

Inhaltsverzeichnis

1.	Userequipment HAMNETpoweruser	68
2.	Benutzer:OE5RNL	13
3.	Benutzer:Oe6rke	24
4.	Messungen digitaler Backbone	35
5.	Teststellungen Gaisberg Gernkogel	46
6	Userequipment HAMNETmesh	57

Userequipment HAMNETpoweruser

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 19. August 2009, 13:38 Uhr (Quelltext anzeigen)

Oe6rke (Diskussion | Beiträge) ← Zum vorherigen Versionsunterschied

Aktuelle Version vom 18. November 2018, 17:02 Uhr (Quelltext anzeigen)

OE5RNL (Diskussion | Beiträge) K (→Mikrotik Userzugang konfigurieren)

(20 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)

Zeile 2:

[[Kategorie:Digitale Betriebsarten]]

Zeile 2:

[[Kategorie:Digitale Betriebsarten]]

[[Bild:Bullet2.png|thumb|Ubiquiti Bullet2]]

== Einleitung ==

== HAMNETpoweruser ==

Das HAMNET hat grob genommen 3 Ebenen, welche unterschiedlich adressiert sind:

Der Backbone hat 3 Ebenen, welche unterschiedlich adressiert sind:

- *) Der Backbone: Die stellt die eigentliche Autobahn da und macht außer Routing und Basisverbindung herstellen eigentlich nichts. Direkte Sicht ist das Thema hier.
- *) Der Service/Poweruser Bereich: Dieser Bereich ist die bessere **Landstrasse** für das HAMENT, bedingt aber einen höheren Hardware und Konfigurationsaufwand am User. Auch hier unmittelbare Nähe um Powereinstieg notwendig
- *) Mesh/Enduser Bereich: Dieser Bereich adressiert Methoden und Techniken, das entweder direkt bzw indirekt über bestehende Mesh Partner Verbindung aufgenommen werden kann.

- *) Der Backbone: Die stellt die eigentliche Autobahn da und macht außer Routing und Basisverbindung herstellen eigentlich nichts. Direkte Sicht ist das Thema hier.
- *) Der Service/Poweruser Bereich: Dieser Bereich ist die bessere **Landstraße** für das HAMENT, bedingt aber einen höheren Hardware und Konfigurationsaufwand am User. Auch hier unmittelbare Nähe um Powereinstieg notwendig
- *) Mesh/Enduser Bereich: Dieser Bereich adressiert Methoden und Techniken, das entweder direkt bzw indirekt über bestehende Mesh Partner Verbindung aufgenommen werden kann.

Der Poweruser Bereich stellt einen Zugang mit höherer Bandbreite zum Backbone im Userbreich dar und bedarf spezialiserte Hardware.

Der Poweruser Bereich stellt einen Zugang mit höherer Bandbreite zum Backbone im Userbereich dar und bedarf spezialisiert e Hardware.

=== Wahl des HAMNET
Userequipment ===

 Bei der Wahl des anzuschaffenden
 Gerätes ist die Anforderung des lokalen Benutzerzugangs zu beachten.

Manche AP's (Access Points)
erfordern bspw. eine reduzierte
Bandbreite, welche nicht mit allen
Geräten bzw. Softwarevarianten
möglich ist. Erkundigen Sie sich am
Besten zuvor beim zuständigen
SysOp.

"Es sind HAMNETpoweruser undHAMNETmesh nicht miteinander kompatibel!"

== Allgemein gilt ==

Generell ist meist nur freie Sicht ein Garant für eine (gute) Verbindung. Bei geringeren Entfernungen kann dann aber schon mal mit Reflexionen experimentiert werden.

Außerdem gilt - je größer die Entfernung zum Accesspoint, desto mehr Anforderung steht an den Gewinn der verwendeten Antenne, sowie der Leistung der HF Einheit.

==== Ubiquiti Nanostation 2, Bullet 2
(HP)* ====

Diese all-in-one Lösung vereint
Router, WLAN Karte und Antenne in
einem wetter- und UV-beständigen
Gehäuse bei einer Einsatztemperatur
von bis zu -20°C.

Beim Kauf ist auch gleich der komfortable PoE Adapter (Power over Ethernet) und das 12V Netzteil enthalten.

Per PoE kann nun die Versorgung des Gerätes bequem über das Netzwerkabel aus der Entfernung (Shack) erfolgen, und man braucht so nur ein Kabel zu verlegen.

Dabei verfügt die Einheit über 16dbm Sendeleistung an einer eingebauten 10dbi Antenne. Das Anbringen einer externen Antenne ist über einen RP-SMA Anschluß möglich.

Die Einstellungen können per Browser über das Webinterface im AirOS gemacht werden.

== Wahl des HAMNET Userequipment ==

"Bei der Wahl des anzuschaffenden Gerätes ist die Anforderung des lokalen Benutzerzugangs zu beachten."

"'Manche AP's (Access Points)
erfordern bspw. eine reduzierte
Bandbreite, welche nicht mit allen
Geräten bzw. Softwarevarianten
möglich ist. Erkundigen Sie sich am
Besten zuvor beim zuständigen SysOp.

Das AirOS der Nanostation 2 bzw. des Bullet 2(HP) unterstützt auch eine reduzierte Signal-Bandbreite von 10 bzw. 5 MHz.

Ein Konfigurationsbeispiel bspw. für den 2,4GHz Benutzerzugang am Gaisberg OE2 findet sich in [[Teststellungen Gaisberg Gernkogel]].

"Es sind HAMNETpoweruser und [[Userequipment HAMNETmesh | HAMNETmesh]] nicht miteinander kompatibel!"

=== Mikrotik ===

Ausgabe: 03.05.2024

Das Equipment von Ubiquiti beherrscht im Gegensatz zum Linksys über eine einstellbare Nutz-Bandbreite. [[Bild:qrt2.jpg|thumb|Mikrotik QRT]] Die im Backbone eingesetzten Routerboards können natürlich auch für den Userzugang verwendet werden. Zu erwähnen ist, dass Mikrotik Hardware der professionellen Schiene zuzuordnen ist, und ist daher in der Konfiguration auch wesentlich umfangreicher. ==== Mikrotik Userzugang konfigurieren ==== [[Media:Mikrotik-HAMNET-User-Manual V1.32.pdf|Mikrotik-HAMNET-User-Manual V1.32]] Die benötige HF Bandbreite kann aus **Diese Version Dokuments ist eine** den Messungen hier entnommen völlig neue und wesentlich erweiterte werden:[[Messungen digitaler Neuauflage. Backbone]] [[Media:Mikrotik-HAMNET-User-Manual V2.21.pdf|Mikrotik-HAMNET-User-Manual V2.2]] === Antenne === ==== RBQRTG-2SHPnD (QRT2) ==== Das RBORTG-2SHPnD. kurz ORT2. ist in punkto Preis-Leistung eine äußerst gute Wahl. Eine 17dbi Flachantenne verbaut in einem wetterfesten Gehäuse mit integrierter HF

Hardware stellt das Optimum an geringer Baugröße bei maximaler Leistungsfähigkeit dar. Die Sendeleistung beträgt dabei bis zu 35dbm! Außerdem bietet der Aufbau eine 2x2 MiMo Chain.

– ==== Yagi ====

* 18dbi Antenne mit Kabel und RP-TNC

- Stecker zum direkten Anschluß an den
WRT54GL (bei Ebay ca. € 27,-)

=== Ubiquiti ===

+

Im Grunde eignet sich jedes Produkt aus der Palette [http://www.ubnt.com/airmax airMAX von UBIQUITI] für einen Zugang als POWERuser zum HAMNET. Achten muss man aber darauf, für welches Frequenzband das Equipment verwendet werden soll.

+

+ ====AirGrid====

Die AirGird Gitterantenne hat den Sendeempfänger in einem witterungsbeständigen Gehäuse direkt im Brennpunkt verbaut. Diese Antenne eignet sich eher für eine geschützte Montage, bei der zumindest kein Schnee und Eis zwischen Reflektor und Erreger liegen bleiben kann.

+

+ ====NanoBeam====

Der NanoBeam ist eine Parabolantenne, welche die wetterfeste HF Hardware fix im

+ Brennpunkt verbaut hat. Wenn die Antenne den in unseren Breiten üblichen Witterungsbedingungen (Schnee) ausgesetzt ist, empfiehlt sich das zugehörige Radom, damit die Charakteristik unverändert bleibt.

+

==== Nanostation M2, Bullet M2HP

+ [[Bild:Bullet2.png|thumb|Ubiquiti Bullet2]]

Diese all-in-one Lösung vereint
Router, WLAN Karte und Antenne (nur
Nanostation) in einem wetter- und UVbeständigen Gehäuse bei einer
Einsatztemperatur von bis zu -20°C.

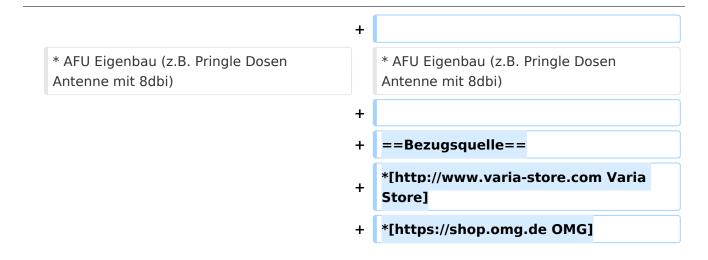
Beim Kauf ist auch gleich der komfortable PoE Adapter (Power over Ethernet) und das 12V Netzteil enthalten (nur NanoStation).

Per PoE kann nun die Versorgung des Gerätes bequem über das Netzwerkabel aus der Entfernung (Shack) erfolgen, und man braucht so nur ein einziges Kabel zu verlegen.

+

Dabei verfügt die Einheit je nach+ Ausführung über bis zu 28dbmSendeleistung.

 Die Einstellungen können bequem per
 + Browser über das Webinterface im AirOS gemacht werden.


+

Das, im Equipment von Ubiquiti
verwendete Betriebssystem AirOS
bspw. der Nanostation bzw. des
Bullet unterstützt im Gegensatz zum Li
nksys auch eine reduzierbare SignalBandbreite von 10 bzw. 5 MHz.

Die benötige HF Bandbreite kann aus den Messungen hier entnommen werden: [[Messungen digitaler Backbone]] Ein Konfigurationsbeispiel bspw. für d en 2,4GHz Benutzerzugang am Gaisberg OE2 (analog Untersberg, Gernkogel, Wildkogel) findet sich in [[Teststellungen Gaisberg Gernkogel]]. Für Benutzer, welche das Ubiquiti Equipment mit einem LAN Router im hauseigenen Netzwerk zur parallelen Nutzung von Internet und HAMNET verwenden wollen gibt es die Anleitung [[Media:Router-Poweruser. pdf|Ubiquiti NS bzw. Bullet mit LAN Router]]. Die Nanostation Loco ist eher nicht geeignet, da dessen Antennengewinn und Sendeleistung meist nicht ausreicht. ""WebLinks:"" *[http://www.ubnt.com/products /bulletm.php Ubiquiti Bullet M Serie] *[http://www.ubnt.com/products/nano. php Ubiquiti Nanostation] + == Antenne == === Yagi ===

Aktuelle Version vom 18. November 2018, 17:02 Uhr

Inhaltsverzeichnis
1 Einleitung
2 Allgemein gilt
3 Wahl des HAMNET Userequipment
3.1 Mikrotik
3.1.1 Mikrotik Userzugang konfigurieren
3.1.2 RBQRTG-2SHPnD (QRT2)
3.2 Ubiquiti
3.2.1 AirGrid
3.2.2 NanoBeam
3.2.3 Nanostation M2, Bullet M2HP
4 Antenne
4.1 Yagi
5 Bezugsquelle

Einleitung

Das HAMNET hat grob genommen 3 Ebenen, welche unterschiedlich adressiert sind:

-) Der Backbone: Die stellt die eigentliche Autobahn da und macht außer Routing und Basisverbindung herstellen eigentlich nichts. Direkte Sicht ist das Thema hier.
-) Der Service/Poweruser Bereich: Dieser Bereich ist die bessere Landstraße für das HAMENT, bedingt aber einen höheren Hardware und Konfigurationsaufwand am User. Auch hier unmittelbare Nähe um Powereinstieg notwendig
-) Mesh/Enduser Bereich: Dieser Bereich adressiert Methoden und Techniken, das entweder direkt bzw indirekt über bestehende Mesh Partner Verbindung aufgenommen werden kann.

Der Poweruser Bereich stellt einen Zugang mit höherer Bandbreite zum Backbone im Userbereich dar und bedarf spezialisierte Hardware.

Allgemein gilt

Generell ist meist nur freie Sicht ein Garant für eine (gute) Verbindung. Bei geringeren Entfernungen kann dann aber schon mal mit Reflexionen experimentiert werden. Außerdem gilt - je größer die Entfernung zum Accesspoint, desto mehr Anforderung steht an den Gewinn der verwendeten Antenne, sowie der Leistung der HF Einheit.

Wahl des HAMNET Userequipment

Bei der Wahl des anzuschaffenden Gerätes ist die Anforderung des lokalen Benutzerzugangs zu beachten. Manche AP's (Access Points) erfordern bspw. eine reduzierte Bandbreite, welche nicht mit allen Geräten bzw. Softwarevarianten möglich ist. Erkundigen Sie sich am Besten zuvor beim zuständigen SysOp.

Es sind HAMNETpoweruser und HAMNETmesh nicht miteinander kompatibel!

Mikrotik

Die im Backbone eingesetzten Routerboards können natürlich auch für den Userzugang verwendet werden. Zu erwähnen ist, dass Mikrotik Hardware der professionellen Schiene zuzuordnen ist, und ist daher in der Konfiguration auch wesentlich umfangreicher.

Datei:qrt2.jpg Mikrotik QRT

Mikrotik Userzugang konfigurieren

Mikrotik-HAMNET-User-Manual V1.32

Diese Version Dokuments ist eine völlig neue und wesentlich erweiterte Neuauflage.

Mikrotik-HAMNET-User-Manual V2.2

Ausgabe: 03.05.2024 Dieses Dokument wurde erzeugt mit BlueSpice

RBQRTG-2SHPnD (QRT2)

Das RBQRTG-2SHPnD, kurz QRT2, ist in punkto Preis-Leistung eine äußerst gute Wahl. Eine 17dbi Flachantenne verbaut in einem wetterfesten Gehäuse mit integrierter HF Hardware stellt das Optimum an geringer Baugröße bei maximaler Leistungsfähigkeit dar. Die Sendeleistung beträgt dabei bis zu 35dbm! Außerdem bietet der Aufbau eine 2x2 MiMo Chain.

Ubiquiti

Im Grunde eignet sich jedes Produkt aus der Palette airMAX von UBIQUITI für einen Zugang als POWERuser zum HAMNET. Achten muss man aber darauf, für welches Frequenzband das Equipment verwendet werden soll.

AirGrid

Die AirGird Gitterantenne hat den Sendeempfänger in einem witterungsbeständigen Gehäuse direkt im Brennpunkt verbaut. Diese Antenne eignet sich eher für eine geschützte Montage, bei der zumindest kein Schnee und Eis zwischen Reflektor und Erreger liegen bleiben kann.

