

Inhaltsverzeichnis

1. WRAN IEEE802.22 (Super WIFI)	22
2. Benutzer:OE3BIA	12

WRAN IEEE802.22 (Super WIFI)

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 18. Dezember 2022, 17:20 **Uhr (Quelltext anzeigen)**

OE3BIA (Diskussion | Beiträge) Markierung: Visuelle Bearbeitung ← Zum vorherigen Versionsunterschied

Version vom 18. Dezember 2022, 17:22 Uhr (Quelltext anzeigen)

OE3BIA (Diskussion | Beiträge) Markierung: Visuelle Bearbeitung Zum nächsten Versionsunterschied →

Zeile 23:

== IEEE 802.22 - Ein neues Übertragungsverfahren ==

Zeile 23:

== IEEE 802.22 - Ein neues Übertragungsverfahren ==

Mit 802.22 "Wireless Regional Area Network" (WRAN) hat die IEEE vor gut zehn Jahren einen Standard für IPbasierte Funk-Zugangsnetze vorgelegt. Dieser ist für regionale (typisch bis 30 km), breitbandige (einige bis zig Megabit pro Sekunde) Zugänge innerhalb lokal ungenutzter Fernseh-Rundfunk-Kanäle, dem sogenannten "TV White Space" bzw. der "Digitalen Dividende", zwischen ca. 50 und 800 MHz mit 6-8 MHz Bandbreite gedacht. Eine oder mehrere Basisstationen (BS) können dabei im selben Frequenzbereich arbeiten. Sie steuern die Übertragung der Endgeräte (Customer Premises Equipment, CPE), koordinieren sich untereinander, und lassen wo nötig auch noch Zeit und Spektrum für andere Funkdienste frei. Letztere Funktion wird im Standard mit "Cognitive Radio" bezeichnet und wird in einem zukünftigen QSP-Artikel erläutert.

Für das WRAN-Proiekt des ÖVSV haben wir eine amateurfunktaugliche Variante von 802.22 abgeleitet, die aktuell für das 50 MHz-/6 m-Band und

eine Bandbreite von nur 2 MHz entwickelt wird. Für den Testbetrieb wurde uns eine Sondergenehmigung erteilt. Die grundsätzliche Struktur der Aussendungen, Signalisierung usw. wollen wir übernehmen -- und daher werfen wir jetzt einen Blick darauf. Die Form des fest getakteten "Frames" (Rahmen) ist beispielhaft in Abbildung 1 dargestellt. Die x-Achse stellt die Zeit dar, die v-Achse die Frequenz (Unterkanäle).

+

+ === Zeitmultiplex ===

Bei WRAN arbeiten alle Stationen einer Zelle im selben Frequenzbereich. Als erstes strukturierendes Prinzip kommt Zeitmultiplex zum Einsatz. Die Basisstation übernimmt die Steuerung, wie die verfügbare Zeit-Spektrum-Fläche aufgeteilt wird: Alle 10 Millisekunden beginnt ein neuer Frame, in welchem zuerst die BS sendet (Übertragung zu den CPEs). Danach senden die angesprochenen CPEs aleichzeitia (!) retour -- dieses Verfahren erklären wir im nächsten Abschnitt. Am Ende des Frames ist Zeit für die gegenseitige Erkennung von benachbarten Zellen zwecks Koexistenz. das Aussenden der Stationskennung (Hardware-Adresse) sowie weitere Zeitpuffer vorgesehen.

+

Aus dem Aufbau des Frames ergibt sich auch eine Anforderung an die Funk-Hardware: Die Umschaltung zwischen Sende- und Empfangsbetrieb muss in einem Zeitfenster von rund 200 Mikrosekunden erfolgen. Die umgekehrte Richtung ist wegen Zeitpuffern weniger kritisch.

+

=== Orthogonaler Frequenzmultiplex (OFDM) ===

WRAN nutzt den gesamten verfügbaren Frequenzbereich gleichzeitig, indem dieser in Unterträger (Subcarriers) aufgeteilt wird, welche zu Unterkanälen (Subchannels) zusammengefasst sind. Benachbarte Unterträger haben immer denselben Frequenzabstand, proportional zum Kehrwert der angestrebten Symbolrate. Durch diese Konstruktion sind sie orthogonal und beeinflussen einander bei der Demodulation nicht gegenseitig.

