

Inhaltsverzeichnis

1. Tipps und Tricks-Digitale Betriebsarten	8
2. Benutzer:Oe1mcu	5

Tipps und Tricks-Digitale Betriebsarten

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 2. Oktober 2008, 21:14 Uhr (Quelltext anzeigen)

Oe1mcu (Diskussion | Beiträge) (→Empfang:)

← Zum vorherigen Versionsunterschied

Version vom 2. Oktober 2008, 21:14 Uhr (Quelltext anzeigen)

Oe1mcu (Diskussion | Beiträge)
(→Zusammenspiel MixW DXAtlas)
Zum nächsten Versionsunterschied →

DX-Atlas speichert auch gearbeitete Zonen, Squares, usw. sodass man auf einen Blick sieht, welche Destinationen schon gearbeitet / bestätigt wurden. DX-Atlas speichert auch gearbeitete Zonen, Squares, usw. sodass man auf einen Blick sieht, welche Destinationen schon gearbeitet / bestätigt wurden.

--[[Benutzer:Oe3qsu|Gerhard]] 10:44, 30. Jun. 2008 (UTC)73 und viel Spass wünscht

[[Digitale Betriebsarten|Zurück zu Digitale Betriebsarten]] [[DB-Links|Zurück zu Links]]

[[Digitale Betriebsarten|Zurück zu Digitale Betriebsarten]] [[DB-Links|Zurück zu Links]]

Version vom 2. Oktober 2008, 21:14 Uhr

Digitale Betriebsarten Tipps und Tricks

Hier werden in loser Folge einige Tips und Tricks für die Liebhaber digitaler Betriebsarten angeführt (Input und Anregungen sind jederzeit willkommen:

Pegelanpassung

Für das richtige Funktionieren der digitalen Betriebsarten ist die richtige Einstellung der Pegel zwischen Modem (Soundkarte) und Transceiver wesentlich. Zu wenig Modulation sorgt für zu wenig Sendleistung (SSB) oder zu dünne Modulation (FM), zu viel, sorgt für verzerrte und damit schlecht decodierbare Signale. Ich gehe hier im Wesentlichen auf die Verwendung der Soundkarte als Modem ein, für andere Lösungen gilt dies ja wohl sinngemäß. Falls die Soundkarte im PC auch noch für andere Anwendungen genutzt werden soll, dann ist es unangenehm ständig die Regler im Betriebssystem ändern zu müssen. Ich habe daher alle Regler im Betriebssystem auf "Vollgas" und stelle die Pegel im Interface ein.

Senden:

Dazu habe ich beim Transceiver die Anzeige der Modulation aktiviert und solange aufgedreht, bis ich den im Manual angegebenen Vollausschlag beim Senden erreicht hatte. Zusätzlich war der Kontrollempfänger an und ich habe (über Kopfhörer) die Qualität der Modulation kontrolliert. Da dies aber an der Dummy-Load erfolgen sollte, ist es wichtig, bei den ersten QSOs den Kontrollempfänger eingeschaltet zu lassen um ev. geringfägige Korrekturen machen zu können.

Empfang:

Ich verwende den Lautsprecherausgang des Transceivers als Signalquelle. Dies hat für mich den Vorteil, dass ich einfach und rasch den Pegel der NF korrigieren kann, falls eine Station zu leise oder zu laut ist. Der Nachteil dabei ist, dass man Mithören nur mit "Vollgas" kann. Hier wäre auch die Verwendung eines Ausgangs mit fixem NF-Pegel (sofern der Transceiver so etwas hat) möglich. Für die Pegeleinstellung habe ich das Programm gestartet (MixW). Dieses zeigt ein sog. Wasserfalldisplay (dabei wird über die NF-Bandbreite jedes SIgnal angezeigt und die Stärke durch die Farbe signalisiert). Damit habe ich mir eine eher schwach einfallende Station in BPSK31 gesucht und den Pegelregler im Interface solange aufgedreht, bis dieses zu decodieren war. Dann auf eine starke Station abstimmen und kontrollieren, ob auch diese decodierbar ist. Einfach ein wenig hin- und herprobieren, die grundsätzlich richtige Einstellung ist dann rasch gefunden und individuelle Korrekturen mache ich mit dem NF-Regler am Transceiver.