NanoBeam

Der NanoBeam ist eine Parabolantenne, welche die wetterfeste HF Hardware fix im Brennpunkt verbaut hat. Wenn die Antenne den in unseren Breiten üblichen Witterungsbedingungen (Schnee) ausgesetzt ist, empfiehlt sich das zugehörige Radom, damit die Charakteristik unverändert bleibt.

Nanostation M2, Bullet M2HP

Diese all-in-one Lösung vereint Router, WLAN Karte und Antenne (nur Nanostation) in einem wetter- und UV-beständigen Gehäuse bei einer Einsatztemperatur von bis zu -20°C. Beim Kauf ist auch gleich der komfortable PoE Adapter (Power over Ethernet) und das 12V Netzteil enthalten (nur NanoStation). Per PoE kann nun die Versorgung des Gerätes bequem über das Netzwerkabel aus der Entfernung (Shack) erfolgen, und man braucht so nur ein einziges Kabel zu verlegen.

Dabei verfügt die Einheit je nach Ausführung über bis zu 28dbm Sendeleistung. Die Einstellungen können bequem per Browser über das Webinterface im AirOS gemacht werden.

Ausgabe: 03.05.2024

Das, im Equipment von Ubiquiti verwendete Betriebssystem AirOS bspw. der Nanostation bzw. des Bullet unterstützt im Gegensatz zum Linksys auch eine reduzierbare Signal-Bandbreite von 10 bzw. 5 MHz.

Die benötige HF Bandbreite kann aus den Messungen hier entnommen werden: Messungen digitaler Backbone

Ein Konfigurationsbeispiel bspw. für den 2,4GHz Benutzerzugang am Gaisberg OE2 (analog Untersberg, Gernkogel, Wildkogel) findet sich in Teststellungen Gaisberg Gernkogel.

Für Benutzer, welche das Ubiquiti Equipment mit einem LAN Router im hauseigenen Netzwerk zur parallelen Nutzung von Internet und HAMNET verwenden wollen gibt es die Anleitung Ubiquiti NS bzw. Bullet mit LAN Router.

Die Nanostation Loco ist eher nicht geeignet, da dessen Antennengewinn und Sendeleistung meist nicht ausreicht.

WebLinks:

- Ubiquiti Bullet M Serie
- Ubiquiti Nanostation

Antenne

Yagi

• AFU Eigenbau (z.B. Pringle Dosen Antenne mit 8dbi)

Bezugsquelle

- Varia Store
- OMG

Userequipment HAMNETpoweruser: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 19. August 2009, 13:38 Uhr (Quelltext anzeigen)

Oe6rke (Diskussion | Beiträge)

← Zum vorherigen Versionsunterschied

Aktuelle Version vom 18. November 2018, 17:02 Uhr (Quelltext anzeigen)

OE5RNL (Diskussion | Beiträge)
K (→Mikrotik Userzugang konfigurieren)

(20 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)

Zeile 2: Zeile 2:

[[Kategorie:Digitale_Betriebsarten]]

[[Kategorie:Digitale_Betriebsarten]]

[[Bild:Bullet2.png|thumb|Ubiquiti Bullet2]] == Einleitung ==

== HAMNETpoweruser ==

Das HAMNET hat grob genommen 3
Ebenen, welche unterschiedlich
adressiert sind:

Der Backbone hat 3 Ebenen, welche unterschiedlich adressiert sind:

- *) Der Backbone: Die stellt die eigentliche Autobahn da und macht außer Routing und Basisverbindung herstellen eigentlich nichts. Direkte Sicht ist das Thema hier.
- *) Der Service/Poweruser Bereich: Dieser Bereich ist die bessere Landstrasse für das HAMENT, bedingt aber einen höheren Hardware und Konfigurationsaufwand am User. Auch hier unmittelbare Nähe um Powereinstieg notwendig
- *) Mesh/Enduser Bereich: Dieser Bereich adressiert Methoden und Techniken, das entweder direkt bzw indirekt über bestehende Mesh Partner Verbindung aufgenommen werden kann.

- *) Der Backbone: Die stellt die eigentliche Autobahn da und macht außer Routing und Basisverbindung herstellen eigentlich nichts. Direkte Sicht ist das Thema hier.
- *) Der Service/Poweruser Bereich: Dieser Bereich ist die bessere **Landstraße** für das HAMENT, bedingt aber einen höheren Hardware und Konfigurationsaufwand am User. Auch hier unmittelbare Nähe um Powereinstieg notwendig
- *) Mesh/Enduser Bereich: Dieser Bereich adressiert Methoden und Techniken, das entweder direkt bzw indirekt über bestehende Mesh Partner Verbindung aufgenommen werden kann.

Der Poweruser Bereich stellt einen Zugang mit höherer Bandbreite zum Backbone im Userbreich dar und bedarf spezialiserte Hardware.

Der Poweruser Bereich stellt einen Zugang mit höherer Bandbreite zum Backbone im Userbereich dar und bedarf spezialisiert e Hardware.

=== Wahl des HAMNET
Userequipment ===

Bei der Wahl des anzuschaffenden

- Gerätes ist die Anforderung des
lokalen Benutzerzugangs zu beachten.

Manche AP's (Access Points)
erfordern bspw. eine reduzierte
Bandbreite, welche nicht mit allen
Geräten bzw. Softwarevarianten
möglich ist. Erkundigen Sie sich am
Besten zuvor beim zuständigen
SysOp.

"Es sind HAMNETpoweruser undHAMNETmesh nicht miteinander kompatibel!"

== Allgemein gilt ==

Generell ist meist nur freie Sicht ein Garant für eine (gute) Verbindung. Bei geringeren Entfernungen kann dann aber schon mal mit Reflexionen experimentiert werden.

Außerdem gilt - je größer die Entfernung zum Accesspoint, desto mehr Anforderung steht an den Gewinn der verwendeten Antenne, sowie der Leistung der HF Einheit.

==== Ubiquiti Nanostation 2, Bullet 2
(HP)* ====

Diese all-in-one Lösung vereint Router, WLAN Karte und Antenne in einem wetter- und UV-beständigen Gehäuse bei einer Einsatztemperatur von bis zu -20°C.

Beim Kauf ist auch gleich der komfortable PoE Adapter (Power over Ethernet) und das 12V Netzteil enthalten.

Per PoE kann nun die Versorgung des Gerätes bequem über das Netzwerkabel aus der Entfernung (Shack) erfolgen, und man braucht so nur ein Kabel zu verlegen.

Dabei verfügt die Einheit über 16dbm Sendeleistung an einer eingebauten 10dbi Antenne. Das Anbringen einer externen Antenne ist über einen RP-SMA Anschluß möglich.

Die Einstellungen können per Browser über das Webinterface im AirOS gemacht werden.

== Wahl des HAMNET Userequipment ==

"Bei der Wahl des anzuschaffenden Gerätes ist die Anforderung des lokalen Benutzerzugangs zu beachten."

"'Manche AP's (Access Points)
erfordern bspw. eine reduzierte
Bandbreite, welche nicht mit allen
Geräten bzw. Softwarevarianten
möglich ist. Erkundigen Sie sich am
Besten zuvor beim zuständigen SysOp.

Das AirOS der Nanostation 2 bzw. des Bullet 2(HP) unterstützt auch eine reduzierte Signal-Bandbreite von 10 bzw. 5 MHz.

Ein Konfigurationsbeispiel bspw. für den 2,4GHz Benutzerzugang am Gaisberg OE2 findet sich in [[Teststellungen Gaisberg Gernkogel]]. "Es sind HAMNETpoweruser und [[Userequipment HAMNETmesh | HAMNETmesh]] nicht miteinander kompatibel!"

=== Mikrotik ===

Ausgabe: 03.05.2024

Das Equipment von Ubiquiti beherrscht im Gegensatz zum Linksys über eine einstellbare Nutz-Bandbreite. [[Bild:qrt2.jpg|thumb|Mikrotik QRT]] Die im Backbone eingesetzten Routerboards können natürlich auch für den Userzugang verwendet werden. Zu erwähnen ist, dass Mikrotik Hardware der professionellen Schiene zuzuordnen ist, und ist daher in der Konfiguration auch wesentlich umfangreicher. ==== Mikrotik Userzugang konfigurieren ==== [[Media:Mikrotik-HAMNET-User-Manual V1.32.pdf|Mikrotik-HAMNET-User-Manual V1.32]] Die benötige HF Bandbreite kann aus **Diese Version Dokuments ist eine** völlig neue und wesentlich erweiterte den Messungen hier entnommen werden:[[Messungen digitaler Neuauflage. Backbone]] [[Media:Mikrotik-HAMNET-User-Manual V2.21.pdf|Mikrotik-HAMNET-User-Manual V2.2]] === Antenne === ==== RBQRTG-2SHPnD (QRT2) ==== Das RBORTG-2SHPnD. kurz ORT2. ist in punkto Preis-Leistung eine äußerst gute Wahl. Eine 17dbi Flachantenne verbaut in einem wetterfesten Gehäuse mit integrierter HF

Hardware stellt das Optimum an geringer Baugröße bei maximaler Leistungsfähigkeit dar. Die Sendeleistung beträgt dabei bis zu 35dbm! Außerdem bietet der Aufbau eine 2x2 MiMo Chain.

– ==== Yagi ====

* 18dbi Antenne mit Kabel und RP-TNC

Stecker zum direkten Anschluß an den
WRT54GL (bei Ebay ca. € 27,-)

=== Ubiquiti ===

+

Im Grunde eignet sich jedes Produkt aus der Palette [http://www.ubnt.com/airmax airMAX von UBIQUITI] für einen Zugang als POWERuser zum HAMNET. Achten muss man aber darauf, für welches Frequenzband das Equipment verwendet werden soll.

+

+ ====AirGrid====

Die AirGird Gitterantenne hat den Sendeempfänger in einem witterungsbeständigen Gehäuse direkt im Brennpunkt verbaut. Diese Antenne eignet sich eher für eine geschützte Montage, bei der zumindest kein Schnee und Eis zwischen Reflektor und Erreger liegen bleiben kann.

+

+ ====NanoBeam====

Der NanoBeam ist eine Parabolantenne, welche die wetterfeste HF Hardware fix im

+ Brennpunkt verbaut hat. Wenn die Antenne den in unseren Breiten üblichen Witterungsbedingungen (Schnee) ausgesetzt ist, empfiehlt sich das zugehörige Radom, damit die Charakteristik unverändert bleibt.

+

==== Nanostation M2, Bullet M2HP

+ [[Bild:Bullet2.png|thumb|Ubiquiti Bullet2]]

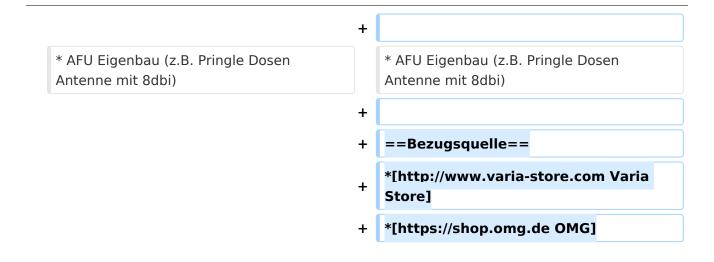
Diese all-in-one Lösung vereint
Router, WLAN Karte und Antenne (nur
Nanostation) in einem wetter- und UVbeständigen Gehäuse bei einer
Einsatztemperatur von bis zu -20°C.

Beim Kauf ist auch gleich der komfortable PoE Adapter (Power over Ethernet) und das 12V Netzteil enthalten (nur NanoStation).

Per PoE kann nun die Versorgung des Gerätes bequem über das Netzwerkabel aus der Entfernung (Shack) erfolgen, und man braucht so nur ein einziges Kabel zu verlegen.

+

Dabei verfügt die Einheit je nach+ Ausführung über bis zu 28dbmSendeleistung.


 Die Einstellungen können bequem per
 + Browser über das Webinterface im AirOS gemacht werden.

+

Das, im Equipment von Ubiquiti
verwendete Betriebssystem AirOS
bspw. der Nanostation bzw. des
Bullet unterstützt im Gegensatz zum Li
nksys auch eine reduzierbare SignalBandbreite von 10 bzw. 5 MHz.

Die benötige HF Bandbreite kann aus den Messungen hier entnommen werden: [[Messungen digitaler Backbone]] Ein Konfigurationsbeispiel bspw. für d en 2,4GHz Benutzerzugang am Gaisberg OE2 (analog Untersberg, Gernkogel, Wildkogel) findet sich in [[Teststellungen Gaisberg Gernkogel]]. Für Benutzer, welche das Ubiquiti Equipment mit einem LAN Router im hauseigenen Netzwerk zur parallelen Nutzung von Internet und HAMNET verwenden wollen gibt es die Anleitung [[Media:Router-Poweruser. pdf|Ubiquiti NS bzw. Bullet mit LAN Router]]. Die Nanostation Loco ist eher nicht geeignet, da dessen Antennengewinn und Sendeleistung meist nicht ausreicht. ""WebLinks:"" *[http://www.ubnt.com/products /bulletm.php Ubiquiti Bullet M Serie] *[http://www.ubnt.com/products/nano. php Ubiquiti Nanostation] + == Antenne == === Yagi ===

Aktuelle Version vom 18. November 2018, 17:02 Uhr

Inhaltsverzeichnis
1 Einleitung
2 Allgemein gilt
3 Wahl des HAMNET Userequipment
3.1 Mikrotik
3.1.1 Mikrotik Userzugang konfigurieren
3.1.2 RBQRTG-2SHPnD (QRT2)
3.2 Ubiquiti
3.2.1 AirGrid
3.2.2 NanoBeam
3.2.3 Nanostation M2, Bullet M2HP
4 Antenne
4.1 Yagi
5 Bezugsquelle

Einleitung

Das HAMNET hat grob genommen 3 Ebenen, welche unterschiedlich adressiert sind:

-) Der Backbone: Die stellt die eigentliche Autobahn da und macht außer Routing und Basisverbindung herstellen eigentlich nichts. Direkte Sicht ist das Thema hier.
-) Der Service/Poweruser Bereich: Dieser Bereich ist die bessere Landstraße für das HAMENT, bedingt aber einen höheren Hardware und Konfigurationsaufwand am User. Auch hier unmittelbare Nähe um Powereinstieg notwendig
-) Mesh/Enduser Bereich: Dieser Bereich adressiert Methoden und Techniken, das entweder direkt bzw indirekt über bestehende Mesh Partner Verbindung aufgenommen werden kann.

Der Poweruser Bereich stellt einen Zugang mit höherer Bandbreite zum Backbone im Userbereich dar und bedarf spezialisierte Hardware.

Allgemein gilt

Generell ist meist nur freie Sicht ein Garant für eine (gute) Verbindung. Bei geringeren Entfernungen kann dann aber schon mal mit Reflexionen experimentiert werden. Außerdem gilt - je größer die Entfernung zum Accesspoint, desto mehr Anforderung steht an den Gewinn der verwendeten Antenne, sowie der Leistung der HF Einheit.

