Leicht zu erweitern, pflegen
- Klare Funktionsgliederung
- O Keine direkte Hardware-Bezogenheit in der Logik-Struktur
- Logik-Struktur mit klaren Schnittstellen aufgebaut um funktionelle Erweiterungen jederzeit einzubauen ohne die getestete Basisfunktionalität zu beeinflussen

• Welche Service bietet MeshCom 2.0 an?

- Textübertragung
- O Positionsübertragung (Smart Beaconing)
- Frei definierbare Payload

Feature-List

- Konfiguration über USB-Serial-Schnittstelle
- O Rufzeichen mit APRS-konformen SSID
- Frequenzeinstellung und Anzeige
- Feldstärkeanzeige (S-Meter, RSSI, MER)
- O LoRa-Modulationsparameter auch detailliert
- Fix-Position
- O Batterie-Management Stufen
- Scannen nach verfügbarem MeshCom-Channel

Use Cases

- allg. Amateurfunknachrichtendienst
- Not-Katfunk
- Infodienste z.B. mit Wetterbericht, SolarFlux, Radioactivität, Blitzortung, DXCluster, Skeds, SOTA,...

Entwurf: Kurt OE1KBC

Ausgabe: 28.04.2024

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 10. Juni 2022, 13:20 Uhr (Qu elltext anzeigen)

Oe3mzc (Diskussion | Beiträge)
(→Grundlegende Spezifikationen)
Markierung: Visuelle Bearbeitung
← Zum vorherigen Versionsunterschied

Version vom 10. Juni 2022, 15:05 Uhr (Qu elltext anzeigen)

Oe1kbc (Diskussion | Beiträge)
Markierung: Visuelle Bearbeitung
Zum nächsten Versionsunterschied →

Zeile 13:

** unverschlüsselt

** Adress-Header (FromCALL, ToCALL, VIA) komprimiert und mit CRC (kompatibel zu AX25v2)

Zeile 13:

- ** unverschlüsselt
- ** Adress-Header (FromCALL, ToCALL, VIA) komprimiert und mit CRC (kompatibel zu AX25v2)

* "'Gateway-Schnittstelle"

- ** MQTT-Protokoll mit üblicher Feldstruktur aufbauen
- ** UDP-Übertragung

** Hardbeat zur Partner-ONLINE Erkennung

- ** Tiefe der Meldung vom und zum Gateway einstellbar (Test- und Entwicklungs-Erleichterung)
- ** Nach neustart eines Gateways automatischer Übertragung von Grunddaten wie aktive NODES, Letzter Meldungs-ID Stack, ...

** Nachrichten Priorisierung

- * "'Gateway-Schnittstelle"
- ** MQTT-Protokoll mit üblicher Feldstruktur aufbauen
- ** UDP-Übertragung

** **Heartbeat** zur **Client/Server**-ONLINE Erkennung

- ** Tiefe der Meldung vom und zum Gateway einstellbar (Test- und Entwicklungs-Erleichterung)
- ** Nach **Neustart** eines Gateways automatischer Übertragung von Grunddaten wie:

+ *** aktive NODES

+ *** letzte Meldungen

*** Anstoßen der Store & Forward Meldungen

- * '''Modul-Schnittstellen'''
- ** Serial via USB

- * "'Modul-Schnittstellen"
- ** Serial via USB

MeshCom 2\.0

Grundlegende Spezifikationen

Luftschnittstelle

- O Mesh Netzwerk selbst bildend und selbstheilend
- O AFU kompatibel der Source, Node, Gateway, Destination Kennung als Rufzeichen
- Path-Kontrollstruktur (nur für Testzwecke)
- Struktur der Payload in die Struktur der Meldung eingebettet
- Zusätzlich zur Übertragungs-Sicherung durch die Hardware sind CRC und FEC in der Struktur der Meldung einzuplanen
- O Meldung und Payload komprimiert übertragen
- O Node, Digipeater-only, Gateway-only, Point-to-Point (Netzerweiterungen)
- unverschlüsselt
- Adress-Header (FromCALL, ToCALL, VIA) komprimiert und mit CRC (kompatibel zu AX25v2)
- Nachrichten Priorisierung

Gateway-Schnittstelle

- O MQTT-Protokoll mit üblicher Feldstruktur aufbauen
- UDP-Übertragung
- O Heartbeat zur Client/Server-ONLINE Erkennung
- Tiefe der Meldung vom und zum Gateway einstellbar (Test- und Entwicklungs-Erleichterung)
- O Nach Neustart eines Gateways automatischer Übertragung von Grunddaten wie:
 - aktive NODES
 - letzte Meldungen
 - Anstoßen der Store & Forward Meldungen