Zusammenspiel MixW <-> DXAtlas

Wer für die digitalen Betriebsarten die Software MixW verwendet (so wie ich), kann das Programmpaket DXAtlas dazu verwenden, den QSO-Partner auf einer Weltkarte anzuzeigen. Mit der in DX-Atlas integrierten Ausbreitungsprognose ist eine Abschätzung möglich, ob diese Station auf dieser Frequenz gearbeitet werden kann.

Da gibt es in der MixW-Hilfe einen Link für ein Interface zwischen MixW und DX-Atlas. Entsprechend dieser Anleitung installiert und ein kleines Makro programmiert (Anleitung dazu gibts in der Hilfe) und schon sendet MixW das Call (das aktuelle oder aus dem Logbuch) an DX-Atlas und man sieht, wo die Gegenstation zu Hause ist.

DX-Atlas speichert auch gearbeitete Zonen, Squares, usw. sodass man auf einen Blick sieht, welche Destinationen schon gearbeitet / bestätigt wurden.

Zurück zu Digitale Betriebsarten Zurück zu Links

Tipps und Tricks-Digitale Betriebsarten: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 2. Oktober 2008, 21:14 Uhr (Quelltext anzeigen)

Oe1mcu (Diskussion | Beiträge) (→Empfang:)

← Zum vorherigen Versionsunterschied

Version vom 2. Oktober 2008, 21:14 Uhr (Quelltext anzeigen)

Oe1mcu (Diskussion | Beiträge)
(→Zusammenspiel MixW DXAtlas)
Zum nächsten Versionsunterschied →

Zeile 27:

DX-Atlas speichert auch gearbeitete Zonen, Squares, usw. sodass man auf einen Blick sieht, welche Destinationen schon gearbeitet / bestätigt wurden.

--[[Benutzer:Oe3gsu|Gerhard]] 10:44, 30. Jun. 2008 (UTC)73 und viel Spass wünscht

[[Digitale Betriebsarten|Zurück zu Digitale Betriebsarten]] [[DB-Links|Zurück zu Links]] Zeile 27:

DX-Atlas speichert auch gearbeitete Zonen, Squares, usw. sodass man auf einen Blick sieht, welche Destinationen schon gearbeitet / bestätigt wurden.

[[Digitale Betriebsarten|Zurück zu Digitale Betriebsarten]] [[DB-Links|Zurück zu Links]]

Version vom 2. Oktober 2008, 21:14 Uhr

Inhaltsverzeichnis

1 Digitale Betriebsarten Tipps und Tricks	. 6
1.1 Pegelanpassung	
1.1.1 Senden:	. 6
1.1.2 Empfang:	. 6
1.2 Zusammenspiel MixW <-> DXAtlas	. 6

Digitale Betriebsarten Tipps und Tricks

Hier werden in loser Folge einige Tips und Tricks für die Liebhaber digitaler Betriebsarten angeführt (Input und Anregungen sind jederzeit willkommen:

Pegelanpassung

Für das richtige Funktionieren der digitalen Betriebsarten ist die richtige Einstellung der Pegel zwischen Modem (Soundkarte) und Transceiver wesentlich. Zu wenig Modulation sorgt für zu wenig Sendleistung (SSB) oder zu dünne Modulation (FM), zu viel, sorgt für verzerrte und damit schlecht decodierbare Signale. Ich gehe hier im Wesentlichen auf die Verwendung der Soundkarte als Modem ein, für andere Lösungen gilt dies ja wohl sinngemäß. Falls die Soundkarte im PC auch noch für andere Anwendungen genutzt werden soll, dann ist es unangenehm ständig die Regler im Betriebssystem ändern zu müssen. Ich habe daher alle Regler im Betriebssystem auf "Vollgas" und stelle die Pegel im Interface ein.