Wahl des HAMNET Userequipment

Bei der Wahl des anzuschaffenden Gerätes ist die Anforderung des lokalen Benutzerzugangs zu beachten. Manche AP's (Access Points) erfordern bspw. eine reduzierte Bandbreite, welche nicht mit allen Geräten bzw. Softwarevarianten möglich ist. Erkundigen Sie sich am Besten zuvor beim zuständigen SysOp.

Es sind HAMNETpoweruser und HAMNETmesh nicht miteinander kompatibel!

Mikrotik

Die im Backbone eingesetzten Routerboards können natürlich auch für den Userzugang verwendet werden. Zu erwähnen ist, dass Mikrotik Hardware der professionellen Schiene zuzuordnen ist, und ist daher in der Konfiguration auch wesentlich umfangreicher.

Datei:qrt2.jpg Mikrotik QRT

Mikrotik Userzugang konfigurieren

Mikrotik-HAMNET-User-Manual V1.32

Diese Version Dokuments ist eine völlig neue und wesentlich erweiterte Neuauflage.

Mikrotik-HAMNET-User-Manual V2.2

Ausgabe: 03.05.2024 Dieses Dokument wurde erzeugt mit BlueSpice

RBQRTG-2SHPnD (QRT2)

Das RBQRTG-2SHPnD, kurz QRT2, ist in punkto Preis-Leistung eine äußerst gute Wahl. Eine 17dbi Flachantenne verbaut in einem wetterfesten Gehäuse mit integrierter HF Hardware stellt das Optimum an geringer Baugröße bei maximaler Leistungsfähigkeit dar. Die Sendeleistung beträgt dabei bis zu 35dbm! Außerdem bietet der Aufbau eine 2x2 MiMo Chain.

Ubiquiti

Im Grunde eignet sich jedes Produkt aus der Palette airMAX von UBIQUITI für einen Zugang als POWERuser zum HAMNET. Achten muss man aber darauf, für welches Frequenzband das Equipment verwendet werden soll.

AirGrid

Die AirGird Gitterantenne hat den Sendeempfänger in einem witterungsbeständigen Gehäuse direkt im Brennpunkt verbaut. Diese Antenne eignet sich eher für eine geschützte Montage, bei der zumindest kein Schnee und Eis zwischen Reflektor und Erreger liegen bleiben kann.

NanoBeam

Der NanoBeam ist eine Parabolantenne, welche die wetterfeste HF Hardware fix im Brennpunkt verbaut hat. Wenn die Antenne den in unseren Breiten üblichen Witterungsbedingungen (Schnee) ausgesetzt ist, empfiehlt sich das zugehörige Radom, damit die Charakteristik unverändert bleibt.

Nanostation M2, Bullet M2HP

Diese all-in-one Lösung vereint Router, WLAN Karte und Antenne (nur Nanostation) in einem wetter- und UV-beständigen Gehäuse bei einer Einsatztemperatur von bis zu -20°C. Beim Kauf ist auch gleich der komfortable PoE Adapter (Power over Ethernet) und das 12V Netzteil enthalten (nur NanoStation). Per PoE kann nun die Versorgung des Gerätes bequem über das Netzwerkabel aus der Entfernung (Shack) erfolgen, und man braucht so nur ein einziges Kabel zu verlegen.

Dabei verfügt die Einheit je nach Ausführung über bis zu 28dbm Sendeleistung. Die Einstellungen können bequem per Browser über das Webinterface im AirOS gemacht werden.

Ausgabe: 03.05.2024

Das, im Equipment von Ubiquiti verwendete Betriebssystem AirOS bspw. der Nanostation bzw. des Bullet unterstützt im Gegensatz zum Linksys auch eine reduzierbare Signal-Bandbreite von 10 bzw. 5 MHz.

Die benötige HF Bandbreite kann aus den Messungen hier entnommen werden: Messungen digitaler Backbone

Ein Konfigurationsbeispiel bspw. für den 2,4GHz Benutzerzugang am Gaisberg OE2 (analog Untersberg, Gernkogel, Wildkogel) findet sich in Teststellungen Gaisberg Gernkogel.

Für Benutzer, welche das Ubiquiti Equipment mit einem LAN Router im hauseigenen Netzwerk zur parallelen Nutzung von Internet und HAMNET verwenden wollen gibt es die Anleitung Ubiquiti NS bzw. Bullet mit LAN Router.

Die Nanostation Loco ist eher nicht geeignet, da dessen Antennengewinn und Sendeleistung meist nicht ausreicht.

WebLinks:

- Ubiquiti Bullet M Serie
- Ubiquiti Nanostation

Antenne

Yagi

• AFU Eigenbau (z.B. Pringle Dosen Antenne mit 8dbi)

Bezugsquelle

- Varia Store
- OMG

Userequipment HAMNETpoweruser: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 19. August 2009, 13:38 Uhr (Quelltext anzeigen)

Oe6rke (Diskussion | Beiträge)

← Zum vorherigen Versionsunterschied

Aktuelle Version vom 18. November 2018, 17:02 Uhr (Quelltext anzeigen)

OE5RNL (Diskussion | Beiträge)
K (→Mikrotik Userzugang konfigurieren)

(20 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)

Zeile 2: Zeile 2:

[[Kategorie:Digitale_Betriebsarten]]

[[Kategorie:Digitale_Betriebsarten]]

[[Bild:Bullet2.png|thumb|Ubiquiti Bullet2]] == Einleitung ==

== HAMNETpoweruser ==

Das HAMNET hat grob genommen 3
Ebenen, welche unterschiedlich
adressiert sind:

Der Backbone hat 3 Ebenen, welche unterschiedlich adressiert sind:

- *) Der Backbone: Die stellt die eigentliche Autobahn da und macht außer Routing und Basisverbindung herstellen eigentlich nichts. Direkte Sicht ist das Thema hier.
- *) Der Service/Poweruser Bereich: Dieser Bereich ist die bessere Landstrasse für das HAMENT, bedingt aber einen höheren Hardware und Konfigurationsaufwand am User. Auch hier unmittelbare Nähe um Powereinstieg notwendig
- *) Mesh/Enduser Bereich: Dieser Bereich adressiert Methoden und Techniken, das entweder direkt bzw indirekt über bestehende Mesh Partner Verbindung aufgenommen werden kann.

- *) Der Backbone: Die stellt die eigentliche Autobahn da und macht außer Routing und Basisverbindung herstellen eigentlich nichts. Direkte Sicht ist das Thema hier.
- *) Der Service/Poweruser Bereich: Dieser Bereich ist die bessere **Landstraße** für das HAMENT, bedingt aber einen höheren Hardware und Konfigurationsaufwand am User. Auch hier unmittelbare Nähe um Powereinstieg notwendig
- *) Mesh/Enduser Bereich: Dieser Bereich adressiert Methoden und Techniken, das entweder direkt bzw indirekt über bestehende Mesh Partner Verbindung aufgenommen werden kann.

Der Poweruser Bereich stellt einen Zugang mit höherer Bandbreite zum Backbone im Userbreich dar und bedarf spezialiserte Hardware.

Der Poweruser Bereich stellt einen Zugang mit höherer Bandbreite zum Backbone im Userbereich dar und bedarf spezialisiert e Hardware.

=== Wahl des HAMNET
Userequipment ===

Bei der Wahl des anzuschaffenden

- Gerätes ist die Anforderung des
lokalen Benutzerzugangs zu beachten.

Manche AP's (Access Points)
erfordern bspw. eine reduzierte
Bandbreite, welche nicht mit allen
Geräten bzw. Softwarevarianten
möglich ist. Erkundigen Sie sich am
Besten zuvor beim zuständigen
SysOp.

"Es sind HAMNETpoweruser undHAMNETmesh nicht miteinander kompatibel!"

== Allgemein gilt ==

Generell ist meist nur freie Sicht ein Garant für eine (gute) Verbindung. Bei geringeren Entfernungen kann dann aber schon mal mit Reflexionen experimentiert werden.

Außerdem gilt - je größer die Entfernung zum Accesspoint, desto mehr Anforderung steht an den Gewinn der verwendeten Antenne, sowie der Leistung der HF Einheit.

==== Ubiquiti Nanostation 2, Bullet 2
(HP)* ====

Diese all-in-one Lösung vereint
Router, WLAN Karte und Antenne in
einem wetter- und UV-beständigen
Gehäuse bei einer Einsatztemperatur
von bis zu -20°C.

Beim Kauf ist auch gleich der komfortable PoE Adapter (Power over Ethernet) und das 12V Netzteil enthalten.

Per PoE kann nun die Versorgung des Gerätes bequem über das Netzwerkabel aus der Entfernung (Shack) erfolgen, und man braucht so nur ein Kabel zu verlegen.

Dabei verfügt die Einheit über 16dbm Sendeleistung an einer eingebauten 10dbi Antenne. Das Anbringen einer externen Antenne ist über einen RP-SMA Anschluß möglich.

Die Einstellungen können per Browser über das Webinterface im AirOS gemacht werden.

== Wahl des HAMNET Userequipment ==

"Bei der Wahl des anzuschaffenden Gerätes ist die Anforderung des lokalen Benutzerzugangs zu beachten."

"'Manche AP's (Access Points)
erfordern bspw. eine reduzierte
Bandbreite, welche nicht mit allen
Geräten bzw. Softwarevarianten
möglich ist. Erkundigen Sie sich am
Besten zuvor beim zuständigen SysOp.

Das AirOS der Nanostation 2 bzw. des Bullet 2(HP) unterstützt auch eine reduzierte Signal-Bandbreite von 10 bzw. 5 MHz.

Ein Konfigurationsbeispiel bspw. für den 2,4GHz Benutzerzugang am Gaisberg OE2 findet sich in [[Teststellungen Gaisberg Gernkogel]].

"Es sind HAMNETpoweruser und [[Userequipment HAMNETmesh | HAMNETmesh]] nicht miteinander kompatibel!"

=== Mikrotik ===

Ausgabe: 03.05.2024

Das Equipment von Ubiquiti beherrscht im Gegensatz zum Linksys über eine einstellbare Nutz-Bandbreite. [[Bild:qrt2.jpg|thumb|Mikrotik QRT]] Die im Backbone eingesetzten Routerboards können natürlich auch für den Userzugang verwendet werden. Zu erwähnen ist, dass Mikrotik Hardware der professionellen Schiene zuzuordnen ist, und ist daher in der Konfiguration auch wesentlich umfangreicher. ==== Mikrotik Userzugang konfigurieren ==== [[Media:Mikrotik-HAMNET-User-Manual V1.32.pdf|Mikrotik-HAMNET-User-Manual V1.32]] Die benötige HF Bandbreite kann aus **Diese Version Dokuments ist eine** völlig neue und wesentlich erweiterte den Messungen hier entnommen werden:[[Messungen digitaler Neuauflage. Backbone]] [[Media:Mikrotik-HAMNET-User-Manual V2.21.pdf|Mikrotik-HAMNET-User-Manual V2.2]] === Antenne === ==== RBQRTG-2SHPnD (QRT2) ==== Das RBORTG-2SHPnD. kurz ORT2. ist in punkto Preis-Leistung eine äußerst gute Wahl. Eine 17dbi Flachantenne verbaut in einem wetterfesten Gehäuse mit integrierter HF

Hardware stellt das Optimum an geringer Baugröße bei maximaler Leistungsfähigkeit dar. Die Sendeleistung beträgt dabei bis zu 35dbm! Außerdem bietet der Aufbau eine 2x2 MiMo Chain.

– ==== Yagi ====

* 18dbi Antenne mit Kabel und RP-TNC

Stecker zum direkten Anschluß an den
WRT54GL (bei Ebay ca. € 27,-)

=== Ubiquiti ===

+

Im Grunde eignet sich jedes Produkt aus der Palette [http://www.ubnt.com/airmax airMAX von UBIQUITI] für einen Zugang als POWERuser zum HAMNET. Achten muss man aber darauf, für welches Frequenzband das Equipment verwendet werden soll.

+

+ ====AirGrid====

Die AirGird Gitterantenne hat den Sendeempfänger in einem witterungsbeständigen Gehäuse direkt im Brennpunkt verbaut. Diese Antenne eignet sich eher für eine geschützte Montage, bei der zumindest kein Schnee und Eis zwischen Reflektor und Erreger liegen bleiben kann.

+

+ ====NanoBeam====

Der NanoBeam ist eine Parabolantenne, welche die wetterfeste HF Hardware fix im

+ Brennpunkt verbaut hat. Wenn die Antenne den in unseren Breiten üblichen Witterungsbedingungen (Schnee) ausgesetzt ist, empfiehlt sich das zugehörige Radom, damit die Charakteristik unverändert bleibt.

+

==== Nanostation M2, Bullet M2HP

+ [[Bild:Bullet2.png|thumb|Ubiquiti Bullet2]]

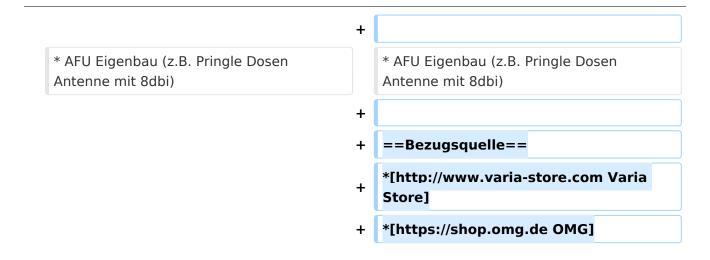
Diese all-in-one Lösung vereint
Router, WLAN Karte und Antenne (nur
Nanostation) in einem wetter- und UVbeständigen Gehäuse bei einer
Einsatztemperatur von bis zu -20°C.

Beim Kauf ist auch gleich der komfortable PoE Adapter (Power over Ethernet) und das 12V Netzteil enthalten (nur NanoStation).

Per PoE kann nun die Versorgung des Gerätes bequem über das Netzwerkabel aus der Entfernung (Shack) erfolgen, und man braucht so nur ein einziges Kabel zu verlegen.

+

Dabei verfügt die Einheit je nach+ Ausführung über bis zu 28dbmSendeleistung.


 Die Einstellungen können bequem per
 + Browser über das Webinterface im AirOS gemacht werden.

+

Das, im Equipment von Ubiquiti
verwendete Betriebssystem AirOS
bspw. der Nanostation bzw. des
Bullet unterstützt im Gegensatz zum Li
nksys auch eine reduzierbare SignalBandbreite von 10 bzw. 5 MHz.