Modul-Schnittstellen

- Serial via USB
- O GPIO für externe Hardware und Steuerungen
- O GPS intern, extern, fix
- O WiFi
 - Userschnittstelle
 - Gateway-Schnittstelle
- Bluetooth
 - APP-Schnittstelle
- ETH-Schnittstelle optional

- O Broadcast
- Group Call
- Private Call
- Store & Forward
- Entwicklungs- und Debug-Meldungen

- O Die Verwendung der kompatibler MCU sollte eingehalten werden
- ESP32
- Fertigmodule MCU, HF, GPS gemeinsam
- wie TTGO, TLORA, HELTEC, ...
- Bevorzugterweise Aufbau Basisplatine, Steckmodule
- wie RAK WisBlock
- O Vorhandene Hardware aus dem LoRa-APRS Projekt
- Semtech SX1262 LoRa-Transceiver oder kompatibel
- ETH-Modulblock mit IP-Stack für Gateways

Firmware

- Grundstruktur für Entwicklung in der Gruppe vorbereitet
- Leicht zu erweitern, pflegen
- Klare Funktionsgliederung
- Keine direkte Hardware-Bezogenheit in der Logik-Struktur
- Logik-Struktur mit klaren Schnittstellen aufgebaut um funktionelle Erweiterungen jederzeit einzubauen ohne die getestete Basisfunktionalität zu beeinflussen

• Welche Service bietet MeshCom 2.0 an?

- Textübertragung
- Positionsübertragung (Smart Beaconing)
- Frei definierbare Payload

Feature-List

- Konfiguration über USB-Serial-Schnittstelle
- O Rufzeichen mit APRS-konformen SSID
- Frequenzeinstellung und Anzeige
- Feldstärkeanzeige (S-Meter, RSSI, MER)
- O LoRa-Modulationsparameter auch detailliert
- Fix-Position
- O Batterie-Management Stufen
- Scannen nach verfügbarem MeshCom-Channel

Use Cases

- allg. Amateurfunknachrichtendienst
- Not-Katfunk
- Infodienste z.B. mit Wetterbericht, SolarFlux, Radioactivität, Blitzortung, DXCluster, Skeds, SOTA,...

Entwurf: Kurt OE1KBC

Ausgabe: 28.04.2024

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 10. Juni 2022, 13:20 Uhr (Qu elltext anzeigen)

Oe3mzc (Diskussion | Beiträge) (→Grundlegende Spezifikationen) Markierung: Visuelle Bearbeitung

← Zum vorherigen Versionsunterschied

Version vom 10. Juni 2022, 15:05 Uhr (Qu elltext anzeigen)

Oe1kbc (Diskussion | Beiträge) Markierung: Visuelle Bearbeitung Zum nächsten Versionsunterschied →

Zeile 13:

- ** unverschlüsselt
- ** Adress-Header (FromCALL, ToCALL, VIA) komprimiert und mit CRC (kompatibel zu AX25v2)
- * "Gateway-Schnittstelle"
- ** MQTT-Protokoll mit üblicher Feldstruktur aufbauen
- ** UDP-Übertragung
- ** Hardbeat zur Partner-ONLINE Erkennung
 - ** Tiefe der Meldung vom und zum Gateway einstellbar (Test- und Entwicklungs-Erleichterung)
 - ** Nach **neustart** eines Gateways automatischer Übertragung von Grunddaten wie aktive NODES, Letzter Meldungs-ID Stack, ...
- - *** aktive NODES

Grunddaten wie:

- *** letzte Meldungen
 - *** Anstoßen der Store & Forward Meldungen

- * '''Modul-Schnittstellen'''
- ** Serial via USB

** unverschlüsselt

AX25v2)

Zeile 13:

- ** Adress-Header (FromCALL, ToCALL, VIA) komprimiert und mit CRC (kompatibel zu
- ** Nachrichten Priorisierung
 - * "'Gateway-Schnittstelle"
 - ** MQTT-Protokoll mit üblicher Feldstruktur aufbauen
 - ** UDP-Übertragung
 - ** Heartbeat zur Client/Server-ONLINE Erkennung
 - ** Tiefe der Meldung vom und zum Gateway einstellbar (Test- und Entwicklungs-Erleichterung)

