

Inhaltsverzeichnis

1. TCE Tinycore Linux Projekt	. 2
2. Hauptseite	. 3

TCE Tinycore Linux Projekt

Das Inhaltsformat pdf wird vom Inhaltsmodell Wikitext nicht unterstützt.

Zurück zur Seite Hauptseite.

Ausgabe: 25.04.2024

Quelltext der Seite Hauptseite

Sie sind nicht berechtigt, die Seite zu bearbeiten. Gründe:

- Die Aktion, welche Sie beantragt haben, ist auf Benutzer beschränkt, welche einer der Gruppen "Administratoren, Sichter, Prüfer" angehören.
- Die Aktion, welche Sie beantragt haben, ist auf Benutzer beschränkt, welche der Gruppe "editor" angehören.
- Diese Seite wurde geschützt, um Bearbeitungen sowie andere Aktionen zu verhindern.

Sie können den Quelltext dieser Seite betrachten und kopieren.

[[Kategorie:Digitaler Backbone]] [[Kategorie:Digitale_Betriebsarten]] [[Kategorie:APRS]] [[Kategorie:Packet-Radio und I-Gate]] [[Datei:Englisch.jpg]] For english version on this project [[TCE Tinycore Linux Project englisch | click here]] ==Einleitung== [[Bild:PPC.jpg|thumb|500MHz LowPower Industrie PC]] Hierbei handelt es sich um ein Amateurfunk Software Projekt, welches unter Einsatz von [http://www.tinycorelinux.com TCE -Tinycore Linux] auf Embedded System wie Industrie PC, ALIX u.d.g. Services wie *[[:Kategorie:Packet-Radio_und_I-Gate | Packet Radio]], *[[:Kategorie:APRS | APRS]], *Blitzortung, *kleine Webserver, *SVX-Link (Echolink) u.v.m. im HAMNET anbindet.

viel ist ein minimaler Aufwand und minimale Stromaufnahme, bei maximalem Funktionsumfang. ==Hardware== ===PC=== [[Bild:12v-anschluss.jpg|thumb|Polung Industrie PC]] Es laufen mehrere Versuchsaufbauten unter anderem bei DH2IW Wolfgang, OE2WAO Mike und OE5DXL Chris, sowie Newcomern, aber auch Digipeater in regulärem Betrieb. In den meisten Fällen kommt hier eine ausgemusterte Industrie PC Variante zum Einsatz, welche mit 500MHz CPU Leistung (AMD Geode) und bis zu 256MB Ram eine bis auf "'<5Watt" minimierte Leistungsaufnahme aufweist (vorhandene Restboards bei [http://www.oe2wao.info OE2WAO] anfragen).

br> Das Betriebssystem findet dabei auf einer CF Speicherkarte (>32MB) Platz. ===Anschluss und Umbau der genannten Industrie PC Variante=== [[Bild:12vumbau.jpg|thumb|Umbau Netzteil für 12V]] Neben den ohnehin durch Ansicht bekannten Schnittstellen wie USB und Netzwerk, befindet sich unter anderem auch ein Versorgungsanschluß auf der Vorderseite der von uns verwendeten, oben erwähnten Industrie PC Boards.

str> Die Versorgung erfolgt erdfrei und wird an dem dreipoligen Stecker eingespeist. Dabei befindet sich, wie in der Abbildung ersichtlich, der Pluspol von der Anschlußseite gesehen ganz rechts (der Pin näher zu den USB Buchsen), der Minuspol ganz links. Der mittlere Pin wäre für die Erdung des Gehäuses vorgesehen.
br> Das Board wird, wie in der Instrie überwiegend üblich, mit 24V versorgt.
 Damit wir es auch in unseren Anlagen mit den dort üblichen 12V ohne einen DC-DC Wandler verwenden können, muss das verbaute Netzteil zuvor geringfügig modifiziert werden. Dazu wird lediglich ein 270k Ohm Widerstand, wie im Bild ersichtlich, eingelötet, um die Einschaltung auch schon bei 12V zu erwirken. ===Soundkarte=== Als Soundkarte für AFSK Betriebsarten wird, wenn keine Onboard Version verfügbar ist, eine externe USB Variante verwendet. Darauf zu achten ist, dass bei mehreren geplanten Kanälen, die Soundkarte über Stereo Anschlüsse verfügt, beim Ein- sowie Ausgang. Geeignete Karten lassen sich derzeit meist daran erkennen, dass sie über 3 Anschlüsse verfügen (Mikrofon, Line-In, Lautsprecher). Siehe [[Geeignete Soundkarten|geeignete Soundkarten]]. ===PTT=== Für fernbediente Stationen empfiehlt sich ein [[PTT Watchdog]] zur Vermeidung unbeabsichtigter (Dauer)Sendungen.

sei Belegung bzw. Fehlen der COM Schnittstelle wird eine [[NF VOX PTT]] verwendet. ==Software== Das zum Einsatz kommende [http://www.tinycorelinux.com TCE - Tinycore Linux] kann im Original von der Webseite geladen werden.

br> Die von uns bearbeitete, und an die Bedürfnisse der Funkamateure angepasste Version ist auf der [http://www.oe2wao.info/tce Webseite von OE2WAO] zu finden.

br> Eine Datei beginnend mit "tc38" steht dabei für die Grundversion v3.8.
 Ein "x" nach der Version (bspw. tc38x) deutet auf eine grafische Oberfläche (X11) des Betriebssystems hin. < br > Das "e" nach dem "alsa" steht für den e100 netzwerktreiber, der für die von uns verwendeten Boards benötigt wird.