Die benötige HF Bandbreite kann aus den Messungen hier entnommen werden: [[Messungen digitaler Backbone]] Ein Konfigurationsbeispiel bspw. für d en 2,4GHz Benutzerzugang am Gaisberg OE2 (analog Untersberg, Gernkogel, Wildkogel) findet sich in [[Teststellungen Gaisberg Gernkogel]]. Für Benutzer, welche das Ubiquiti Equipment mit einem LAN Router im hauseigenen Netzwerk zur parallelen Nutzung von Internet und HAMNET verwenden wollen gibt es die Anleitung [[Media:Router-Poweruser. pdf|Ubiquiti NS bzw. Bullet mit LAN Router]]. Die Nanostation Loco ist eher nicht geeignet, da dessen Antennengewinn und Sendeleistung meist nicht ausreicht. ""WebLinks:"" *[http://www.ubnt.com/products /bulletm.php Ubiquiti Bullet M Serie] *[http://www.ubnt.com/products/nano. php Ubiquiti Nanostation] + == Antenne == === Yagi ===

Aktuelle Version vom 18. November 2018, 17:02 Uhr

Inhaltsverzeichnis
1 Einleitung
2 Allgemein gilt
3 Wahl des HAMNET Userequipment
3.1 Mikrotik
3.1.1 Mikrotik Userzugang konfigurieren
3.1.2 RBQRTG-2SHPnD (QRT2)
3.2 Ubiquiti
3.2.1 AirGrid
3.2.2 NanoBeam
3.2.3 Nanostation M2, Bullet M2HP
4 Antenne
4.1 Yagi
5 Bezugsquelle

Einleitung

Das HAMNET hat grob genommen 3 Ebenen, welche unterschiedlich adressiert sind:

-) Der Backbone: Die stellt die eigentliche Autobahn da und macht außer Routing und Basisverbindung herstellen eigentlich nichts. Direkte Sicht ist das Thema hier.
-) Der Service/Poweruser Bereich: Dieser Bereich ist die bessere Landstraße für das HAMENT, bedingt aber einen höheren Hardware und Konfigurationsaufwand am User. Auch hier unmittelbare Nähe um Powereinstieg notwendig
-) Mesh/Enduser Bereich: Dieser Bereich adressiert Methoden und Techniken, das entweder direkt bzw indirekt über bestehende Mesh Partner Verbindung aufgenommen werden kann.

Der Poweruser Bereich stellt einen Zugang mit höherer Bandbreite zum Backbone im Userbereich dar und bedarf spezialisierte Hardware.

Allgemein gilt

Generell ist meist nur freie Sicht ein Garant für eine (gute) Verbindung. Bei geringeren Entfernungen kann dann aber schon mal mit Reflexionen experimentiert werden. Außerdem gilt - je größer die Entfernung zum Accesspoint, desto mehr Anforderung steht an den Gewinn der verwendeten Antenne, sowie der Leistung der HF Einheit.

Wahl des HAMNET Userequipment

Bei der Wahl des anzuschaffenden Gerätes ist die Anforderung des lokalen Benutzerzugangs zu beachten. Manche AP's (Access Points) erfordern bspw. eine reduzierte Bandbreite, welche nicht mit allen Geräten bzw. Softwarevarianten möglich ist. Erkundigen Sie sich am Besten zuvor beim zuständigen SysOp.

Es sind HAMNETpoweruser und HAMNETmesh nicht miteinander kompatibel!

Mikrotik

Die im Backbone eingesetzten Routerboards können natürlich auch für den Userzugang verwendet werden. Zu erwähnen ist, dass Mikrotik Hardware der professionellen Schiene zuzuordnen ist, und ist daher in der Konfiguration auch wesentlich umfangreicher.

Datei:qrt2.jpg Mikrotik QRT

Mikrotik Userzugang konfigurieren

Mikrotik-HAMNET-User-Manual V1.32

Diese Version Dokuments ist eine völlig neue und wesentlich erweiterte Neuauflage.

Mikrotik-HAMNET-User-Manual V2.2

Ausgabe: 03.05.2024 Dieses Dokument wurde erzeugt mit BlueSpice

RBQRTG-2SHPnD (QRT2)

Das RBQRTG-2SHPnD, kurz QRT2, ist in punkto Preis-Leistung eine äußerst gute Wahl. Eine 17dbi Flachantenne verbaut in einem wetterfesten Gehäuse mit integrierter HF Hardware stellt das Optimum an geringer Baugröße bei maximaler Leistungsfähigkeit dar. Die Sendeleistung beträgt dabei bis zu 35dbm! Außerdem bietet der Aufbau eine 2x2 MiMo Chain.

Ubiquiti

Im Grunde eignet sich jedes Produkt aus der Palette airMAX von UBIQUITI für einen Zugang als POWERuser zum HAMNET. Achten muss man aber darauf, für welches Frequenzband das Equipment verwendet werden soll.

AirGrid

Die AirGird Gitterantenne hat den Sendeempfänger in einem witterungsbeständigen Gehäuse direkt im Brennpunkt verbaut. Diese Antenne eignet sich eher für eine geschützte Montage, bei der zumindest kein Schnee und Eis zwischen Reflektor und Erreger liegen bleiben kann.

NanoBeam

Der NanoBeam ist eine Parabolantenne, welche die wetterfeste HF Hardware fix im Brennpunkt verbaut hat. Wenn die Antenne den in unseren Breiten üblichen Witterungsbedingungen (Schnee) ausgesetzt ist, empfiehlt sich das zugehörige Radom, damit die Charakteristik unverändert bleibt.

Nanostation M2, Bullet M2HP

Diese all-in-one Lösung vereint Router, WLAN Karte und Antenne (nur Nanostation) in einem wetter- und UV-beständigen Gehäuse bei einer Einsatztemperatur von bis zu -20°C. Beim Kauf ist auch gleich der komfortable PoE Adapter (Power over Ethernet) und das 12V Netzteil enthalten (nur NanoStation). Per PoE kann nun die Versorgung des Gerätes bequem über das Netzwerkabel aus der Entfernung (Shack) erfolgen, und man braucht so nur ein einziges Kabel zu verlegen.

Dabei verfügt die Einheit je nach Ausführung über bis zu 28dbm Sendeleistung. Die Einstellungen können bequem per Browser über das Webinterface im AirOS gemacht werden.

Ausgabe: 03.05.2024

Das, im Equipment von Ubiquiti verwendete Betriebssystem AirOS bspw. der Nanostation bzw. des Bullet unterstützt im Gegensatz zum Linksys auch eine reduzierbare Signal-Bandbreite von 10 bzw. 5 MHz.

Die benötige HF Bandbreite kann aus den Messungen hier entnommen werden: Messungen digitaler Backbone

Ein Konfigurationsbeispiel bspw. für den 2,4GHz Benutzerzugang am Gaisberg OE2 (analog Untersberg, Gernkogel, Wildkogel) findet sich in Teststellungen Gaisberg Gernkogel.

Für Benutzer, welche das Ubiquiti Equipment mit einem LAN Router im hauseigenen Netzwerk zur parallelen Nutzung von Internet und HAMNET verwenden wollen gibt es die Anleitung Ubiquiti NS bzw. Bullet mit LAN Router.

Die Nanostation Loco ist eher nicht geeignet, da dessen Antennengewinn und Sendeleistung meist nicht ausreicht.

WebLinks:

- Ubiquiti Bullet M Serie
- Ubiquiti Nanostation

Antenne

Yagi

• AFU Eigenbau (z.B. Pringle Dosen Antenne mit 8dbi)

Bezugsquelle

- Varia Store
- OMG

Userequipment HAMNETpoweruser: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 19. August 2009, 13:38 Uhr (Quelltext anzeigen)

Oe6rke (Diskussion | Beiträge)

← Zum vorherigen Versionsunterschied

Aktuelle Version vom 18. November 2018, 17:02 Uhr (Quelltext anzeigen)

OE5RNL (Diskussion | Beiträge)
K (→Mikrotik Userzugang konfigurieren)

(20 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)

Zeile 2: Zeile 2:

[[Kategorie:Digitale_Betriebsarten]]

[[Kategorie:Digitale_Betriebsarten]]

[[Bild:Bullet2.png|thumb|Ubiquiti Bullet2]] == Einleitung ==

== HAMNETpoweruser ==

Das HAMNET hat grob genommen 3
Ebenen, welche unterschiedlich
adressiert sind:

Der Backbone hat 3 Ebenen, welche unterschiedlich adressiert sind:

- *) Der Backbone: Die stellt die eigentliche Autobahn da und macht außer Routing und Basisverbindung herstellen eigentlich nichts. Direkte Sicht ist das Thema hier.
- *) Der Service/Poweruser Bereich: Dieser Bereich ist die bessere Landstrasse für das HAMENT, bedingt aber einen höheren Hardware und Konfigurationsaufwand am User. Auch hier unmittelbare Nähe um Powereinstieg notwendig
- *) Mesh/Enduser Bereich: Dieser Bereich adressiert Methoden und Techniken, das entweder direkt bzw indirekt über bestehende Mesh Partner Verbindung aufgenommen werden kann.

- *) Der Backbone: Die stellt die eigentliche Autobahn da und macht außer Routing und Basisverbindung herstellen eigentlich nichts. Direkte Sicht ist das Thema hier.
- *) Der Service/Poweruser Bereich: Dieser Bereich ist die bessere **Landstraße** für das HAMENT, bedingt aber einen höheren Hardware und Konfigurationsaufwand am User. Auch hier unmittelbare Nähe um Powereinstieg notwendig
- *) Mesh/Enduser Bereich: Dieser Bereich adressiert Methoden und Techniken, das entweder direkt bzw indirekt über bestehende Mesh Partner Verbindung aufgenommen werden kann.

Der Poweruser Bereich stellt einen Zugang mit höherer Bandbreite zum Backbone im Userbreich dar und bedarf spezialiserte Hardware.

Der Poweruser Bereich stellt einen Zugang mit höherer Bandbreite zum Backbone im **Userbereich** dar und bedarf **spezialisiert e** Hardware.

=== Wahl des HAMNET
Userequipment ===

Bei der Wahl des anzuschaffenden

- Gerätes ist die Anforderung des
lokalen Benutzerzugangs zu beachten.

Manche AP's (Access Points)
erfordern bspw. eine reduzierte
Bandbreite, welche nicht mit allen
Geräten bzw. Softwarevarianten
möglich ist. Erkundigen Sie sich am
Besten zuvor beim zuständigen
SysOp.

"Es sind HAMNETpoweruser undHAMNETmesh nicht miteinander kompatibel!"

== Allgemein gilt ==

Generell ist meist nur freie Sicht ein Garant für eine (gute) Verbindung. Bei geringeren Entfernungen kann dann aber schon mal mit Reflexionen experimentiert werden.

Außerdem gilt - je größer die Entfernung zum Accesspoint, desto mehr Anforderung steht an den Gewinn der verwendeten Antenne, sowie der Leistung der HF Einheit.

==== Ubiquiti Nanostation 2, Bullet 2
(HP)* ====

Diese all-in-one Lösung vereint Router, WLAN Karte und Antenne in einem wetter- und UV-beständigen Gehäuse bei einer Einsatztemperatur von bis zu -20°C.

Beim Kauf ist auch gleich der komfortable PoE Adapter (Power over Ethernet) und das 12V Netzteil enthalten.

Per PoE kann nun die Versorgung des Gerätes bequem über das Netzwerkabel aus der Entfernung (Shack) erfolgen, und man braucht so nur ein Kabel zu verlegen.

Dabei verfügt die Einheit über 16dbm Sendeleistung an einer eingebauten 10dbi Antenne. Das Anbringen einer externen Antenne ist über einen RP-SMA Anschluß möglich.

Die Einstellungen können per Browser über das Webinterface im AirOS gemacht werden.

== Wahl des HAMNET Userequipment ==

"Bei der Wahl des anzuschaffenden Gerätes ist die Anforderung des lokalen Benutzerzugangs zu beachten."

"'Manche AP's (Access Points)
erfordern bspw. eine reduzierte
Bandbreite, welche nicht mit allen
Geräten bzw. Softwarevarianten
möglich ist. Erkundigen Sie sich am
Besten zuvor beim zuständigen SysOp.

Das AirOS der Nanostation 2 bzw. des Bullet 2(HP) unterstützt auch eine reduzierte Signal-Bandbreite von 10 bzw. 5 MHz.

Ein Konfigurationsbeispiel bspw. für den 2,4GHz Benutzerzugang am Gaisberg OE2 findet sich in [[Teststellungen Gaisberg Gernkogel]].

"Es sind HAMNETpoweruser und [[Userequipment HAMNETmesh | HAMNETmesh]] nicht miteinander kompatibel!"

=== Mikrotik ===

Ausgabe: 03.05.2024

Das Equipment von Ubiquiti beherrscht im Gegensatz zum Linksys über eine einstellbare Nutz-Bandbreite. [[Bild:qrt2.jpg|thumb|Mikrotik QRT]] Die im Backbone eingesetzten Routerboards können natürlich auch für den Userzugang verwendet werden. Zu erwähnen ist, dass Mikrotik Hardware der professionellen Schiene zuzuordnen ist, und ist daher in der Konfiguration auch wesentlich umfangreicher. ==== Mikrotik Userzugang konfigurieren ==== [[Media:Mikrotik-HAMNET-User-Manual V1.32.pdf|Mikrotik-HAMNET-User-Manual V1.32]] Die benötige HF Bandbreite kann aus **Diese Version Dokuments ist eine** völlig neue und wesentlich erweiterte den Messungen hier entnommen werden:[[Messungen digitaler Neuauflage. Backbone]] [[Media:Mikrotik-HAMNET-User-Manual V2.21.pdf|Mikrotik-HAMNET-User-Manual V2.2]] === Antenne === ==== RBQRTG-2SHPnD (QRT2) ==== Das RBORTG-2SHPnD. kurz ORT2. ist in punkto Preis-Leistung eine äußerst gute Wahl. Eine 17dbi Flachantenne verbaut in einem wetterfesten Gehäuse mit integrierter HF

Hardware stellt das Optimum an geringer Baugröße bei maximaler Leistungsfähigkeit dar. Die Sendeleistung beträgt dabei bis zu 35dbm! Außerdem bietet der Aufbau eine 2x2 MiMo Chain.

- ==== Yagi ====

* 18dbi Antenne mit Kabel und RP-TNC

- Stecker zum direkten Anschluß an den
WRT54GL (bei Ebay ca. € 27,-)

=== Ubiquiti ===

+

Im Grunde eignet sich jedes Produkt aus der Palette [http://www.ubnt.com/airmax airMAX von UBIQUITI] für einen Zugang als POWERuser zum HAMNET. Achten muss man aber darauf, für welches Frequenzband das Equipment verwendet werden soll.

+

+ ====AirGrid====

Die AirGird Gitterantenne hat den Sendeempfänger in einem witterungsbeständigen Gehäuse direkt im Brennpunkt verbaut. Diese Antenne eignet sich eher für eine geschützte Montage, bei der zumindest kein Schnee und Eis zwischen Reflektor und Erreger liegen bleiben kann.

+

+ ====NanoBeam====

Der NanoBeam ist eine Parabolantenne, welche die wetterfeste HF Hardware fix im

 Brennpunkt verbaut hat. Wenn die Antenne den in unseren Breiten üblichen Witterungsbedingungen (Schnee) ausgesetzt ist, empfiehlt sich das zugehörige Radom, damit die Charakteristik unverändert bleibt.

+

==== Nanostation M2, Bullet M2HP

+ [[Bild:Bullet2.png|thumb|Ubiquiti Bullet2]]

Diese all-in-one Lösung vereint
Router, WLAN Karte und Antenne (nur
Nanostation) in einem wetter- und UVbeständigen Gehäuse bei einer
Einsatztemperatur von bis zu -20°C.

