

Inhaltsverzeichnis

Ausgabe: 02.05.2024 Dieses Dokument wurde erzeugt mit BlueSpice

Userequipment HAMNETpoweruser

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 31. August 2009, 21:57 Uhr (Quelltext anzeigen)

OE2WAO (Diskussion | Beiträge) (→Ubiquiti Nanostation 2, Bullet 2(HP)*) ← Zum vorherigen Versionsunterschied

Aktuelle Version vom 18. November 2018, 17:02 Uhr (Quelltext anzeigen)

OE5RNL (Diskussion | Beiträge) K (→Mikrotik Userzugang konfigurieren)

(19 dazwischenliegende Versionen von 3 Benutzern werden nicht angezeigt)

Zeile 2:

[[Kategorie:Digitale Betriebsarten]]

Zeile 2:

[[Kategorie:Digitale Betriebsarten]]

[[Bild:Bullet2.png|thumb|Ubiquiti Bullet2]]

== Einleitung ==

== HAMNETpoweruser ==

Das HAMNET hat grob genommen 3 Ebenen, welche unterschiedlich adressiert sind:

Der Backbone hat 3 Ebenen, welche unterschiedlich adressiert sind:

- *) Der Backbone: Die stellt die eigentliche Autobahn da und macht außer Routing und Basisverbindung herstellen eigentlich nichts. Direkte Sicht ist das Thema hier.
- *) Der Service/Poweruser Bereich: Dieser Bereich ist die bessere **Landstrasse** für das HAMENT, bedingt aber einen höheren Hardware und Konfigurationsaufwand am User. Auch hier unmittelbare Nähe um Powereinstieg notwendig
- *) Mesh/Enduser Bereich: Dieser Bereich adressiert Methoden und Techniken, das entweder direkt bzw indirekt über bestehende Mesh Partner Verbindung aufgenommen werden kann.

- *) Der Backbone: Die stellt die eigentliche Autobahn da und macht außer Routing und Basisverbindung herstellen eigentlich nichts. Direkte Sicht ist das Thema hier.
- *) Der Service/Poweruser Bereich: Dieser Bereich ist die bessere **Landstraße** für das HAMENT, bedingt aber einen höheren Hardware und Konfigurationsaufwand am User. Auch hier unmittelbare Nähe um Powereinstieg notwendig
- *) Mesh/Enduser Bereich: Dieser Bereich adressiert Methoden und Techniken, das entweder direkt bzw indirekt über bestehende Mesh Partner Verbindung aufgenommen werden kann.

Ausgabe: 02.05.2024

Der Poweruser Bereich stellt einen Zugang Der Poweruser Bereich stellt einen Zugang mit höherer Bandbreite zum Backbone im mit höherer Bandbreite zum Backbone im **Userbreich** dar und bedarf **spezialiserte** Userbereich dar und bedarf spezialisiert Hardware. e Hardware. + == Allgemein gilt == Generell ist meist nur freie Sicht ein Garant für eine (gute) Verbindung. Bei geringeren Entfernungen kann dann aber schon mal mit Reflexionen experimentiert werden.
 Außerdem ailt - ie arößer die Entfernung zum Accesspoint, desto mehr Anforderung steht an den Gewinn der verwendeten Antenne. sowie der Leistung der HF Einheit. == Wahl des HAMNET Userequipment "Bei der Wahl des anzuschaffenden Gerätes ist die Anforderung des lokalen Benutzerzugangs zu beachten." "Manche AP's (Access Points) erfordern bspw. eine reduzierte Bandbreite, welche nicht mit allen Geräten bzw. Softwarevarianten möglich ist. Erkundigen Sie sich am Besten zuvor beim zuständigen SysOp." "Es sind HAMNETpoweruser und [[Userequipment HAMNETmesh | **HAMNETmesh]]** nicht miteinander kompatibel!"

```
=== Mikrotik ===
+ [[Bild:qrt2.jpg|thumb|Mikrotik QRT]]
   Die im Backbone eingesetzten
   Routerboards können natürlich auch
   für den Userzugang verwendet
   werden. Zu erwähnen ist, dass
   Mikrotik Hardware der
   professionellen Schiene zuzuordnen
   ist. und ist daher in der Konfiguration
   auch wesentlich umfangreicher.
   ==== Mikrotik Userzugang
   konfigurieren ====
   [[Media:Mikrotik-HAMNET-User-
   Manual V1.32.pdf|Mikrotik-HAMNET-
   User-Manual_V1.32]]
   Diese Version Dokuments ist eine
   völlig neue und wesentlich erweiterte
   Neuauflage.
   [[Media:Mikrotik-HAMNET-User-
   Manual V2.21.pdf|Mikrotik-HAMNET-
   User-Manual_V2.2]]
   ==== RBQRTG-2SHPnD (QRT2) ====
   Das RBORTG-2SHPnD. kurz ORT2. ist
   in punkto Preis-Leistung eine äußerst
   gute Wahl. Eine 17dbi Flachantenne
   verbaut in einem wetterfesten
   Gehäuse mit integrierter HF
   Hardware stellt das Optimum an
   geringer Baugröße bei maximaler
   Leistungsfähigkeit dar. Die
   Sendeleistung beträgt dabei bis zu
   35dbm! Außerdem bietet der Aufbau
   eine 2x2 MiMo Chain.
```