- Ein "512" im Dateinamen bezieht sich auf die Ausgangsgröße des Images, also in diesem Fall 512MB. ===Installation unter Linux=== Zuerst lädt man sich die gewünschte Version herunter, die aktuelle Version kann unter http://oe2wao.info/tce gefunden werden wget http://www.oe2wao.info/tce/%PFAD_ZU_IMG.ZIP% Nun verbindet man eine entsprechend große CF Speicherkarte. Diese darf aber für den folgenden Vorgang nicht gemountet sein, also rechtsklicken und aushängen. cat %PFAD_ZU_IMG.ZIP% | gunzip > /dev/sdd Der Ausdruck /dev/sdd muss natürlich entsprechend angepasst werden.
 Ver eine größere CF verwendet und den gesamten Speicher benutzen will, muss entweder eine zweite Partition anlegen, oder mit einem geeigneten Tool die erste Partition vergrößern.

"ACHTUNG!"'

hr> Alle auf dem USB Medium befindlichen Dateien werden überschreiben bzw. gelöscht. ===Installation auf Raspberry Pi=== OE5HPM hat ein Image der TCE samt APRS Digi auf Raspberry Pi zum Laufen gebracht. Somit ist die hervorragende Software als Digi auch auf dieser Plattform einsetzbar. Die Verfügbarkeit sowie Beschreibung dazu folgt in Kürze bzw. ist bei OE5HPM, Hannes zu erfahren. ===Installation unter Windows=== Die TCE Software selbst läuft nicht unter Windows, kann jedoch

unter einem Win32 OS auf einen Datenträger gebracht werden. Um die Installation eines Images auf ein USB Medium direkt unter Windows durchzuführen, hat OE8DLK ein Programm dafür geschrieben. Der S7 MMC Image Writer ist ebenfalls auf der [http://www.oe2wao.info/tce Webseite von OE2WAO] zu finden (S7ImgWR1. zip).

br> Der Vorgang ist ganz einfach. Das gewünschte Image herunterladen, entpacken, und lokal speichern. Jetzt das USB Medium anstecken und sich den Laufwerksbuchstaben merken. Dann den S7 MMC Image Writer starten, mit PICK FILE das Image anwählen, und mit START den Schreibvorgang beginnen.

vir "ACHTUNG!"
 Alle auf dem USB Medium befindlichen Dateien werden überschrieben bzw. gelöscht. ===Einstellungen=== Eine kleine Dokumentation für die notwendigen Betriebseinstellungen befindet sich im Verzeichnis /home/tc/readme Voreingestellt im Image sind folgende Werte:

- Fixe IP: 192.168.1.50/24 (zu ändern entweder über die X11 Oberfläche oder in /opt/eth0) Zu startenden Programme und Optionen (ähnlich autoexec.bat in MS Betriebssystemen) befinden sich in nachfolgender Datei, und müssen zur korrekten Funktion editiert werden: /opt/bootlocal.sh (im Grundzustand sind sämtliche Programme mit '#' auskommentiert) Zugang für SSH (unter MS Windows am Besten mit [http://www.chiark.greenend.org.uk /~sgtatham/putty/download.html putty])
br> User: tc
br> Pass: 12345678 "'WICHTIG !!"'
br> Einstellung im System finden immer im RAM statt. Um diese dauerhaft auf den Festplatten- bzw. CF-Speicher zu schreiben, muss dies eigens veranlasst werden. Entweder beim herunterfahren in der grafischen Oberfläche (X11) selbst mit der BACKUP Option, oder ferngesteuert (SSH) mittels dem Befehl (sudo su)* filetool.sh -b * *(ohne "sudo su" nur solange der Befehl nicht zuvor einmal als root ausgeführt wurde) ===Komponenten=== Im AFU Tinycore Image sind unter anderem amateurfunkspziefische Programme enthalten.

- [[Datei:Udpboxs.jpg]] ====udpbox==== Die UDPBOX stellt das zentrale Bindeglied zwischen den einzelnen Programmen dar. Sie empfängt und verteilt entsprechend die UDP Pakete.

so ist es bspw. möglich die auf 2m empfangenen APRS Pakete zu filtern, auf 2m wieder auszugeben, und zusätzlich alle (oder gefilterte) APRS Meldungen auf dem Dualbaud 70cm Packet Radio Digipeater auszusenden.

szudem beherrscht die UDPBOX die leicht unterschiedlichen Arten in den Protokollen AX25 und TNC2 MONITOR.