Senden:

Dazu habe ich beim Transceiver die Anzeige der Modulation aktiviert und solange aufgedreht, bis ich den im Manual angegebenen Vollausschlag beim Senden erreicht hatte. Zusätzlich war der Kontrollempfänger an und ich habe (über Kopfhörer) die Qualität der Modulation kontrolliert. Da dies aber an der Dummy-Load erfolgen sollte, ist es wichtig, bei den ersten QSOs den Kontrollempfänger eingeschaltet zu lassen um ev. geringfägige Korrekturen machen zu können.

Empfang:

Ich verwende den Lautsprecherausgang des Transceivers als Signalquelle. Dies hat für mich den Vorteil, dass ich einfach und rasch den Pegel der NF korrigieren kann, falls eine Station zu leise oder zu laut ist. Der Nachteil dabei ist, dass man Mithören nur mit "Vollgas" kann. Hier wäre auch die Verwendung eines Ausgangs mit fixem NF-Pegel (sofern der Transceiver so etwas hat) möglich. Für die Pegeleinstellung habe ich das Programm gestartet (MixW). Dieses zeigt ein sog. Wasserfalldisplay (dabei wird über die NF-Bandbreite jedes SIgnal angezeigt und die Stärke durch die Farbe signalisiert). Damit habe ich mir eine eher schwach einfallende Station in BPSK31 gesucht und den Pegelregler im Interface solange aufgedreht, bis dieses zu decodieren war. Dann auf eine starke Station abstimmen und kontrollieren, ob auch diese decodierbar ist. Einfach ein wenig hin- und herprobieren, die grundsätzlich richtige Einstellung ist dann rasch gefunden und individuelle Korrekturen mache ich mit dem NF-Regler am Transceiver.

Zusammenspiel MixW <-> DXAtlas

Wer für die digitalen Betriebsarten die Software MixW verwendet (so wie ich), kann das Programmpaket DXAtlas dazu verwenden, den QSO-Partner auf einer Weltkarte anzuzeigen. Mit der in DX-Atlas integrierten Ausbreitungsprognose ist eine Abschätzung möglich, ob diese Station auf dieser Frequenz gearbeitet werden kann.

Da gibt es in der MixW-Hilfe einen Link für ein Interface zwischen MixW und DX-Atlas. Entsprechend dieser Anleitung installiert und ein kleines Makro programmiert (Anleitung dazu gibts in der Hilfe) und schon sendet MixW das Call (das aktuelle oder aus dem Logbuch) an DX-Atlas und man sieht, wo die Gegenstation zu Hause ist.

DX-Atlas speichert auch gearbeitete Zonen, Squares, usw. sodass man auf einen Blick sieht, welche Destinationen schon gearbeitet / bestätigt wurden.

Zurück zu Digitale Betriebsarten Zurück zu Links

Tipps und Tricks-Digitale Betriebsarten: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 2. Oktober 2008, 21:14 Uhr (Quelltext anzeigen)

Oe1mcu (Diskussion | Beiträge) (→Empfang:)

← Zum vorherigen Versionsunterschied

Version vom 2. Oktober 2008, 21:14 Uhr (Quelltext anzeigen)

Oe1mcu (Diskussion | Beiträge)
(→Zusammenspiel MixW DXAtlas)
Zum nächsten Versionsunterschied →

Zeile 27:

DX-Atlas speichert auch gearbeitete Zonen, Squares, usw. sodass man auf einen Blick sieht, welche Destinationen schon gearbeitet / bestätigt wurden.

--[[Benutzer:Oe3qsu|Gerhard]] 10:44, 30. Jun. 2008 (UTC)73 und viel Spass wünscht

[[Digitale Betriebsarten|Zurück zu Digitale Betriebsarten]] [[DB-Links|Zurück zu Links]]

Zeile 27:

DX-Atlas speichert auch gearbeitete Zonen, Squares, usw. sodass man auf einen Blick sieht, welche Destinationen schon gearbeitet / bestätigt wurden.