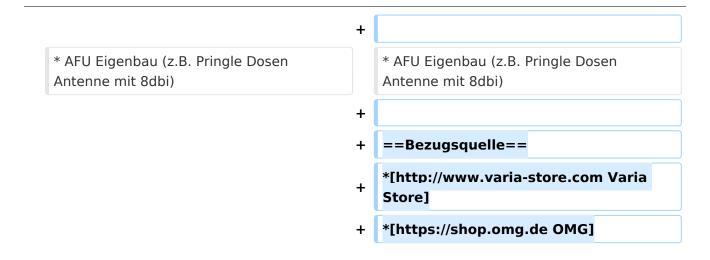
Beim Kauf ist auch gleich der komfortable PoE Adapter (Power over Ethernet) und das 12V Netzteil enthalten (nur NanoStation).

Per PoE kann nun die Versorgung des Gerätes bequem über das Netzwerkabel aus der Entfernung (Shack) erfolgen, und man braucht so nur ein einziges Kabel zu verlegen.

+

Dabei verfügt die Einheit je nach+ Ausführung über bis zu 28dbmSendeleistung.

 Die Einstellungen können bequem per
 + Browser über das Webinterface im AirOS gemacht werden.


+

Das, im Equipment von Ubiquiti
verwendete Betriebssystem AirOS
bspw. der Nanostation bzw. des
Bullet unterstützt im Gegensatz zum Li
nksys auch eine reduzierbare SignalBandbreite von 10 bzw. 5 MHz.

Die benötige HF Bandbreite kann aus den Messungen hier entnommen werden: [[Messungen digitaler Backbone]] Ein Konfigurationsbeispiel bspw. für d en 2,4GHz Benutzerzugang am Gaisberg OE2 (analog Untersberg, Gernkogel, Wildkogel) findet sich in [[Teststellungen Gaisberg Gernkogel]]. Für Benutzer, welche das Ubiquiti **Equipment mit einem LAN Router im** hauseigenen Netzwerk zur parallelen Nutzung von Internet und HAMNET verwenden wollen gibt es die Anleitung [[Media:Router-Poweruser. pdf|Ubiquiti NS bzw. Bullet mit LAN Router]]. Die Nanostation Loco ist eher nicht geeignet, da dessen Antennengewinn und Sendeleistung meist nicht ausreicht. ""WebLinks:"" *[http://www.ubnt.com/products /bulletm.php Ubiquiti Bullet M Serie] *[http://www.ubnt.com/products/nano. php Ubiquiti Nanostation] + == Antenne == === Yagi ===

Aktuelle Version vom 18. November 2018, 17:02 Uhr

Inhaltsverzeichnis	
1 Einleitung	43
2 Allgemein gilt	
3 Wahl des HAMNET Userequipment	43
3.1 Mikrotik	
3.1.1 Mikrotik Userzugang konfigurieren	
3.1.2 RBQRTG-2SHPnD (QRT2)	44
3.2 Ubiquiti	44
3.2.1 AirGrid	44
3.2.2 NanoBeam	44
3.2.3 Nanostation M2, Bullet M2HP	44
4 Antenne	45
4.1 Yagi	45
5 Bezugsquelle	45

Einleitung

Das HAMNET hat grob genommen 3 Ebenen, welche unterschiedlich adressiert sind:

-) Der Backbone: Die stellt die eigentliche Autobahn da und macht außer Routing und Basisverbindung herstellen eigentlich nichts. Direkte Sicht ist das Thema hier.
-) Der Service/Poweruser Bereich: Dieser Bereich ist die bessere Landstraße für das HAMENT, bedingt aber einen höheren Hardware und Konfigurationsaufwand am User. Auch hier unmittelbare Nähe um Powereinstieg notwendig
-) Mesh/Enduser Bereich: Dieser Bereich adressiert Methoden und Techniken, das entweder direkt bzw indirekt über bestehende Mesh Partner Verbindung aufgenommen werden kann.

Der Poweruser Bereich stellt einen Zugang mit höherer Bandbreite zum Backbone im Userbereich dar und bedarf spezialisierte Hardware.

Allgemein gilt

Generell ist meist nur freie Sicht ein Garant für eine (gute) Verbindung. Bei geringeren Entfernungen kann dann aber schon mal mit Reflexionen experimentiert werden. Außerdem gilt - je größer die Entfernung zum Accesspoint, desto mehr Anforderung steht an den Gewinn der verwendeten Antenne, sowie der Leistung der HF Einheit.

Wahl des HAMNET Userequipment

Bei der Wahl des anzuschaffenden Gerätes ist die Anforderung des lokalen Benutzerzugangs zu beachten. Manche AP's (Access Points) erfordern bspw. eine reduzierte Bandbreite, welche nicht mit allen Geräten bzw. Softwarevarianten möglich ist. Erkundigen Sie sich am Besten zuvor beim zuständigen SysOp.

Es sind HAMNETpoweruser und HAMNETmesh nicht miteinander kompatibel!

Mikrotik

Die im Backbone eingesetzten Routerboards können natürlich auch für den Userzugang verwendet werden. Zu erwähnen ist, dass Mikrotik Hardware der professionellen Schiene zuzuordnen ist, und ist daher in der Konfiguration auch wesentlich umfangreicher.

Datei:qrt2.jpg Mikrotik QRT

Mikrotik Userzugang konfigurieren

Mikrotik-HAMNET-User-Manual V1.32

Diese Version Dokuments ist eine völlig neue und wesentlich erweiterte Neuauflage.

Mikrotik-HAMNET-User-Manual V2.2

Ausgabe: 03.05.2024 Dieses Dokument wurde erzeugt mit BlueSpice

RBQRTG-2SHPnD (QRT2)

Das RBQRTG-2SHPnD, kurz QRT2, ist in punkto Preis-Leistung eine äußerst gute Wahl. Eine 17dbi Flachantenne verbaut in einem wetterfesten Gehäuse mit integrierter HF Hardware stellt das Optimum an geringer Baugröße bei maximaler Leistungsfähigkeit dar. Die Sendeleistung beträgt dabei bis zu 35dbm! Außerdem bietet der Aufbau eine 2x2 MiMo Chain.

Ubiquiti

Im Grunde eignet sich jedes Produkt aus der Palette airMAX von UBIQUITI für einen Zugang als POWERuser zum HAMNET. Achten muss man aber darauf, für welches Frequenzband das Equipment verwendet werden soll.

AirGrid

Die AirGird Gitterantenne hat den Sendeempfänger in einem witterungsbeständigen Gehäuse direkt im Brennpunkt verbaut. Diese Antenne eignet sich eher für eine geschützte Montage, bei der zumindest kein Schnee und Eis zwischen Reflektor und Erreger liegen bleiben kann.

NanoBeam

Der NanoBeam ist eine Parabolantenne, welche die wetterfeste HF Hardware fix im Brennpunkt verbaut hat. Wenn die Antenne den in unseren Breiten üblichen Witterungsbedingungen (Schnee) ausgesetzt ist, empfiehlt sich das zugehörige Radom, damit die Charakteristik unverändert bleibt.

Nanostation M2, Bullet M2HP

Diese all-in-one Lösung vereint Router, WLAN Karte und Antenne (nur Nanostation) in einem wetter- und UV-beständigen Gehäuse bei einer Einsatztemperatur von bis zu -20°C. Beim Kauf ist auch gleich der komfortable PoE Adapter (Power over Ethernet) und das 12V Netzteil enthalten (nur NanoStation). Per PoE kann nun die Versorgung des Gerätes bequem über das Netzwerkabel aus der Entfernung (Shack) erfolgen, und man braucht so nur ein einziges Kabel zu verlegen.

Dabei verfügt die Einheit je nach Ausführung über bis zu 28dbm Sendeleistung. Die Einstellungen können bequem per Browser über das Webinterface im AirOS gemacht werden.

Ausgabe: 03.05.2024

Das, im Equipment von Ubiquiti verwendete Betriebssystem AirOS bspw. der Nanostation bzw. des Bullet unterstützt im Gegensatz zum Linksys auch eine reduzierbare Signal-Bandbreite von 10 bzw. 5 MHz.

Die benötige HF Bandbreite kann aus den Messungen hier entnommen werden: Messungen digitaler Backbone

Ein Konfigurationsbeispiel bspw. für den 2,4GHz Benutzerzugang am Gaisberg OE2 (analog Untersberg, Gernkogel, Wildkogel) findet sich in Teststellungen Gaisberg Gernkogel.

Für Benutzer, welche das Ubiquiti Equipment mit einem LAN Router im hauseigenen Netzwerk zur parallelen Nutzung von Internet und HAMNET verwenden wollen gibt es die Anleitung Ubiquiti NS bzw. Bullet mit LAN Router.

Die Nanostation Loco ist eher nicht geeignet, da dessen Antennengewinn und Sendeleistung meist nicht ausreicht.

WebLinks:

- Ubiquiti Bullet M Serie
- Ubiquiti Nanostation

Antenne

Yagi

• AFU Eigenbau (z.B. Pringle Dosen Antenne mit 8dbi)

Bezugsquelle

- Varia Store
- OMG

Userequipment HAMNETpoweruser: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 19. August 2009, 13:38 Uhr (Quelltext anzeigen)

Oe6rke (Diskussion | Beiträge)

← Zum vorherigen Versionsunterschied

Aktuelle Version vom 18. November 2018, 17:02 Uhr (Quelltext anzeigen)

OE5RNL (Diskussion | Beiträge)
K (→Mikrotik Userzugang konfigurieren)

(20 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)

Zeile 2: Zeile 2:

[[Kategorie:Digitale_Betriebsarten]]

[[Kategorie:Digitale_Betriebsarten]]

[[Bild:Bullet2.png|thumb|Ubiquiti Bullet2]] == Einleitung ==

== HAMNETpoweruser ==

Das HAMNET hat grob genommen 3
Ebenen, welche unterschiedlich
adressiert sind:

Der Backbone hat 3 Ebenen, welche unterschiedlich adressiert sind:

- *) Der Backbone: Die stellt die eigentliche Autobahn da und macht außer Routing und Basisverbindung herstellen eigentlich nichts. Direkte Sicht ist das Thema hier.
- *) Der Service/Poweruser Bereich: Dieser Bereich ist die bessere Landstrasse für das HAMENT, bedingt aber einen höheren Hardware und Konfigurationsaufwand am User. Auch hier unmittelbare Nähe um Powereinstieg notwendig
- *) Mesh/Enduser Bereich: Dieser Bereich adressiert Methoden und Techniken, das entweder direkt bzw indirekt über bestehende Mesh Partner Verbindung aufgenommen werden kann.

- *) Der Backbone: Die stellt die eigentliche Autobahn da und macht außer Routing und Basisverbindung herstellen eigentlich nichts. Direkte Sicht ist das Thema hier.
- *) Der Service/Poweruser Bereich: Dieser Bereich ist die bessere **Landstraße** für das HAMENT, bedingt aber einen höheren Hardware und Konfigurationsaufwand am User. Auch hier unmittelbare Nähe um Powereinstieg notwendig
- *) Mesh/Enduser Bereich: Dieser Bereich adressiert Methoden und Techniken, das entweder direkt bzw indirekt über bestehende Mesh Partner Verbindung aufgenommen werden kann.

Der Poweruser Bereich stellt einen Zugang mit höherer Bandbreite zum Backbone im Userbreich dar und bedarf spezialiserte Hardware.

Der Poweruser Bereich stellt einen Zugang mit höherer Bandbreite zum Backbone im Userbereich dar und bedarf spezialisiert e Hardware.

=== Wahl des HAMNET
Userequipment ===

Bei der Wahl des anzuschaffenden

- Gerätes ist die Anforderung des
lokalen Benutzerzugangs zu beachten.

Manche AP's (Access Points)
erfordern bspw. eine reduzierte
Bandbreite, welche nicht mit allen
Geräten bzw. Softwarevarianten
möglich ist. Erkundigen Sie sich am
Besten zuvor beim zuständigen
SysOp.

"Es sind HAMNETpoweruser undHAMNETmesh nicht miteinander kompatibel!"

== Allgemein gilt ==

Generell ist meist nur freie Sicht ein Garant für eine (gute) Verbindung. Bei geringeren Entfernungen kann dann aber schon mal mit Reflexionen experimentiert werden.

Außerdem gilt - je größer die Entfernung zum Accesspoint, desto mehr Anforderung steht an den Gewinn der verwendeten Antenne, sowie der Leistung der HF Einheit.

==== Ubiquiti Nanostation 2, Bullet 2
(HP)* ====

Diese all-in-one Lösung vereint
Router, WLAN Karte und Antenne in
einem wetter- und UV-beständigen
Gehäuse bei einer Einsatztemperatur
von bis zu -20°C.

Beim Kauf ist auch gleich der komfortable PoE Adapter (Power over Ethernet) und das 12V Netzteil enthalten.

Per PoE kann nun die Versorgung des Gerätes bequem über das Netzwerkabel aus der Entfernung (Shack) erfolgen, und man braucht so nur ein Kabel zu verlegen.

Dabei verfügt die Einheit über 16dbm Sendeleistung an einer eingebauten 10dbi Antenne. Das Anbringen einer externen Antenne ist über einen RP-SMA Anschluß möglich.

Die Einstellungen können per Browser über das Webinterface im AirOS gemacht werden.

== Wahl des HAMNET Userequipment ==

"Bei der Wahl des anzuschaffenden Gerätes ist die Anforderung des lokalen Benutzerzugangs zu beachten."

"'Manche AP's (Access Points)
erfordern bspw. eine reduzierte
Bandbreite, welche nicht mit allen
Geräten bzw. Softwarevarianten
möglich ist. Erkundigen Sie sich am
Besten zuvor beim zuständigen SysOp.

Das AirOS der Nanostation 2 bzw. des Bullet 2(HP) unterstützt auch eine reduzierte Signal-Bandbreite von 10 bzw. 5 MHz.

Ein Konfigurationsbeispiel bspw. für den 2,4GHz Benutzerzugang am Gaisberg OE2 findet sich in [[Teststellungen Gaisberg Gernkogel]]. "'Es sind HAMNETpoweruser und [[Userequipment HAMNETmesh | HAMNETmesh]] nicht miteinander kompatibel!"

=== Mikrotik ===

Ausgabe: 03.05.2024

Das Equipment von Ubiquiti beherrscht im Gegensatz zum Linksys über eine einstellbare Nutz-Bandbreite. [[Bild:qrt2.jpg|thumb|Mikrotik QRT]] Die im Backbone eingesetzten Routerboards können natürlich auch für den Userzugang verwendet werden. Zu erwähnen ist, dass Mikrotik Hardware der professionellen Schiene zuzuordnen ist, und ist daher in der Konfiguration auch wesentlich umfangreicher. ==== Mikrotik Userzugang konfigurieren ==== [[Media:Mikrotik-HAMNET-User-Manual V1.32.pdf|Mikrotik-HAMNET-User-Manual V1.32]] Die benötige HF Bandbreite kann aus **Diese Version Dokuments ist eine** völlig neue und wesentlich erweiterte den Messungen hier entnommen werden:[[Messungen digitaler Neuauflage. Backbone]] [[Media:Mikrotik-HAMNET-User-Manual V2.21.pdf|Mikrotik-HAMNET-User-Manual V2.2]] === Antenne === ==== RBQRTG-2SHPnD (QRT2) ==== Das RBORTG-2SHPnD. kurz ORT2. ist in punkto Preis-Leistung eine äußerst gute Wahl. Eine 17dbi Flachantenne verbaut in einem wetterfesten Gehäuse mit integrierter HF

Hardware stellt das Optimum an geringer Baugröße bei maximaler Leistungsfähigkeit dar. Die Sendeleistung beträgt dabei bis zu 35dbm! Außerdem bietet der Aufbau eine 2x2 MiMo Chain.