- Zur Übersicht steht für die APRS Funktion auch ein kleiner Webserver bereit: http:// HOSTNAME:14501 ====udphub==== Der UDPHUB ist ein Hilfsprogramm für XNET, welches die IP Beschränkung umgeht, indem es sich selbst zwischen Benutzer und XNET stellt, und die AXUDP Pakete entsprechend verteilt. Dabei bleibt der Ursprungspfad (IP) des Benutzer eine Woche (einstellbar) gespeichert, und der Benutzer kann bei lokal gestartetem Programm auch ohne aktiven Connect in dieser Zeitspanne von anderen Benutzern kontaktiert werden, genauso als ob man per HF QRV wäre. ====udpgate==== [[Datei:XZR-conn.PNG|200px|thumb|left|Connection Tab sample]] Das UDPGATE ist ein APRS Server, welcher die Netzwerkebene des APRS Datentransports übernimmt. Also bspw. die Serverfunktionalität für Benutzer bereitstellen, sowie eine Verbindung zum APRS IS oder nächsten APRS Server (UDPGATE) herstellen.

Dabei agiert er bei der Verbindung nach der Prioriät der Einträge in der Serverliste. Ist der erste Server nicht erreichbar, wird der nächste Server in der Liste versucht zu erreichen. In regelmässigen Abständen wird jedoch erneut versucht, die in der Liste zuvorgelegenen Server nach dem

Prioritätsprinzip zu erreichen, und verlustfrei wieder rückzuverbinden.

Webinterface welches default unter "serverlP:14501" erreichbar ist.

Brack verteilung unter Digipeatern. Ziel ist das gesamte Netz als einen großen RX darzustellen und auch weiter entfernt empfangene APRS Pakete vom dort gebietsmässig nahegelegenen Digi per Radiusdefinition auf 144.800MHz wieder aussenden zu lassen. Dabei bilden mehrere Serververbindungen untereinander das Prinzip der Redundanz. ====afskmodem==== Das AFSKMODEM ist ein [[Packet_Radio_via_Soundkarte_unter_Linux | digitales Soundmodem]], welches die Pakete in eine (A)FSK Modulation wandelt und der Soundkarte zuführt. Der Name soll jedoch nicht verwirren, es sind auch je nach Soundkarte Geschwindigkeiten > 28kBaud FSK möglich. ====msgrelay==== Ein experimentelles APRS Nachrichtenmodul zum Verwalten von Kurznachrichten mit Anbindung an das udpgate. ===Vorgefertigte Varianten=== Die Vielfalt in der Zusammenstellung der einzelnen Komponenten erlaubt eine größere Zahl an unterschiedlichen Konfigurationen. Zum leichteren und schnelleren Einsatz am Digistandort bietet [http://www.oe2wao.info OE2WAO] unter Bekanntgabe des geplanten Digi Rufzeichens mehrere

Standard Varianten vorgetertigt zur Auswahl. "Variante 1" * XNE I Dualbaud Packet Radio Digi - 1k2 und 9k6 User Zugang auf einer Frequenz - variabler HAMNET Zugangsport für sämtliche IP Adressen - weitere AXUDP HAMNET Links können konfiguriert werden * APRS Server und Digi mit IGATE - 1k2 RX und TX inkl. Message Gateway - 1k2 RX auf 1k2 Packet Radio User Zugang - optional 300bd RX (und TX) für Kurzwellen APRS - 1k2 TX auf Packet Radio User Zugang von direkt gehörten APRS Stationen - 9k6 TX auf Packet Radio User Zugang aller auf HF 1k2 gehörten APRS Packete "Variante 2" * XNET Dualbaud Packet Radio Digi - 1k2 und 9k6 User Zugang auf einer Frequenz - variabler HAMNET Zugangsport für sämtliche IP Adressen - weitere AXUDP HAMNET Links können konfiguriert werden "Variante 3" * APRS Server und Digi mit IGATE - 1k2 RX und TX inkl. Message Gateway - optional 300bd RX (und TX) für Kurzwellen APRS ==Einsatz== [[Bild:Db0wgs-aprs-k.jpg|thumb|DB0WGS APRS & PR Digi]] Eingesetzt wird das System in verschiedenen Konfigurationen und Varianten aktuell bereits bei OE2XZR, OE2XGR, OE2XUM, OE5DXL, OE5FHM, OE5HPM, OE5XBL, OE5XBR, OE5XDO, sowie bei DB0FFL, DB0KLI, DB0WGS, DH2IW, DL3RCG, DL8RDL und DK5RV. Getestet wird es unter anderem in OE1, OE3, OE6, OE7 und OE9, sowie in IK, DL und PA. ==Hilfe== Wer Hilfe bei der Konfiguration der Softwarekomponenten benötigt, kann Fragen direkt im Packet Radio Convers auf Kanal 44, oder per PR Mail direkt an OE5DXL stellen.

Die folgende Vorlage wird auf dieser Seite verwendet:

Vorlage:Box Note (Quelltext anzeigen) (schreibgeschützt)

Zurück zur Seite Hauptseite.

Ausgabe: 25.04.2024