+

+ === Ubiquiti ===

=== Wahl des HAMNET Userequipment === Im Grunde eignet sich jedes Produkt aus der Palette [http://www.ubnt.com/airmax airMAX von UBIQUITI] für einen Zugang als POWERuser zum HAMNET. Achten muss man aber darauf, für welches Frequenzband das Equipment verwendet werden soll.

Bei der Wahl des anzuschaffenden

Gerätes ist die Anforderung des
lokalen Benutzerzugangs zu beachten.

Manche AP's (Access Points)
erfordern bspw. eine reduzierte
Bandbreite, welche nicht mit allen
Geräten bzw. Softwarevarianten
möglich ist. Erkundigen Sie sich am
Besten zuvor beim zuständigen SysOp.

"'Es sind HAMNETpoweruser und HAM
NETmesh nicht miteinander
kompatibel!"

====AirGrid====

+

Die AirGird Gitterantenne hat den Sendeempfänger in einem witterungsbeständigen Gehäuse direkt im Brennpunkt verbaut. Diese Antenne eignet sich eher für eine geschützte Montage, bei der zumindest kein Schnee und Eis zwischen Reflektor und Erreger liegen bleiben kann.

+ ====NanoBeam====

Der NanoBeam ist eine Parabolantenne, welche die wetterfeste HF Hardware fix im

Brennpunkt verbaut hat. Wenn die Antenne den in unseren Breiten üblichen Witterungsbedingungen (Schnee) ausgesetzt ist, empfiehlt sich das zugehörige Radom, damit die Charakteristik unverändert bleibt.

==== **Ubiquiti** Nanostation **2, Bullet 2**, Bullet M2HP ====

==== Nanostation M2, Bullet M2HP

[[Bild:Bullet2.png|thumb|Ubiquiti

Diese all-in-one Lösung vereint Router, WLAN Karte und Antenne (nur Nanostation) in einem wetter- und UV-beständigen Gehäuse bei einer Einsatztemperatur von bis zu -20°C.

ung vereint Router,
tenne (nur

em wetter- und UVse bei einer

von bis zu -20°C.

Diese all-in-one Lösung vereint Router,
WLAN Karte und Antenne (nur
Nanostation) in einem wetter- und UVbeständigen Gehäuse bei einer
Einsatztemperatur von bis zu -20°C.

Bullet2]]

Beim Kauf ist auch gleich der komfortable PoE Adapter (Power over Ethernet) und das 12V Netzteil enthalten. Beim Kauf ist auch gleich der komfortable PoE Adapter (Power over Ethernet) und das 12V Netzteil enthalten (nur NanoStation).

Per PoE kann nun die Versorgung des Gerätes bequem über das Netzwerkabel aus der Entfernung (Shack) erfolgen, und man braucht so nur ein einziges Kabel zu verlegen. Per PoE kann nun die Versorgung des Gerätes bequem über das Netzwerkabel aus der Entfernung (Shack) erfolgen, und man braucht so nur ein einziges Kabel zu verlegen.

Dabei verfügt die Einheit über 16dbm (Bullet M2HP 28dbm) Sendeleistung.

Das Anbringen einer externen
Antenne bei der Nanostation ist über einen RP-SMA Anschluß ebenfalls möglich.

Dabei verfügt die Einheit **je nach Ausführung** über **bis zu** 28dbm Sendeleistung.

Die Einstellungen können bequem per Browser über das Webinterface im AirOS gemacht werden. Die Einstellungen können bequem per Browser über das Webinterface im AirOS gemacht werden.

BlueSpice 4

Das, im Equipment von Ubiquiti
verwendete Betriebssystem AirOS der
Nanostation 2 bzw. des Bullet 2(M2HP) un
terstützt im Gegensatz zum Linksys auch
eine reduzierbare Signal-Bandbreite von
10 bzw. 5 MHz.