+

Die Unterträger sind ihrerseits moduliert, und zwar angepasst an den aktuellen Signal-Rausch-Abstand: Ist dieser niedrig ("schlechter Empfang") bzw. werden wichtige Teile des Frames wie Präambeln ausgesendet, wird mit BPSK eine sehr robuste Modulation gewählt. Ist das SNR höher, kann bis zu 64-stufige Quadratur-Amplituden-Modulation (QAM) oder noch effizientere Trellis-Codierung verwendet werden. Die Symbolrate der Modulation ergibt sich aus dem Abstand der Unterträger, siehe oben.

+

Zur Messung des SNR und zur Synchronisierung der Stationen werden regelmäßig Pilot-Unterträger über das ganze genutzte Band hinweg ausgesendet. Damit können die Aussendungen feingranular an die frequenzspezifischen Ausbreitungsbedingungen angepasst werden (Equalization). Daneben müssen die einzelnen OFDM-Slots

-

(Unterkanal-Symbolzeit-Flächen)
robust gegen Mehrwegeausbreitung
gemacht werden, z.B. mittels
zyklischer Präfixe, und weitere
Fehlerkorrektur sowie wiederholte
Aussendung bei Übertragungsfehlern
(ARQ) vorgesehen werden.

+

Für den ersten Abschnitt des Frames (downstream) sendet die BS über alle Unterkanäle zu den CPEs seguenziell, um in möglichst kurzer Zeit die Information an die CPEs zu übertragen. Im zweiten Abschnitt (upstream) senden die CPEs gleichzeitig, teilen sich aber die verfügbaren Unterkanäle überlappungsfrei auf, damit die Laufzeit im Rückkanal niedrig gehalten wird und die erlaubte Sendeenergie möglichst konzentriert eingesetzt werden kann. So wird die verfügbare Zeit-Spektrum-Fläche effizient ausgenutzt.

+

+ === Codemultiplex (CDMA) ===

Noch eine dritte Modulationsart wird bei WRAN verwendet: Im Bereich der obersten Subchannels im zweiten Frame-Abschnitt ist Spektrumszeit reserviert, damit CPEs Signalisierungsinformation wie Bandbreitenanforderungen an die BS schicken können, Abstandsmessungen zur Anpassung von Timing und Sendeleistung (Ranging) durchgeführt sowie etwaige andere Spektrumsnutzung im Raum um ein CPE gemeldet werden können. Durch den verwendeten Codemultiplex können hier mehrere CPEs gleichzeitig und im selben

Frequenzbereich senden. Das CPE moduliert seine Aussendungen dafür mit einer zufällig aus einer vorgegebenen Menge ausgewählten "Chip"-Folge, die untereinander wiederum orthogonal sind.

+

An der Basisstation sind die Chip-Folgen bekannt. Damit können aus dem empfangenen Gesamtsignal die einzelnen Anfragen mit hoher Wahrscheinlichkeit getrennt demoduliert und dann bearbeitet werden.

+

=== Steuerung durch die Basisstation ===

Das Zusammenspiel der vielen unterschiedlichen Teile wird durch die Basisstation koordiniert. Die Präambel am Framebeginn dient der Synchronisierung und Kanalschätzung, Frame-Steuerdaten (FCH) kodifizieren die Länge der folgenden "Maps" (Zuordnungen) von Funkressourcen. Diese Maps geben vor. welche Abschnitte der BS-Aussendung downstream an welche CPEs gehen sollen (DS-MAP), welche Abschnitte später im Frame upstream von welchem CPE genutzt werden dürfen (US-MAP), sowie die **Modulations- und Leistungsparameter** dazu (DCD und UCD).

Version vom 18. Dezember 2022, 17:22 Uhr

4 IEEE 802.22 - Ein neues Übertragungsverfahren	29
4.1 Zeitmultiplex	30
4.2 Orthogonaler Frequenzmultiplex (OFDM)	30
4.3 Codemultiplex (CDMA)	30
4.4 Steuerung durch die Basisstation	31

Überblick

Leben gerufen, um den Zugang zum HAMNET einer großen Gruppe von Funkamateuren zu ermöglichen, auch wenn keine Sichtverbindung zum nächsten HAMNET Knoten besteht. Dazu soll vom ÖVSV ein neues Übertragungsverfahren und die nötige Hardware und Software entwickelt werden - ein sogenanntes "Super Wifi", bei dem ein Accesspoint einen Bereich von 20-30km abdecken kann. Das zugehörige Übertragungsverfahren folgt einem WLAN ähnlichen Standard - IEEE 802.22 und ist für Wireless Regional Area Networks (WRAN) definiert worden. Als Modulationsverfahren wird, so wie im Mobilfunk, Orthogonal Frequency Division Multiplexing (OFDM) verwendet.