– ==== Yagi ====

* 18dbi Antenne mit Kabel und RP-TNC

- Stecker zum direkten Anschluß an den
WRT54GL (bei Ebay ca. € 27,-)

=== Ubiquiti ===

+

Im Grunde eignet sich jedes Produkt aus der Palette [http://www.ubnt.com/airmax airMAX von UBIQUITI] für einen Zugang als POWERuser zum HAMNET. Achten muss man aber darauf, für welches Frequenzband das Equipment verwendet werden soll.

+

+ ====AirGrid====

Die AirGird Gitterantenne hat den Sendeempfänger in einem witterungsbeständigen Gehäuse direkt im Brennpunkt verbaut. Diese Antenne eignet sich eher für eine geschützte Montage, bei der zumindest kein Schnee und Eis zwischen Reflektor und Erreger liegen bleiben kann.

+

+ ====NanoBeam====

Der NanoBeam ist eine Parabolantenne, welche die wetterfeste HF Hardware fix im

+ Brennpunkt verbaut hat. Wenn die Antenne den in unseren Breiten üblichen Witterungsbedingungen (Schnee) ausgesetzt ist, empfiehlt sich das zugehörige Radom, damit die Charakteristik unverändert bleibt.

+

==== Nanostation M2, Bullet M2HP

+ [[Bild:Bullet2.png|thumb|Ubiquiti Bullet2]]

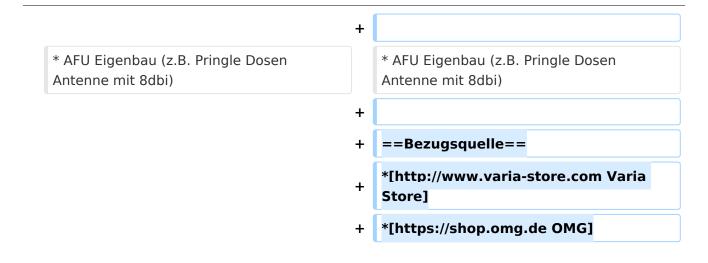
Diese all-in-one Lösung vereint
Router, WLAN Karte und Antenne (nur
+ Nanostation) in einem wetter- und UVbeständigen Gehäuse bei einer
Einsatztemperatur von bis zu -20°C.

Beim Kauf ist auch gleich der komfortable PoE Adapter (Power over Ethernet) und das 12V Netzteil enthalten (nur NanoStation).

Per PoE kann nun die Versorgung des Gerätes bequem über das Netzwerkabel aus der Entfernung (Shack) erfolgen, und man braucht so nur ein einziges Kabel zu verlegen.

+

Dabei verfügt die Einheit je nach+ Ausführung über bis zu 28dbmSendeleistung.


 Die Einstellungen können bequem per
 + Browser über das Webinterface im AirOS gemacht werden.

+

Das, im Equipment von Ubiquiti
verwendete Betriebssystem AirOS
bspw. der Nanostation bzw. des
Bullet unterstützt im Gegensatz zum Li
nksys auch eine reduzierbare SignalBandbreite von 10 bzw. 5 MHz.

Die benötige HF Bandbreite kann aus den Messungen hier entnommen werden: [[Messungen digitaler Backbone]] Ein Konfigurationsbeispiel bspw. für d en 2,4GHz Benutzerzugang am Gaisberg OE2 (analog Untersberg, Gernkogel, Wildkogel) findet sich in [[Teststellungen Gaisberg Gernkogel]]. Für Benutzer, welche das Ubiquiti **Equipment mit einem LAN Router im** hauseigenen Netzwerk zur parallelen Nutzung von Internet und HAMNET verwenden wollen gibt es die Anleitung [[Media:Router-Poweruser. pdf|Ubiquiti NS bzw. Bullet mit LAN Router]]. Die Nanostation Loco ist eher nicht geeignet, da dessen Antennengewinn und Sendeleistung meist nicht ausreicht. ""WebLinks:"" *[http://www.ubnt.com/products /bulletm.php Ubiquiti Bullet M Serie] *[http://www.ubnt.com/products/nano. php Ubiquiti Nanostation] + == Antenne == === Yagi ===

Aktuelle Version vom 18. November 2018, 17:02 Uhr

Inhaltsverzeichnis	
1 Einleitung	54
2 Allgemein gilt	54
3 Wahl des HAMNET Userequipment	54
3.1 Mikrotik	
3.1.1 Mikrotik Userzugang konfigurieren	54
3.1.2 RBQRTG-2SHPnD (QRT2)	55
3.2 Ubiquiti	55
3.2.1 AirGrid	55
3.2.2 NanoBeam	55
3.2.3 Nanostation M2, Bullet M2HP	55
4 Antenne	56
4.1 Yagi	56
5 Bezugsquelle	56

Einleitung

Das HAMNET hat grob genommen 3 Ebenen, welche unterschiedlich adressiert sind:

-) Der Backbone: Die stellt die eigentliche Autobahn da und macht außer Routing und Basisverbindung herstellen eigentlich nichts. Direkte Sicht ist das Thema hier.
-) Der Service/Poweruser Bereich: Dieser Bereich ist die bessere Landstraße für das HAMENT, bedingt aber einen höheren Hardware und Konfigurationsaufwand am User. Auch hier unmittelbare Nähe um Powereinstieg notwendig
-) Mesh/Enduser Bereich: Dieser Bereich adressiert Methoden und Techniken, das entweder direkt bzw indirekt über bestehende Mesh Partner Verbindung aufgenommen werden kann.

Der Poweruser Bereich stellt einen Zugang mit höherer Bandbreite zum Backbone im Userbereich dar und bedarf spezialisierte Hardware.

Allgemein gilt

Generell ist meist nur freie Sicht ein Garant für eine (gute) Verbindung. Bei geringeren Entfernungen kann dann aber schon mal mit Reflexionen experimentiert werden. Außerdem gilt - je größer die Entfernung zum Accesspoint, desto mehr Anforderung steht an den Gewinn der verwendeten Antenne, sowie der Leistung der HF Einheit.

Wahl des HAMNET Userequipment

Bei der Wahl des anzuschaffenden Gerätes ist die Anforderung des lokalen Benutzerzugangs zu beachten. Manche AP's (Access Points) erfordern bspw. eine reduzierte Bandbreite, welche nicht mit allen Geräten bzw. Softwarevarianten möglich ist. Erkundigen Sie sich am Besten zuvor beim zuständigen SysOp.

Es sind HAMNETpoweruser und HAMNETmesh nicht miteinander kompatibel!

Mikrotik

Die im Backbone eingesetzten Routerboards können natürlich auch für den Userzugang verwendet werden. Zu erwähnen ist, dass Mikrotik Hardware der professionellen Schiene zuzuordnen ist, und ist daher in der Konfiguration auch wesentlich umfangreicher.

Datei:qrt2.jpg Mikrotik QRT

Mikrotik Userzugang konfigurieren

Mikrotik-HAMNET-User-Manual V1.32

Diese Version Dokuments ist eine völlig neue und wesentlich erweiterte Neuauflage.

Mikrotik-HAMNET-User-Manual V2.2

Ausgabe: 03.05.2024 Dieses Dokument wurde erzeugt mit BlueSpice

RBQRTG-2SHPnD (QRT2)

Das RBQRTG-2SHPnD, kurz QRT2, ist in punkto Preis-Leistung eine äußerst gute Wahl. Eine 17dbi Flachantenne verbaut in einem wetterfesten Gehäuse mit integrierter HF Hardware stellt das Optimum an geringer Baugröße bei maximaler Leistungsfähigkeit dar. Die Sendeleistung beträgt dabei bis zu 35dbm! Außerdem bietet der Aufbau eine 2x2 MiMo Chain.

Ubiquiti

Im Grunde eignet sich jedes Produkt aus der Palette airMAX von UBIQUITI für einen Zugang als POWERuser zum HAMNET. Achten muss man aber darauf, für welches Frequenzband das Equipment verwendet werden soll.

AirGrid

Die AirGird Gitterantenne hat den Sendeempfänger in einem witterungsbeständigen Gehäuse direkt im Brennpunkt verbaut. Diese Antenne eignet sich eher für eine geschützte Montage, bei der zumindest kein Schnee und Eis zwischen Reflektor und Erreger liegen bleiben kann.

NanoBeam

Der NanoBeam ist eine Parabolantenne, welche die wetterfeste HF Hardware fix im Brennpunkt verbaut hat. Wenn die Antenne den in unseren Breiten üblichen Witterungsbedingungen (Schnee) ausgesetzt ist, empfiehlt sich das zugehörige Radom, damit die Charakteristik unverändert bleibt.

Nanostation M2, Bullet M2HP

Diese all-in-one Lösung vereint Router, WLAN Karte und Antenne (nur Nanostation) in einem wetter- und UV-beständigen Gehäuse bei einer Einsatztemperatur von bis zu -20°C. Beim Kauf ist auch gleich der komfortable PoE Adapter (Power over Ethernet) und das 12V Netzteil enthalten (nur NanoStation). Per PoE kann nun die Versorgung des Gerätes bequem über das Netzwerkabel aus der Entfernung (Shack) erfolgen, und man braucht so nur ein einziges Kabel zu verlegen.

Dabei verfügt die Einheit je nach Ausführung über bis zu 28dbm Sendeleistung. Die Einstellungen können bequem per Browser über das Webinterface im AirOS gemacht werden.

Ausgabe: 03.05.2024

Das, im Equipment von Ubiquiti verwendete Betriebssystem AirOS bspw. der Nanostation bzw. des Bullet unterstützt im Gegensatz zum Linksys auch eine reduzierbare Signal-Bandbreite von 10 bzw. 5 MHz.

Die benötige HF Bandbreite kann aus den Messungen hier entnommen werden: Messungen digitaler Backbone

Ein Konfigurationsbeispiel bspw. für den 2,4GHz Benutzerzugang am Gaisberg OE2 (analog Untersberg, Gernkogel, Wildkogel) findet sich in Teststellungen Gaisberg Gernkogel.

Für Benutzer, welche das Ubiquiti Equipment mit einem LAN Router im hauseigenen Netzwerk zur parallelen Nutzung von Internet und HAMNET verwenden wollen gibt es die Anleitung Ubiquiti NS bzw. Bullet mit LAN Router.

Die Nanostation Loco ist eher nicht geeignet, da dessen Antennengewinn und Sendeleistung meist nicht ausreicht.

WebLinks:

- Ubiquiti Bullet M Serie
- Ubiquiti Nanostation

Antenne

Yagi

• AFU Eigenbau (z.B. Pringle Dosen Antenne mit 8dbi)

Bezugsquelle

- Varia Store
- OMG

Userequipment HAMNETpoweruser: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 19. August 2009, 13:38 Uhr (Quelltext anzeigen)

Oe6rke (Diskussion | Beiträge)

← Zum vorherigen Versionsunterschied

Aktuelle Version vom 18. November 2018, 17:02 Uhr (Quelltext anzeigen)

OE5RNL (Diskussion | Beiträge)
K (→Mikrotik Userzugang konfigurieren)

(20 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)

Zeile 2: Zeile 2:

[[Kategorie:Digitale_Betriebsarten]]

[[Kategorie:Digitale_Betriebsarten]]

[[Bild:Bullet2.png|thumb|Ubiquiti Bullet2]] == Einleitung ==

== HAMNETpoweruser ==

Das HAMNET hat grob genommen 3
Ebenen, welche unterschiedlich
adressiert sind:

Der Backbone hat 3 Ebenen, welche unterschiedlich adressiert sind:

- *) Der Backbone: Die stellt die eigentliche Autobahn da und macht außer Routing und Basisverbindung herstellen eigentlich nichts. Direkte Sicht ist das Thema hier.
- *) Der Service/Poweruser Bereich: Dieser Bereich ist die bessere Landstrasse für das HAMENT, bedingt aber einen höheren Hardware und Konfigurationsaufwand am User. Auch hier unmittelbare Nähe um Powereinstieg notwendig
- *) Mesh/Enduser Bereich: Dieser Bereich adressiert Methoden und Techniken, das entweder direkt bzw indirekt über bestehende Mesh Partner Verbindung aufgenommen werden kann.

- *) Der Backbone: Die stellt die eigentliche Autobahn da und macht außer Routing und Basisverbindung herstellen eigentlich nichts. Direkte Sicht ist das Thema hier.
- *) Der Service/Poweruser Bereich: Dieser Bereich ist die bessere **Landstraße** für das HAMENT, bedingt aber einen höheren Hardware und Konfigurationsaufwand am User. Auch hier unmittelbare Nähe um Powereinstieg notwendig
- *) Mesh/Enduser Bereich: Dieser Bereich adressiert Methoden und Techniken, das entweder direkt bzw indirekt über bestehende Mesh Partner Verbindung aufgenommen werden kann.

Der Poweruser Bereich stellt einen Zugang mit höherer Bandbreite zum Backbone im Userbreich dar und bedarf spezialiserte Hardware.

Der Poweruser Bereich stellt einen Zugang mit höherer Bandbreite zum Backbone im Userbereich dar und bedarf spezialisiert e Hardware.

=== Wahl des HAMNET
Userequipment ===

Bei der Wahl des anzuschaffenden

- Gerätes ist die Anforderung des
lokalen Benutzerzugangs zu beachten.

Manche AP's (Access Points)
erfordern bspw. eine reduzierte
Bandbreite, welche nicht mit allen
Geräten bzw. Softwarevarianten
möglich ist. Erkundigen Sie sich am
Besten zuvor beim zuständigen
SysOp.

"Es sind HAMNETpoweruser undHAMNETmesh nicht miteinander kompatibel!"

== Allgemein gilt ==

Generell ist meist nur freie Sicht ein Garant für eine (gute) Verbindung. Bei geringeren Entfernungen kann dann aber schon mal mit Reflexionen experimentiert werden.

Außerdem gilt - je größer die Entfernung zum Accesspoint, desto mehr Anforderung steht an den Gewinn der verwendeten Antenne, sowie der Leistung der HF Einheit.

==== Ubiquiti Nanostation 2, Bullet 2
(HP)* ====

Diese all-in-one Lösung vereint
Router, WLAN Karte und Antenne in
einem wetter- und UV-beständigen
Gehäuse bei einer Einsatztemperatur
von bis zu -20°C.

Beim Kauf ist auch gleich der komfortable PoE Adapter (Power over Ethernet) und das 12V Netzteil enthalten.

Per PoE kann nun die Versorgung des Gerätes bequem über das Netzwerkabel aus der Entfernung (Shack) erfolgen, und man braucht so nur ein Kabel zu verlegen.

Dabei verfügt die Einheit über 16dbm Sendeleistung an einer eingebauten 10dbi Antenne. Das Anbringen einer externen Antenne ist über einen RP-SMA Anschluß möglich.

Die Einstellungen können per Browser über das Webinterface im AirOS gemacht werden.