[[Digitale Betriebsarten|Zurück zu Digitale Betriebsarten]] [[DB-Links|Zurück zu Links]]

Version vom 2. Oktober 2008, 21:14 Uhr

 1.1.2 Empfang:
 9

 1.2 Zusammenspiel MixW <-> DXAtlas
 9

Ausgabe: 21.05.2024 Dieses Dokument wurde erzeugt mit BlueSpice

Digitale Betriebsarten Tipps und Tricks

Hier werden in loser Folge einige Tips und Tricks für die Liebhaber digitaler Betriebsarten angeführt (Input und Anregungen sind jederzeit willkommen:

Pegelanpassung

Für das richtige Funktionieren der digitalen Betriebsarten ist die richtige Einstellung der Pegel zwischen Modem (Soundkarte) und Transceiver wesentlich. Zu wenig Modulation sorgt für zu wenig Sendleistung (SSB) oder zu dünne Modulation (FM), zu viel, sorgt für verzerrte und damit schlecht decodierbare Signale. Ich gehe hier im Wesentlichen auf die Verwendung der Soundkarte als Modem ein, für andere Lösungen gilt dies ja wohl sinngemäß. Falls die Soundkarte im PC auch noch für andere Anwendungen genutzt werden soll, dann ist es unangenehm ständig die Regler im Betriebssystem ändern zu müssen. Ich habe daher alle Regler im Betriebssystem auf "Vollgas" und stelle die Pegel im Interface ein.

Senden:

Dazu habe ich beim Transceiver die Anzeige der Modulation aktiviert und solange aufgedreht, bis ich den im Manual angegebenen Vollausschlag beim Senden erreicht hatte. Zusätzlich war der Kontrollempfänger an und ich habe (über Kopfhörer) die Qualität der Modulation kontrolliert. Da dies aber an der Dummy-Load erfolgen sollte, ist es wichtig, bei den ersten QSOs den Kontrollempfänger eingeschaltet zu lassen um ev. geringfägige Korrekturen machen zu können.

Empfang:

Ich verwende den Lautsprecherausgang des Transceivers als Signalquelle. Dies hat für mich den Vorteil, dass ich einfach und rasch den Pegel der NF korrigieren kann, falls eine Station zu leise oder zu laut ist. Der Nachteil dabei ist, dass man Mithören nur mit "Vollgas" kann. Hier wäre auch die Verwendung eines Ausgangs mit fixem NF-Pegel (sofern der Transceiver so etwas hat) möglich. Für die Pegeleinstellung habe ich das Programm gestartet (MixW). Dieses zeigt ein sog. Wasserfalldisplay (dabei wird über die NF-Bandbreite jedes SIgnal angezeigt und die Stärke durch die Farbe signalisiert). Damit habe ich mir eine eher schwach einfallende Station in BPSK31 gesucht und den Pegelregler im Interface solange aufgedreht, bis dieses zu decodieren war. Dann auf eine starke Station abstimmen und kontrollieren, ob auch diese decodierbar ist. Einfach ein wenig hin- und herprobieren, die grundsätzlich richtige Einstellung ist dann rasch gefunden und individuelle Korrekturen mache ich mit dem NF-Regler am Transceiver.

Zusammenspiel MixW <-> DXAtlas

Wer für die digitalen Betriebsarten die Software MixW verwendet (so wie ich), kann das Programmpaket DXAtlas dazu verwenden, den QSO-Partner auf einer Weltkarte anzuzeigen. Mit der in DX-Atlas integrierten Ausbreitungsprognose ist eine Abschätzung möglich, ob diese Station auf dieser Frequenz gearbeitet werden kann.

Da gibt es in der MixW-Hilfe einen Link für ein Interface zwischen MixW und DX-Atlas. Entsprechend dieser Anleitung installiert und ein kleines Makro programmiert (Anleitung dazu gibts in der Hilfe) und schon sendet MixW das Call (das aktuelle oder aus dem Logbuch) an DX-Atlas und man sieht, wo die Gegenstation zu Hause ist.

DX-Atlas speichert auch gearbeitete Zonen, Squares, usw. sodass man auf einen Blick sieht, welche Destinationen schon gearbeitet / bestätigt wurden.

Zurück zu Digitale Betriebsarten Zurück zu Links