** Nach **Neustart** eines Gateways

automatischer Übertragung von

- - * "'Modul-Schnittstellen"
 - ** Serial via USB

MeshCom 2\.0

Grundlegende Spezifikationen

Luftschnittstelle

- O Mesh Netzwerk selbst bildend und selbstheilend
- O AFU kompatibel der Source, Node, Gateway, Destination Kennung als Rufzeichen
- Path-Kontrollstruktur (nur für Testzwecke)
- Struktur der Payload in die Struktur der Meldung eingebettet
- Zusätzlich zur Übertragungs-Sicherung durch die Hardware sind CRC und FEC in der Struktur der Meldung einzuplanen
- O Meldung und Payload komprimiert übertragen
- O Node, Digipeater-only, Gateway-only, Point-to-Point (Netzerweiterungen)
- unverschlüsselt
- Adress-Header (FromCALL, ToCALL, VIA) komprimiert und mit CRC (kompatibel zu AX25v2)
- Nachrichten Priorisierung

Gateway-Schnittstelle

- O MQTT-Protokoll mit üblicher Feldstruktur aufbauen
- UDP-Übertragung
- O Heartbeat zur Client/Server-ONLINE Erkennung
- Tiefe der Meldung vom und zum Gateway einstellbar (Test- und Entwicklungs-Erleichterung)
- O Nach Neustart eines Gateways automatischer Übertragung von Grunddaten wie:
 - aktive NODES
 - letzte Meldungen
 - Anstoßen der Store & Forward Meldungen

Modul-Schnittstellen

- Serial via USB
- O GPIO für externe Hardware und Steuerungen
- O GPS intern, extern, fix
- O WiFi
 - Userschnittstelle
 - Gateway-Schnittstelle
- Bluetooth
 - APP-Schnittstelle
- ETH-Schnittstelle optional

- O Broadcast
- Group Call
- Private Call
- Store & Forward
- Entwicklungs- und Debug-Meldungen

- O Die Verwendung der kompatibler MCU sollte eingehalten werden
- ESP32
- Fertigmodule MCU, HF, GPS gemeinsam
- wie TTGO, TLORA, HELTEC, ...
- Bevorzugterweise Aufbau Basisplatine, Steckmodule
- wie RAK WisBlock
- O Vorhandene Hardware aus dem LoRa-APRS Projekt
- Semtech SX1262 LoRa-Transceiver oder kompatibel
- ETH-Modulblock mit IP-Stack für Gateways

Firmware

- Grundstruktur für Entwicklung in der Gruppe vorbereitet
- Leicht zu erweitern, pflegen
- Klare Funktionsgliederung
- O Keine direkte Hardware-Bezogenheit in der Logik-Struktur
- Logik-Struktur mit klaren Schnittstellen aufgebaut um funktionelle Erweiterungen jederzeit einzubauen ohne die getestete Basisfunktionalität zu beeinflussen

Welche Service bietet MeshCom 2.0 an?

- Textübertragung
- Positionsübertragung (Smart Beaconing)
- Frei definierbare Payload

Feature-List

- Konfiguration über USB-Serial-Schnittstelle
- O Rufzeichen mit APRS-konformen SSID
- Frequenzeinstellung und Anzeige
- Feldstärkeanzeige (S-Meter, RSSI, MER)
- O LoRa-Modulationsparameter auch detailliert
- Fix-Position
- O Batterie-Management Stufen
- Scannen nach verfügbarem MeshCom-Channel

Use Cases

- allg. Amateurfunknachrichtendienst
- Not-Katfunk
- Infodienste z.B. mit Wetterbericht, SolarFlux, Radioactivität, Blitzortung, DXCluster, Skeds, SOTA,...

Entwurf: Kurt OE1KBC

Ausgabe: 28.04.2024

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 10. Juni 2022, 13:20 Uhr (Qu elltext anzeigen)

Oe3mzc (Diskussion | Beiträge)
(→Grundlegende Spezifikationen)
Markierung: Visuelle Bearbeitung

← Zum vorherigen Versionsunterschied

Version vom 10. Juni 2022, 15:05 Uhr (Qu elltext anzeigen)

Oe1kbc (Diskussion | Beiträge)
Markierung: Visuelle Bearbeitung
Zum nächsten Versionsunterschied →

Zeile 13:

- ** unverschlüsselt
- ** Adress-Header (FromCALL, ToCALL, VIA) komprimiert und mit CRC (kompatibel zu AX25v2)
- * "Gateway-Schnittstelle"
- ** MQTT-Protokoll mit üblicher Feldstruktur aufbauen
- ** UDP-Übertragung
- ** Hardbeat zur Partner-ONLINE Erkennung
 - ** Tiefe der Meldung vom und zum Gateway einstellbar (Test- und Entwicklungs-Erleichterung)
 - ** Nach neustart eines Gateways automatischer Übertragung von Grunddaten wie aktive NODES, Letzter Meldungs-ID Stack, ...