Die benötige HF Bandbreite kann aus den Messungen hier entnommen werden: [[Messungen digitaler Backbone]]

Ein Konfigurationsbeispiel bspw. für den 2,4GHz Benutzerzugang am Gaisberg OE2 findet sich in [[Teststellungen Gaisberg Gernkogel]].

Das, im Equipment von Ubiquiti verwendete Betriebssystem AirOS **bspw.** d er Nanostation bzw. des Bullet unterstützt im Gegensatz zum Linksys auch eine reduzierbare Signal-Bandbreite von 10 bzw. 5 MHz.

br>

Die benötige HF Bandbreite kann aus den Messungen hier entnommen werden: [[Messungen digitaler Backbone]]

Ein Konfigurationsbeispiel bspw. für den 2,4GHz Benutzerzugang am Gaisberg OE2 (analog Untersberg, Gernkogel, Wildkogel) findet sich in [[Teststellungen Gaisberg Gernkogel]].

Für Benutzer, welche das Ubiquiti
Equipment mit einem LAN Router im
hauseigenen Netzwerk zur parallelen
Nutzung von Internet und HAMNET
verwenden wollen gibt es die
Anleitung [[Media:Router-Poweruser.
pdf|Ubiquiti NS bzw. Bullet mit LAN
Router]].

Die Nanostation Loco ist eher nicht geeignet, da dessen Antennengewinn und Sendeleistung meist nicht ausreicht.

""WebLinks:""

Zeile 37:

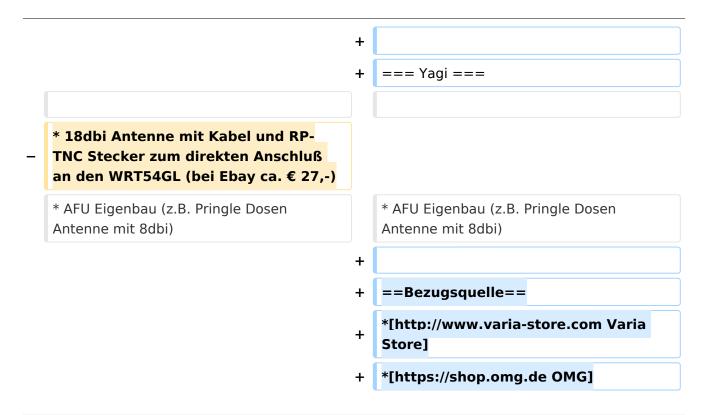
""WebLinks:""

*[http://www.ubnt.com/products/nano.php Ubiquiti Nanostation]

- === Antenne ===

- ==== Yagi ====

Zeile 73:


+

*[http://www.ubnt.com/products/nano.php Ubiquiti Nanostation]

== Antenne ==

. [---

Aktuelle Version vom 18. November 2018, 17:02 Uhr

Inhaltsverzeichnis	
1 Einleitung9	
2 Allgemein gilt	
3 Wahl des HAMNET Userequipment	
3.1 Mikrotik	
3.1.1 Mikrotik Userzugang konfigurieren	
3.1.2 RBQRTG-2SHPnD (QRT2)	
3.2 Ubiquiti	
3.2.1 AirGrid	
3.2.2 NanoBeam	
3.2.3 Nanostation M2, Bullet M2HP	
4 Antenne	
4.1 Yagi	
5 Bezugsquelle	

Einleitung

Das HAMNET hat grob genommen 3 Ebenen, welche unterschiedlich adressiert sind:

-) Der Backbone: Die stellt die eigentliche Autobahn da und macht außer Routing und Basisverbindung herstellen eigentlich nichts. Direkte Sicht ist das Thema hier.
-) Der Service/Poweruser Bereich: Dieser Bereich ist die bessere Landstraße für das HAMENT, bedingt aber einen höheren Hardware und Konfigurationsaufwand am User. Auch hier unmittelbare Nähe um Powereinstieg notwendig
-) Mesh/Enduser Bereich: Dieser Bereich adressiert Methoden und Techniken, das entweder direkt bzw indirekt über bestehende Mesh Partner Verbindung aufgenommen werden kann.

Der Poweruser Bereich stellt einen Zugang mit höherer Bandbreite zum Backbone im Userbereich dar und bedarf spezialisierte Hardware.

Allgemein gilt

Generell ist meist nur freie Sicht ein Garant für eine (gute) Verbindung. Bei geringeren Entfernungen kann dann aber schon mal mit Reflexionen experimentiert werden. Außerdem gilt - je größer die Entfernung zum Accesspoint, desto mehr Anforderung steht an den Gewinn der verwendeten Antenne, sowie der Leistung der HF Einheit.

