

Inhaltsverzeichnis

1. Q65	5	2
2. Hau	uptseite	3

Q65

Das Inhaltsformat pdf wird vom Inhaltsmodell Wikitext nicht unterstützt.

Zurück zur Seite Hauptseite.

Quelltext der Seite Hauptseite

Sie sind nicht berechtigt, die Seite zu bearbeiten. Gründe:

- Die Aktion, welche Sie beantragt haben, ist auf Benutzer beschränkt, welche einer der Gruppen "Administratoren, Sichter, Prüfer" angehören.
- Die Aktion, welche Sie beantragt haben, ist auf Benutzer beschränkt, welche der Gruppe "editor" angehören.
- Diese Seite wurde geschützt, um Bearbeitungen sowie andere Aktionen zu verhindern.

Sie können den Quelltext dieser Seite betrachten und kopieren.

Ausgabe: 15.05.2024

==Digitale Betriebsarten im Detail: Q65== Q65 ist eine digitale Betriebsart, die ab [http://www.arrl.org /news/wsjt-x-2-4-0-introduces-new-digital-protocol-q65 WSJT-X Version 2.4.0] verfügbar ist (seit 28. Mai 2021) und die sehr geeignet ist für die VHF/UHF/SHF Frequenzbereiche, bei mäßiger Sendeleistung (100W) und für Stationen mit Antennendefiziten. Q65 ist ein digitales Übertragungsverfahren und Protokoll für minimal-QSOs bei besonders schwierigen Ausbreitungsbedingungen. Wenn die Dopplerverbreiterung mehr als nur einige Hz beträgt, ist Q65 die beste unter allen Betriebsarten in WSJT-X. Q65 ist besonders effektiv für Verbindungen über Tropo-Scatter, Regenstreuung, ionosphärische Streuung, TEP und EME auf UKW- und höheren Bändern sowie für andere Arten von Verbindungen mit schnellem Schwund. Q65 verwendet eine 65-Ton-Frequenzumtastung und baut auf den nachgewiesenen Stärken von QRA64 auf, einem Modus, das 2016 in WSJT-X eingeführt wurde. Q65 unterscheidet sich von QRA64 in folgenden wichtigen Punkten: *Ein neuer Qary Repeat Accumulate-Code mit niedriger Rate zur Vorwärtsfehlerkorrektur *Benutzernachrichten und Sequenzierung identisch mit denen in FST4, FT4, FT8 und MSK144 *Ein Einzelton für die Zeit- und Frequenzsynchronisation. Wie bei JT65 ist dieser "Synchronisationston" auf der Spektralanzeige des Wasserfalls gut sichtbar. Darüber hinaus bietet Q65 eine empfindliche "Synchronisationskurve" am unteren Rand des Wasserfallfensters. Im Gegensatz zu JT65 sind Synchronisation und Decodierung auch dann noch erfolgreich, wenn Meteor-Pings oder andere kurze Signalverbesserungen vorhanden sind. *Optionale Submodi mit Sende-/Empfangsdauern von 15, 30, 60, 120 und 300 s und unterschiedlichen Tonabständen. *Eine neue, äußerst zuverlässige Listendecodierungstechnik für Nachrichten, die zuvor empfangene Nachrichtenfragmente enthalten. Eine Rufzeichendatenbank wird nicht verwendet. *Hochwirksame Nachrichtenakkumulation über mehrere Durchgänge für Situationen, in denen einzelne Übertragungen zu schwach oder Signalverbesserungen zu spärlich sind, um ein Signal zu decodieren. *Eine "Multi-Decodierungs" -Option, die versucht, alle Q65-Signale im empfangenen Durchlassbereich zu decodieren. Implementiert wird diese digitale Betriebsart über die Soundkarte eines PC. Zuerst eingeführt wurde Q65 mit Hilfe der Implementierung als Open Source Software [http://physics.princeton.edu/pulsar/k1jt/wsjtx.html WSJT-X] Version 2.4.0-rc1 durch [http://en.wikipedia.org/wiki/Joseph_Hooton_Taylor,_Jr. Joe Taylor] ([http://www.qrz.com/db/K1JT K1JT]). Die