== Wahl des HAMNET Userequipment ==

"Bei der Wahl des anzuschaffenden Gerätes ist die Anforderung des lokalen Benutzerzugangs zu beachten."

"'Manche AP's (Access Points)
erfordern bspw. eine reduzierte
Bandbreite, welche nicht mit allen
Geräten bzw. Softwarevarianten
möglich ist. Erkundigen Sie sich am
Besten zuvor beim zuständigen SysOp.

Das AirOS der Nanostation 2 bzw. des Bullet 2(HP) unterstützt auch eine reduzierte Signal-Bandbreite von 10 bzw. 5 MHz.

Ein Konfigurationsbeispiel bspw. für den 2,4GHz Benutzerzugang am Gaisberg OE2 findet sich in [[Teststellungen Gaisberg Gernkogel]].

"'Es sind HAMNETpoweruser und [[Userequipment HAMNETmesh | HAMNETmesh]] nicht miteinander kompatibel!"

=== Mikrotik ===

Ausgabe: 03.05.2024

Das Equipment von Ubiquiti beherrscht im Gegensatz zum Linksys über eine einstellbare Nutz-Bandbreite. [[Bild:qrt2.jpg|thumb|Mikrotik QRT]] Die im Backbone eingesetzten Routerboards können natürlich auch für den Userzugang verwendet werden. Zu erwähnen ist, dass Mikrotik Hardware der professionellen Schiene zuzuordnen ist, und ist daher in der Konfiguration auch wesentlich umfangreicher. ==== Mikrotik Userzugang konfigurieren ==== [[Media:Mikrotik-HAMNET-User-Manual V1.32.pdf|Mikrotik-HAMNET-User-Manual V1.32]] Die benötige HF Bandbreite kann aus **Diese Version Dokuments ist eine** völlig neue und wesentlich erweiterte den Messungen hier entnommen werden:[[Messungen digitaler Neuauflage. Backbone]] [[Media:Mikrotik-HAMNET-User-Manual V2.21.pdf|Mikrotik-HAMNET-User-Manual V2.2]] === Antenne === ==== RBQRTG-2SHPnD (QRT2) ==== Das RBORTG-2SHPnD. kurz ORT2. ist in punkto Preis-Leistung eine äußerst gute Wahl. Eine 17dbi Flachantenne verbaut in einem wetterfesten Gehäuse mit integrierter HF

Hardware stellt das Optimum an geringer Baugröße bei maximaler Leistungsfähigkeit dar. Die Sendeleistung beträgt dabei bis zu 35dbm! Außerdem bietet der Aufbau eine 2x2 MiMo Chain.

- ==== Yagi ====

* 18dbi Antenne mit Kabel und RP-TNC

Stecker zum direkten Anschluß an den
WRT54GL (bei Ebay ca. € 27,-)

=== Ubiquiti ===

+

Im Grunde eignet sich jedes Produkt aus der Palette [http://www.ubnt.com/airmax airMAX von UBIQUITI] für einen Zugang als POWERuser zum HAMNET. Achten muss man aber darauf, für welches Frequenzband das Equipment verwendet werden soll.

+

+ ====AirGrid====

Die AirGird Gitterantenne hat den Sendeempfänger in einem witterungsbeständigen Gehäuse direkt im Brennpunkt verbaut. Diese Antenne eignet sich eher für eine geschützte Montage, bei der zumindest kein Schnee und Eis zwischen Reflektor und Erreger liegen bleiben kann.

+

+ ====NanoBeam====

Der NanoBeam ist eine Parabolantenne, welche die wetterfeste HF Hardware fix im

+ Brennpunkt verbaut hat. Wenn die Antenne den in unseren Breiten üblichen Witterungsbedingungen (Schnee) ausgesetzt ist, empfiehlt sich das zugehörige Radom, damit die Charakteristik unverändert bleibt.

+

==== Nanostation M2, Bullet M2HP

+ [[Bild:Bullet2.png|thumb|Ubiquiti Bullet2]]

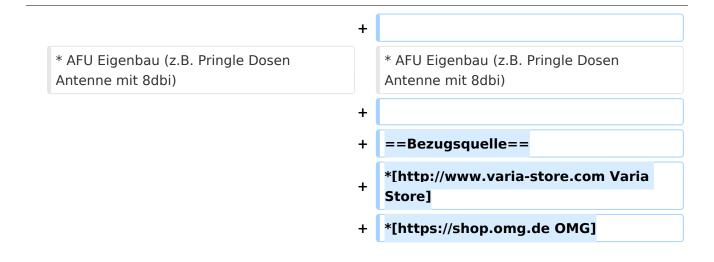
Diese all-in-one Lösung vereint
Router, WLAN Karte und Antenne (nur
Nanostation) in einem wetter- und UVbeständigen Gehäuse bei einer
Einsatztemperatur von bis zu -20°C.

Beim Kauf ist auch gleich der komfortable PoE Adapter (Power over Ethernet) und das 12V Netzteil enthalten (nur NanoStation).

Per PoE kann nun die Versorgung des Gerätes bequem über das Netzwerkabel aus der Entfernung (Shack) erfolgen, und man braucht so nur ein einziges Kabel zu verlegen.

+

Dabei verfügt die Einheit je nach+ Ausführung über bis zu 28dbmSendeleistung.


 Die Einstellungen können bequem per
 + Browser über das Webinterface im AirOS gemacht werden.

+

Das, im Equipment von Ubiquiti
verwendete Betriebssystem AirOS
bspw. der Nanostation bzw. des
Bullet unterstützt im Gegensatz zum Li
nksys auch eine reduzierbare SignalBandbreite von 10 bzw. 5 MHz.

Die benötige HF Bandbreite kann aus den Messungen hier entnommen werden: [[Messungen digitaler Backbone]] Ein Konfigurationsbeispiel bspw. für d en 2,4GHz Benutzerzugang am Gaisberg OE2 (analog Untersberg, Gernkogel, Wildkogel) findet sich in [[Teststellungen Gaisberg Gernkogel]]. Für Benutzer, welche das Ubiquiti Equipment mit einem LAN Router im hauseigenen Netzwerk zur parallelen Nutzung von Internet und HAMNET verwenden wollen gibt es die Anleitung [[Media:Router-Poweruser. pdf|Ubiquiti NS bzw. Bullet mit LAN Router]]. Die Nanostation Loco ist eher nicht geeignet, da dessen Antennengewinn und Sendeleistung meist nicht ausreicht. ""WebLinks:"" *[http://www.ubnt.com/products /bulletm.php Ubiquiti Bullet M Serie] *[http://www.ubnt.com/products/nano. php Ubiquiti Nanostation] + == Antenne == === Yagi ===

Aktuelle Version vom 18. November 2018, 17:02 Uhr

Inhaltsverzeichnis	
1 Einleitung	
2 Allgemein gilt	
3 Wahl des HAMNET Userequipment	
3.1 Mikrotik	
3.1.1 Mikrotik Userzugang konfigurieren	
3.1.2 RBQRTG-2SHPnD (QRT2)	
3.2 Ubiquiti	
3.2.1 AirGrid	
3.2.2 NanoBeam	
3.2.3 Nanostation M2, Bullet M2HP	
4 Antenne	
4.1 Yagi	
5 Bezugsquelle	

Einleitung

Das HAMNET hat grob genommen 3 Ebenen, welche unterschiedlich adressiert sind:

-) Der Backbone: Die stellt die eigentliche Autobahn da und macht außer Routing und Basisverbindung herstellen eigentlich nichts. Direkte Sicht ist das Thema hier.
-) Der Service/Poweruser Bereich: Dieser Bereich ist die bessere Landstraße für das HAMENT, bedingt aber einen höheren Hardware und Konfigurationsaufwand am User. Auch hier unmittelbare Nähe um Powereinstieg notwendig
-) Mesh/Enduser Bereich: Dieser Bereich adressiert Methoden und Techniken, das entweder direkt bzw indirekt über bestehende Mesh Partner Verbindung aufgenommen werden kann.

Der Poweruser Bereich stellt einen Zugang mit höherer Bandbreite zum Backbone im Userbereich dar und bedarf spezialisierte Hardware.

Allgemein gilt

Generell ist meist nur freie Sicht ein Garant für eine (gute) Verbindung. Bei geringeren Entfernungen kann dann aber schon mal mit Reflexionen experimentiert werden. Außerdem gilt - je größer die Entfernung zum Accesspoint, desto mehr Anforderung steht an den Gewinn der verwendeten Antenne, sowie der Leistung der HF Einheit.

Wahl des HAMNET Userequipment

Bei der Wahl des anzuschaffenden Gerätes ist die Anforderung des lokalen Benutzerzugangs zu beachten. Manche AP's (Access Points) erfordern bspw. eine reduzierte Bandbreite, welche nicht mit allen Geräten bzw. Softwarevarianten möglich ist. Erkundigen Sie sich am Besten zuvor beim zuständigen SysOp.

Es sind HAMNETpoweruser und HAMNETmesh nicht miteinander kompatibel!

Mikrotik

Die im Backbone eingesetzten Routerboards können natürlich auch für den Userzugang verwendet werden. Zu erwähnen ist, dass Mikrotik Hardware der professionellen Schiene zuzuordnen ist, und ist daher in der Konfiguration auch wesentlich umfangreicher.

Datei:qrt2.jpg Mikrotik QRT

Mikrotik Userzugang konfigurieren

Mikrotik-HAMNET-User-Manual V1.32

Diese Version Dokuments ist eine völlig neue und wesentlich erweiterte Neuauflage.

Mikrotik-HAMNET-User-Manual V2.2

Ausgabe: 03.05.2024 Dieses Dokument wurde erzeugt mit BlueSpice

RBQRTG-2SHPnD (QRT2)

Das RBQRTG-2SHPnD, kurz QRT2, ist in punkto Preis-Leistung eine äußerst gute Wahl. Eine 17dbi Flachantenne verbaut in einem wetterfesten Gehäuse mit integrierter HF Hardware stellt das Optimum an geringer Baugröße bei maximaler Leistungsfähigkeit dar. Die Sendeleistung beträgt dabei bis zu 35dbm! Außerdem bietet der Aufbau eine 2x2 MiMo Chain.

Ubiquiti

Im Grunde eignet sich jedes Produkt aus der Palette airMAX von UBIQUITI für einen Zugang als POWERuser zum HAMNET. Achten muss man aber darauf, für welches Frequenzband das Equipment verwendet werden soll.

AirGrid

Die AirGird Gitterantenne hat den Sendeempfänger in einem witterungsbeständigen Gehäuse direkt im Brennpunkt verbaut. Diese Antenne eignet sich eher für eine geschützte Montage, bei der zumindest kein Schnee und Eis zwischen Reflektor und Erreger liegen bleiben kann.

NanoBeam

Der NanoBeam ist eine Parabolantenne, welche die wetterfeste HF Hardware fix im Brennpunkt verbaut hat. Wenn die Antenne den in unseren Breiten üblichen Witterungsbedingungen (Schnee) ausgesetzt ist, empfiehlt sich das zugehörige Radom, damit die Charakteristik unverändert bleibt.

Nanostation M2, Bullet M2HP

Diese all-in-one Lösung vereint Router, WLAN Karte und Antenne (nur Nanostation) in einem wetter- und UV-beständigen Gehäuse bei einer Einsatztemperatur von bis zu -20°C. Beim Kauf ist auch gleich der komfortable PoE Adapter (Power over Ethernet) und das 12V Netzteil enthalten (nur NanoStation). Per PoE kann nun die Versorgung des Gerätes bequem über das Netzwerkabel aus der Entfernung (Shack) erfolgen, und man braucht so nur ein einziges Kabel zu verlegen.

Dabei verfügt die Einheit je nach Ausführung über bis zu 28dbm Sendeleistung. Die Einstellungen können bequem per Browser über das Webinterface im AirOS gemacht werden.

Ausgabe: 03.05.2024

Das, im Equipment von Ubiquiti verwendete Betriebssystem AirOS bspw. der Nanostation bzw. des Bullet unterstützt im Gegensatz zum Linksys auch eine reduzierbare Signal-Bandbreite von 10 bzw. 5 MHz.

Die benötige HF Bandbreite kann aus den Messungen hier entnommen werden: Messungen digitaler Backbone

Ein Konfigurationsbeispiel bspw. für den 2,4GHz Benutzerzugang am Gaisberg OE2 (analog Untersberg, Gernkogel, Wildkogel) findet sich in Teststellungen Gaisberg Gernkogel.

Für Benutzer, welche das Ubiquiti Equipment mit einem LAN Router im hauseigenen Netzwerk zur parallelen Nutzung von Internet und HAMNET verwenden wollen gibt es die Anleitung Ubiquiti NS bzw. Bullet mit LAN Router.

Die Nanostation Loco ist eher nicht geeignet, da dessen Antennengewinn und Sendeleistung meist nicht ausreicht.

WebLinks:

- Ubiquiti Bullet M Serie
- Ubiquiti Nanostation

Antenne

Yagi

• AFU Eigenbau (z.B. Pringle Dosen Antenne mit 8dbi)

Bezugsquelle

- Varia Store
- OMG

Userequipment HAMNETpoweruser: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 19. August 2009, 13:38 Uhr (Quelltext anzeigen)

Oe6rke (Diskussion | Beiträge)

← Zum vorherigen Versionsunterschied

Aktuelle Version vom 18. November 2018, 17:02 Uhr (Quelltext anzeigen)

OE5RNL (Diskussion | Beiträge)
K (→Mikrotik Userzugang konfigurieren)

(20 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)

Zeile 2: Zeile 2:

[[Kategorie:Digitale_Betriebsarten]]

[[Kategorie:Digitale_Betriebsarten]]

[[Bild:Bullet2.png|thumb|Ubiquiti Bullet2]] == Einleitung ==

== HAMNETpoweruser ==

Das HAMNET hat grob genommen 3
Ebenen, welche unterschiedlich
adressiert sind:

Der Backbone hat 3 Ebenen, welche unterschiedlich adressiert sind:

- *) Der Backbone: Die stellt die eigentliche Autobahn da und macht außer Routing und Basisverbindung herstellen eigentlich nichts. Direkte Sicht ist das Thema hier.
- *) Der Service/Poweruser Bereich: Dieser Bereich ist die bessere Landstrasse für das HAMENT, bedingt aber einen höheren Hardware und Konfigurationsaufwand am User. Auch hier unmittelbare Nähe um Powereinstieg notwendig
- *) Mesh/Enduser Bereich: Dieser Bereich adressiert Methoden und Techniken, das entweder direkt bzw indirekt über bestehende Mesh Partner Verbindung aufgenommen werden kann.

- *) Der Backbone: Die stellt die eigentliche Autobahn da und macht außer Routing und Basisverbindung herstellen eigentlich nichts. Direkte Sicht ist das Thema hier.
- *) Der Service/Poweruser Bereich: Dieser Bereich ist die bessere **Landstraße** für das HAMENT, bedingt aber einen höheren Hardware und Konfigurationsaufwand am User. Auch hier unmittelbare Nähe um Powereinstieg notwendig
- *) Mesh/Enduser Bereich: Dieser Bereich adressiert Methoden und Techniken, das entweder direkt bzw indirekt über bestehende Mesh Partner Verbindung aufgenommen werden kann.