Wahl des HAMNET Userequipment

Bei der Wahl des anzuschaffenden Gerätes ist die Anforderung des lokalen Benutzerzugangs zu beachten. Manche AP's (Access Points) erfordern bspw. eine reduzierte Bandbreite, welche nicht mit allen Geräten bzw. Softwarevarianten möglich ist. Erkundigen Sie sich am Besten zuvor beim zuständigen SysOp.

Es sind HAMNETpoweruser und HAMNETmesh nicht miteinander kompatibel!

Mikrotik

Die im Backbone eingesetzten Routerboards können natürlich auch für den Userzugang verwendet werden. Zu erwähnen ist, dass Mikrotik Hardware der professionellen Schiene zuzuordnen ist, und ist daher in der Konfiguration auch wesentlich umfangreicher.

Datei:qrt2.jpg Mikrotik QRT

Mikrotik Userzugang konfigurieren

Mikrotik-HAMNET-User-Manual V1.32

Diese Version Dokuments ist eine völlig neue und wesentlich erweiterte Neuauflage.

Mikrotik-HAMNET-User-Manual V2.2

Ausgabe: 02.05.2024 Dieses Dokument wurde erzeugt mit BlueSpice

RBQRTG-2SHPnD (QRT2)

Das RBQRTG-2SHPnD, kurz QRT2, ist in punkto Preis-Leistung eine äußerst gute Wahl. Eine 17dbi Flachantenne verbaut in einem wetterfesten Gehäuse mit integrierter HF Hardware stellt das Optimum an geringer Baugröße bei maximaler Leistungsfähigkeit dar. Die Sendeleistung beträgt dabei bis zu 35dbm! Außerdem bietet der Aufbau eine 2x2 MiMo Chain.

Ubiquiti

Im Grunde eignet sich jedes Produkt aus der Palette airMAX von UBIQUITI für einen Zugang als POWERuser zum HAMNET. Achten muss man aber darauf, für welches Frequenzband das Equipment verwendet werden soll.

AirGrid

Die AirGird Gitterantenne hat den Sendeempfänger in einem witterungsbeständigen Gehäuse direkt im Brennpunkt verbaut. Diese Antenne eignet sich eher für eine geschützte Montage, bei der zumindest kein Schnee und Eis zwischen Reflektor und Erreger liegen bleiben kann.

NanoBeam

Der NanoBeam ist eine Parabolantenne, welche die wetterfeste HF Hardware fix im Brennpunkt verbaut hat. Wenn die Antenne den in unseren Breiten üblichen Witterungsbedingungen (Schnee) ausgesetzt ist, empfiehlt sich das zugehörige Radom, damit die Charakteristik unverändert bleibt.

Nanostation M2, Bullet M2HP

Diese all-in-one Lösung vereint Router, WLAN Karte und Antenne (nur Nanostation) in einem wetter- und UV-beständigen Gehäuse bei einer Einsatztemperatur von bis zu -20°C. Beim Kauf ist auch gleich der komfortable PoE Adapter (Power over Ethernet) und das 12V Netzteil enthalten (nur NanoStation). Per PoE kann nun die Versorgung des Gerätes bequem über das Netzwerkabel aus der Entfernung (Shack) erfolgen, und man braucht so nur ein einziges Kabel zu verlegen.

Dabei verfügt die Einheit je nach Ausführung über bis zu 28dbm Sendeleistung. Die Einstellungen können bequem per Browser über das Webinterface im AirOS gemacht werden.

Ausgabe: 02.05.2024

Das, im Equipment von Ubiquiti verwendete Betriebssystem AirOS bspw. der Nanostation bzw. des Bullet unterstützt im Gegensatz zum Linksys auch eine reduzierbare Signal-Bandbreite von 10 bzw. 5 MHz.

Die benötige HF Bandbreite kann aus den Messungen hier entnommen werden: Messungen digitaler Backbone

Ein Konfigurationsbeispiel bspw. für den 2,4GHz Benutzerzugang am Gaisberg OE2 (analog Untersberg, Gernkogel, Wildkogel) findet sich in Teststellungen Gaisberg Gernkogel.

Für Benutzer, welche das Ubiquiti Equipment mit einem LAN Router im hauseigenen Netzwerk zur parallelen Nutzung von Internet und HAMNET verwenden wollen gibt es die Anleitung Ubiquiti NS bzw. Bullet mit LAN Router.

Die Nanostation Loco ist eher nicht geeignet, da dessen Antennengewinn und Sendeleistung meist nicht ausreicht.

WebLinks:

- Ubiquiti Bullet M Serie
- Ubiquiti Nanostation

Antenne

Yagi

• AFU Eigenbau (z.B. Pringle Dosen Antenne mit 8dbi)

Bezugsquelle

- Varia Store
- OMG