- Zeile 13:
 - ** unverschlüsselt
 - ** Adress-Header (FromCALL, ToCALL, VIA) komprimiert und mit CRC (kompatibel zu AX25v2)
 - ** Nachrichten Priorisierung
 - * "'Gateway-Schnittstelle"
 - ** MQTT-Protokoll mit üblicher Feldstruktur aufbauen
 - ** UDP-Übertragung
 - ** **Heartbeat** zur **Client/Server**-ONLINE Erkennung
 - ** Tiefe der Meldung vom und zum Gateway einstellbar (Test- und Entwicklungs-Erleichterung)
 - ** Nach **Neustart** eines Gateways automatischer Übertragung von Grunddaten wie:
- + *** aktive NODES
- + *** letzte Meldungen
- *** Anstoßen der Store & Forward
 Meldungen
 - * "'Modul-Schnittstellen"
 - ** Serial via USB

- * "'Modul-Schnittstellen"
- ** Serial via USB

MeshCom 2\.0

Grundlegende Spezifikationen

Luftschnittstelle

- O Mesh Netzwerk selbst bildend und selbstheilend
- O AFU kompatibel der Source, Node, Gateway, Destination Kennung als Rufzeichen
- Path-Kontrollstruktur (nur für Testzwecke)
- Struktur der Payload in die Struktur der Meldung eingebettet
- Zusätzlich zur Übertragungs-Sicherung durch die Hardware sind CRC und FEC in der Struktur der Meldung einzuplanen
- O Meldung und Payload komprimiert übertragen
- O Node, Digipeater-only, Gateway-only, Point-to-Point (Netzerweiterungen)
- unverschlüsselt
- Adress-Header (FromCALL, ToCALL, VIA) komprimiert und mit CRC (kompatibel zu AX25v2)
- Nachrichten Priorisierung

Gateway-Schnittstelle

- O MQTT-Protokoll mit üblicher Feldstruktur aufbauen
- UDP-Übertragung
- O Heartbeat zur Client/Server-ONLINE Erkennung
- Tiefe der Meldung vom und zum Gateway einstellbar (Test- und Entwicklungs-Erleichterung)
- O Nach Neustart eines Gateways automatischer Übertragung von Grunddaten wie:
 - aktive NODES
 - letzte Meldungen
 - Anstoßen der Store & Forward Meldungen

Modul-Schnittstellen

- Serial via USB
- O GPIO für externe Hardware und Steuerungen
- O GPS intern, extern, fix
- O WiFi
 - Userschnittstelle
 - Gateway-Schnittstelle
- Bluetooth
 - APP-Schnittstelle
- ETH-Schnittstelle optional

- O Broadcast
- Group Call
- Private Call
- Store & Forward
- Entwicklungs- und Debug-Meldungen

- O Die Verwendung der kompatibler MCU sollte eingehalten werden
- ESP32
- Fertigmodule MCU, HF, GPS gemeinsam
- wie TTGO, TLORA, HELTEC, ...
- Bevorzugterweise Aufbau Basisplatine, Steckmodule
- wie RAK WisBlock
- O Vorhandene Hardware aus dem LoRa-APRS Projekt
- Semtech SX1262 LoRa-Transceiver oder kompatibel
- ETH-Modulblock mit IP-Stack für Gateways

Firmware

- Grundstruktur für Entwicklung in der Gruppe vorbereitet
- Leicht zu erweitern, pflegen
- Klare Funktionsgliederung
- O Keine direkte Hardware-Bezogenheit in der Logik-Struktur
- Logik-Struktur mit klaren Schnittstellen aufgebaut um funktionelle Erweiterungen jederzeit einzubauen ohne die getestete Basisfunktionalität zu beeinflussen

Welche Service bietet MeshCom 2.0 an?

- Textübertragung
- Positionsübertragung (Smart Beaconing)
- Frei definierbare Payload

Feature-List

- Konfiguration über USB-Serial-Schnittstelle
- O Rufzeichen mit APRS-konformen SSID
- Frequenzeinstellung und Anzeige
- Feldstärkeanzeige (S-Meter, RSSI, MER)
- O LoRa-Modulationsparameter auch detailliert
- Fix-Position
- O Batterie-Management Stufen
- Scannen nach verfügbarem MeshCom-Channel

Use Cases

- allg. Amateurfunknachrichtendienst
- Not-Katfunk
- Infodienste z.B. mit Wetterbericht, SolarFlux, Radioactivität, Blitzortung, DXCluster, Skeds, SOTA,...

Entwurf: Kurt OE1KBC

Ausgabe: 28.04.2024