Der Poweruser Bereich stellt einen Zugang mit höherer Bandbreite zum Backbone im Userbreich dar und bedarf spezialiserte Hardware.

Der Poweruser Bereich stellt einen Zugang mit höherer Bandbreite zum Backbone im Userbereich dar und bedarf spezialisiert e Hardware.

=== Wahl des HAMNET
Userequipment ===

Bei der Wahl des anzuschaffenden

- Gerätes ist die Anforderung des
lokalen Benutzerzugangs zu beachten.

Manche AP's (Access Points)
erfordern bspw. eine reduzierte
Bandbreite, welche nicht mit allen
Geräten bzw. Softwarevarianten
möglich ist. Erkundigen Sie sich am
Besten zuvor beim zuständigen
SysOp.

"Es sind HAMNETpoweruser undHAMNETmesh nicht miteinander kompatibel!"

== Allgemein gilt ==

Generell ist meist nur freie Sicht ein Garant für eine (gute) Verbindung. Bei geringeren Entfernungen kann dann aber schon mal mit Reflexionen experimentiert werden.

Außerdem gilt - je größer die Entfernung zum Accesspoint, desto mehr Anforderung steht an den Gewinn der verwendeten Antenne, sowie der Leistung der HF Einheit.

==== Ubiquiti Nanostation 2, Bullet 2
(HP)* ====

Diese all-in-one Lösung vereint Router, WLAN Karte und Antenne in einem wetter- und UV-beständigen Gehäuse bei einer Einsatztemperatur von bis zu -20°C.

Beim Kauf ist auch gleich der komfortable PoE Adapter (Power over Ethernet) und das 12V Netzteil enthalten.

Per PoE kann nun die Versorgung des Gerätes bequem über das Netzwerkabel aus der Entfernung (Shack) erfolgen, und man braucht so nur ein Kabel zu verlegen.

Dabei verfügt die Einheit über 16dbm Sendeleistung an einer eingebauten 10dbi Antenne. Das Anbringen einer externen Antenne ist über einen RP-SMA Anschluß möglich.

Die Einstellungen können per Browser über das Webinterface im AirOS gemacht werden.

== Wahl des HAMNET Userequipment ==

"Bei der Wahl des anzuschaffenden Gerätes ist die Anforderung des lokalen Benutzerzugangs zu beachten."

"'Manche AP's (Access Points)
erfordern bspw. eine reduzierte
Bandbreite, welche nicht mit allen
Geräten bzw. Softwarevarianten
möglich ist. Erkundigen Sie sich am
Besten zuvor beim zuständigen SysOp.

Das AirOS der Nanostation 2 bzw. des Bullet 2(HP) unterstützt auch eine reduzierte Signal-Bandbreite von 10 bzw. 5 MHz.

Ein Konfigurationsbeispiel bspw. für den 2,4GHz Benutzerzugang am Gaisberg OE2 findet sich in [[Teststellungen Gaisberg Gernkogel]].

"Es sind HAMNETpoweruser und [[Userequipment HAMNETmesh | HAMNETmesh]] nicht miteinander kompatibel!"

=== Mikrotik ===

Ausgabe: 03.05.2024

Das Equipment von Ubiquiti beherrscht im Gegensatz zum Linksys über eine einstellbare Nutz-Bandbreite. [[Bild:qrt2.jpg|thumb|Mikrotik QRT]] Die im Backbone eingesetzten Routerboards können natürlich auch für den Userzugang verwendet werden. Zu erwähnen ist, dass Mikrotik Hardware der professionellen Schiene zuzuordnen ist, und ist daher in der Konfiguration auch wesentlich umfangreicher. ==== Mikrotik Userzugang konfigurieren ==== [[Media:Mikrotik-HAMNET-User-Manual V1.32.pdf|Mikrotik-HAMNET-User-Manual V1.32]] Die benötige HF Bandbreite kann aus **Diese Version Dokuments ist eine** völlig neue und wesentlich erweiterte den Messungen hier entnommen werden:[[Messungen digitaler Neuauflage. Backbone]] [[Media:Mikrotik-HAMNET-User-Manual V2.21.pdf|Mikrotik-HAMNET-User-Manual V2.2]] === Antenne === ==== RBQRTG-2SHPnD (QRT2) ==== Das RBORTG-2SHPnD. kurz ORT2. ist in punkto Preis-Leistung eine äußerst gute Wahl. Eine 17dbi Flachantenne verbaut in einem wetterfesten Gehäuse mit integrierter HF

Hardware stellt das Optimum an geringer Baugröße bei maximaler Leistungsfähigkeit dar. Die Sendeleistung beträgt dabei bis zu 35dbm! Außerdem bietet der Aufbau eine 2x2 MiMo Chain.

- ==== Yagi ====

* 18dbi Antenne mit Kabel und RP-TNC

- Stecker zum direkten Anschluß an den
WRT54GL (bei Ebay ca. € 27,-)

=== Ubiquiti ===

+

Im Grunde eignet sich jedes Produkt aus der Palette [http://www.ubnt.com/airmax airMAX von UBIQUITI] für einen Zugang als POWERuser zum HAMNET. Achten muss man aber darauf, für welches Frequenzband das Equipment verwendet werden soll.

+

+ ====AirGrid====

Die AirGird Gitterantenne hat den Sendeempfänger in einem witterungsbeständigen Gehäuse direkt im Brennpunkt verbaut. Diese Antenne eignet sich eher für eine geschützte Montage, bei der zumindest kein Schnee und Eis zwischen Reflektor und Erreger liegen bleiben kann.

+

+ ====NanoBeam====

Der NanoBeam ist eine Parabolantenne, welche die wetterfeste HF Hardware fix im

+ Brennpunkt verbaut hat. Wenn die Antenne den in unseren Breiten üblichen Witterungsbedingungen (Schnee) ausgesetzt ist, empfiehlt sich das zugehörige Radom, damit die Charakteristik unverändert bleibt.

+

==== Nanostation M2, Bullet M2HP

+ [[Bild:Bullet2.png|thumb|Ubiquiti Bullet2]]

Diese all-in-one Lösung vereint
Router, WLAN Karte und Antenne (nur
Nanostation) in einem wetter- und UVbeständigen Gehäuse bei einer
Einsatztemperatur von bis zu -20°C.

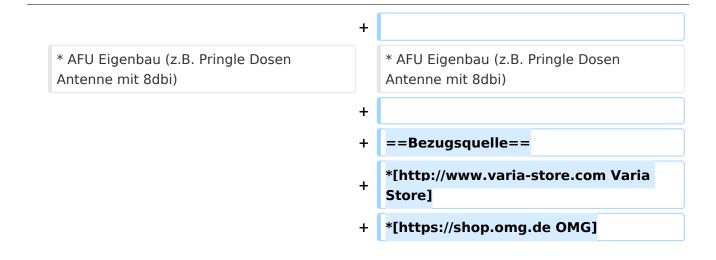
Beim Kauf ist auch gleich der komfortable PoE Adapter (Power over Ethernet) und das 12V Netzteil enthalten (nur NanoStation).

Per PoE kann nun die Versorgung des Gerätes bequem über das Netzwerkabel aus der Entfernung (Shack) erfolgen, und man braucht so nur ein einziges Kabel zu verlegen.

+

Dabei verfügt die Einheit je nach+ Ausführung über bis zu 28dbmSendeleistung.

 Die Einstellungen können bequem per
 + Browser über das Webinterface im AirOS gemacht werden.


+

Das, im Equipment von Ubiquiti
verwendete Betriebssystem AirOS
bspw. der Nanostation bzw. des
Bullet unterstützt im Gegensatz zum Li
nksys auch eine reduzierbare SignalBandbreite von 10 bzw. 5 MHz.

Die benötige HF Bandbreite kann aus den Messungen hier entnommen werden: [[Messungen digitaler Backbone]] Ein Konfigurationsbeispiel bspw. für d en 2,4GHz Benutzerzugang am Gaisberg OE2 (analog Untersberg, Gernkogel, Wildkogel) findet sich in [[Teststellungen Gaisberg Gernkogel]]. Für Benutzer, welche das Ubiquiti Equipment mit einem LAN Router im hauseigenen Netzwerk zur parallelen Nutzung von Internet und HAMNET verwenden wollen gibt es die Anleitung [[Media:Router-Poweruser. pdf|Ubiquiti NS bzw. Bullet mit LAN Router]]. Die Nanostation Loco ist eher nicht geeignet, da dessen Antennengewinn und Sendeleistung meist nicht ausreicht. ""WebLinks:"" *[http://www.ubnt.com/products /bulletm.php Ubiquiti Bullet M Serie] *[http://www.ubnt.com/products/nano. php Ubiquiti Nanostation] + == Antenne == === Yagi ===

Aktuelle Version vom 18. November 2018, 17:02 Uhr

Inhaltsverzeichnis	
1 Einleitung	76
2 Allgemein gilt	76
3 Wahl des HAMNET Userequipment	
3.1 Mikrotik	76
3.1.1 Mikrotik Userzugang konfigurieren	76
3.1.2 RBQRTG-2SHPnD (QRT2)	77
3.2 Ubiquiti	77
3.2.1 AirGrid	77
3.2.2 NanoBeam	77
3.2.3 Nanostation M2, Bullet M2HP	77
4 Antenne	78
4.1 Yagi	78
5 Bezugsquelle	78

Einleitung

Das HAMNET hat grob genommen 3 Ebenen, welche unterschiedlich adressiert sind:

-) Der Backbone: Die stellt die eigentliche Autobahn da und macht außer Routing und Basisverbindung herstellen eigentlich nichts. Direkte Sicht ist das Thema hier.
-) Der Service/Poweruser Bereich: Dieser Bereich ist die bessere Landstraße für das HAMENT, bedingt aber einen höheren Hardware und Konfigurationsaufwand am User. Auch hier unmittelbare Nähe um Powereinstieg notwendig
-) Mesh/Enduser Bereich: Dieser Bereich adressiert Methoden und Techniken, das entweder direkt bzw indirekt über bestehende Mesh Partner Verbindung aufgenommen werden kann.

Der Poweruser Bereich stellt einen Zugang mit höherer Bandbreite zum Backbone im Userbereich dar und bedarf spezialisierte Hardware.

Allgemein gilt

Generell ist meist nur freie Sicht ein Garant für eine (gute) Verbindung. Bei geringeren Entfernungen kann dann aber schon mal mit Reflexionen experimentiert werden. Außerdem gilt - je größer die Entfernung zum Accesspoint, desto mehr Anforderung steht an den Gewinn der verwendeten Antenne, sowie der Leistung der HF Einheit.

Wahl des HAMNET Userequipment

Bei der Wahl des anzuschaffenden Gerätes ist die Anforderung des lokalen Benutzerzugangs zu beachten. Manche AP's (Access Points) erfordern bspw. eine reduzierte Bandbreite, welche nicht mit allen Geräten bzw. Softwarevarianten möglich ist. Erkundigen Sie sich am Besten zuvor beim zuständigen SysOp.

Es sind HAMNETpoweruser und HAMNETmesh nicht miteinander kompatibel!

Mikrotik

Die im Backbone eingesetzten Routerboards können natürlich auch für den Userzugang verwendet werden. Zu erwähnen ist, dass Mikrotik Hardware der professionellen Schiene zuzuordnen ist, und ist daher in der Konfiguration auch wesentlich umfangreicher.

Datei:qrt2.jpg Mikrotik QRT

Mikrotik Userzugang konfigurieren

Mikrotik-HAMNET-User-Manual V1.32

Diese Version Dokuments ist eine völlig neue und wesentlich erweiterte Neuauflage.

Mikrotik-HAMNET-User-Manual V2.2

Ausgabe: 03.05.2024 Dieses Dokument wurde erzeugt mit BlueSpice

RBQRTG-2SHPnD (QRT2)

Das RBQRTG-2SHPnD, kurz QRT2, ist in punkto Preis-Leistung eine äußerst gute Wahl. Eine 17dbi Flachantenne verbaut in einem wetterfesten Gehäuse mit integrierter HF Hardware stellt das Optimum an geringer Baugröße bei maximaler Leistungsfähigkeit dar. Die Sendeleistung beträgt dabei bis zu 35dbm! Außerdem bietet der Aufbau eine 2x2 MiMo Chain.

Ubiquiti

Im Grunde eignet sich jedes Produkt aus der Palette airMAX von UBIQUITI für einen Zugang als POWERuser zum HAMNET. Achten muss man aber darauf, für welches Frequenzband das Equipment verwendet werden soll.

AirGrid

Die AirGird Gitterantenne hat den Sendeempfänger in einem witterungsbeständigen Gehäuse direkt im Brennpunkt verbaut. Diese Antenne eignet sich eher für eine geschützte Montage, bei der zumindest kein Schnee und Eis zwischen Reflektor und Erreger liegen bleiben kann.

NanoBeam

Der NanoBeam ist eine Parabolantenne, welche die wetterfeste HF Hardware fix im Brennpunkt verbaut hat. Wenn die Antenne den in unseren Breiten üblichen Witterungsbedingungen (Schnee) ausgesetzt ist, empfiehlt sich das zugehörige Radom, damit die Charakteristik unverändert bleibt.

Nanostation M2, Bullet M2HP

Diese all-in-one Lösung vereint Router, WLAN Karte und Antenne (nur Nanostation) in einem wetter- und UV-beständigen Gehäuse bei einer Einsatztemperatur von bis zu -20°C. Beim Kauf ist auch gleich der komfortable PoE Adapter (Power over Ethernet) und das 12V Netzteil enthalten (nur NanoStation). Per PoE kann nun die Versorgung des Gerätes bequem über das Netzwerkabel aus der Entfernung (Shack) erfolgen, und man braucht so nur ein einziges Kabel zu verlegen.

Dabei verfügt die Einheit je nach Ausführung über bis zu 28dbm Sendeleistung. Die Einstellungen können bequem per Browser über das Webinterface im AirOS gemacht werden.

Ausgabe: 03.05.2024

Das, im Equipment von Ubiquiti verwendete Betriebssystem AirOS bspw. der Nanostation bzw. des Bullet unterstützt im Gegensatz zum Linksys auch eine reduzierbare Signal-Bandbreite von 10 bzw. 5 MHz.

Die benötige HF Bandbreite kann aus den Messungen hier entnommen werden: Messungen digitaler Backbone

Ein Konfigurationsbeispiel bspw. für den 2,4GHz Benutzerzugang am Gaisberg OE2 (analog Untersberg, Gernkogel, Wildkogel) findet sich in Teststellungen Gaisberg Gernkogel.

Für Benutzer, welche das Ubiquiti Equipment mit einem LAN Router im hauseigenen Netzwerk zur parallelen Nutzung von Internet und HAMNET verwenden wollen gibt es die Anleitung Ubiquiti NS bzw. Bullet mit LAN Router.

Die Nanostation Loco ist eher nicht geeignet, da dessen Antennengewinn und Sendeleistung meist nicht ausreicht.

WebLinks:

- Ubiquiti Bullet M Serie
- Ubiquiti Nanostation

Antenne

Yagi

• AFU Eigenbau (z.B. Pringle Dosen Antenne mit 8dbi)

Bezugsquelle

- Varia Store
- OMG