aktuelle Programmversion ist WSJT-X Version 2.3.0 (Stand: 14. Feb. 2021, siehe [http://physics.princeton.edu /pulsar/k1jt/wsjtx-doc/wsjtx-main-2.3.0.html WSJT-X 2.3 Benutzerhandbuch]. Q65 hat viele Gemeinsamkeiten mit [[JT65]], [[JT9]] und [[JT4]]. Diese digitalen Modi verwenden fast identische Nachrichtenstruktur und Quellencodierung. Details zur Quellencodierung wurden veröffentlicht im Artikel "[http://physics.princeton.edu /pulsar/K1JT/JT65.pdf The JT65 Communications Protocol]", der in der Zeitschrift [http://www.arrl.org/qex QEX] während 2005 veröffentlicht wurde. Die Vorwärtsfehlerkorrektur (FEC) in Q65 verwendet einen speziell entwickelten (65,15) Blockcode mit Sechs-Bit-Symbolen. Zwei Symbole werden aus dem Code "punktiert", was einem effektiven (63,13) Code mit einer Nutzlast von k = 13 Informationssymbolen entspricht, die durch n = 63 Kanalsymbole übertragen werden. Die punktierten Symbole bestehen aus einem 12-Bit-CRC, der aus den 13 Informationssymbolen berechnet wird. Der CRC wird verwendet, um die Wahrscheinlichkeit für falsche Decodierungen auf einen sehr niedrigen Wert zu reduzieren. Eine Pseudozufallssequenz mit 22 Symbolen, die über einen ganzen Durchgang verteilt ist, wird als "Ton 0" gesendet und zur Synchronisation verwendet. Die Gesamtzahl der Kanalsymbole in einer Q65-Übertragung beträgt somit 63 + 22 = 85. Für jeden Sende-/Empfangsdurchgang haben die Submodi A - E Tonabstände und belegte Bandbreiten, die das 1, 2, 4, 8 bzw. 16-fache der Basiswerte betragen. Vollständige Submode-Bezeichnungen enthalten eine Nummer für die Sequenzlänge und einen Buchstaben für den Tonabstand, wie in Q65-15A, Q65-120C usw. Die folgende Tabelle listet die üblichen Frequenzbereiche für QRA64 (Stand 2017). Die "Dial Frequency" gibt dabei die Frequenz des (unterdrückten) Trägers an. Dies ist also die angezeigte Frequenz am Funkgerät. Das Funkgerät moduliert das obere Seitenband (USB-Modulation). {| class="wikitable" |+Dial Frequency |- | style="text-align: right;" |160m | style="text-align:right;" |1,83x MHz |- | style="text-align:right;" |80m | style="text-align:right;" |3, 57x MHz |- | style="text-align:right;" |60m | style="text-align:right;" |5,35x MHz |- | style="text-align:right;" |40m | style="text-align:right;" |7,07x MHz |- | style="text-align:right;" |30m | style="text-align:right;" |10,13x MHz |- | style="text-align:right;" |20m | style="text-align:right;" |14,07x MHz |- | style="text-align:right;" |17m | style="text-

align:right;" |18,10x MHz |- | style="text-align:right;" |15m | style="text-align:right;" |21,0xx MHz |- | style="text-align:right;" |24,9xx MHz |- | style="text-align:right;" |10m | style="text-align:right;" |28,07x MHz |- | style="text-align:right;" |6m | style="text-align:right;" |USA: 50,275 MHz IARU R1: 50,305 MHz |- | style="text-align:right;" |2m | style="text-align:right;" |144,1xx MHz |} Weitere Infos: https://physics.princeton.edu/pulsar/k1jt/Q65_Quick_Start.pdf
br /> [[Category:Digitale Betriebsarten]] [[Category:Meteor-Scatter]] [[Category:UKW Frequenzbereiche]] [[Category:Erde-Mond-Erde]] [[Category:Mikrowelle]]

Die folgende Vorlage wird auf dieser Seite verwendet:

Vorlage:Box Note (Quelltext anzeigen) (schreibgeschützt)

Zurück zur Seite Hauptseite.