Das Projekt wurde von Michael, OE1MCU ins

Das Projektteam ist seit Beginn der Initiative in 2020 mittlerweile auf 5 OMs, die aktiv am Projekt mitarbeiten, gewachsen und hat im April 2022 eine Förderung von 62.775,- Euro von der in den USA ansässigen Amateur Radio Digital Communications (ARDC) erhalten.

Das Budget wird nun zur Entwicklung der Hardware und Software eingesetzt, die in Form eines Transceiver Kits realisiert wird und RPX-100 heißt. Es besteht aus einem Software Defined Radio Modul - dem LimeSDR, einem Class A HF Verstärker, Software steuerbarer Filter und einem EMI Class B konformen Power Supply. Die Module des Kits werden in einem eigens von Rupert, OE9RWV gestalteten HF Gehäuse zusammengefasst.

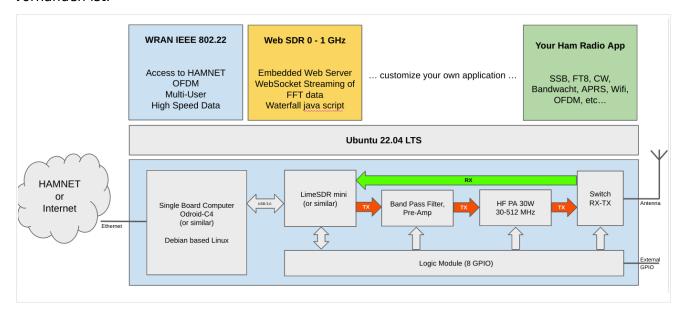
Förderung durch ARDC

Das WRAN Projekt des ÖVSV hat reges Interesse weltweit erweckt, und ist hier für die Community der Funkamateure beschrieben:

ARDC Förderung:

https://www.ampr.org/grants/2022-grants/grant-wireless-regional-area-network-in-sub-ghz-bands-as-last-mile-for-hamnet/

Project Homepage:


https://rpx-100.net/

OpenSDR - Transceiver Kit - Made by ÖVSV

Das Projektteam hat sich am 6. August in den Räumen des Landesverbandes Tirol, in Innsbruck, getroffen, um die Weiterentwicklung des Prototypen zu planen. Hier haben die Erfahrungen von Manfred, OE7AAI und Rainer, OE9RIR mit dem Einsatz von Transceivern im remote Betrieb am

Berg sehr geholfen. Das Transceiver Kit RPX-100 wurde nun in Hardware Module strukturiert, die jedes für sich von Funkamateuren auch in eigenen Projekten eingesetzt werden können und höchsten Qualitätsansprüchen genügen sollen. Hier geht es um HF dichten Aufbau, und der Entwicklung eines Power Supply, dass EMI Class B Konform ist, und am Eingang mit 12V auskommt, da diese Spannung in jedem Shak oder auch an einer Relaisstation am Berg vorhanden ist.

IEEE 802.22 - Ein neues Übertragungsverfahren

Mit 802.22 "Wireless Regional Area Network" (WRAN) hat die IEEE vor gut zehn Jahren einen Standard für IP-basierte Funk-Zugangsnetze vorgelegt. Dieser ist für regionale (typisch bis 30 km), breitbandige (einige bis zig Megabit pro Sekunde) Zugänge innerhalb lokal ungenutzter Fernseh-Rundfunk-Kanäle, dem sogenannten "TV White Space" bzw. der "Digitalen Dividende", zwischen ca. 50 und 800 MHz mit 6-8 MHz Bandbreite gedacht. Eine oder mehrere Basisstationen (BS) können dabei im selben Frequenzbereich arbeiten. Sie steuern die Übertragung der Endgeräte (Customer Premises Equipment, CPE), koordinieren sich untereinander, und lassen wo nötig auch noch Zeit und Spektrum für andere Funkdienste frei. Letztere Funktion wird im Standard mit "Cognitive Radio" bezeichnet und wird in einem zukünftigen QSP-Artikel erläutert.

Für das WRAN-Projekt des ÖVSV haben wir eine amateurfunktaugliche Variante von 802.22 abgeleitet, die aktuell für das 50 MHz-/6 m-Band und eine Bandbreite von nur 2 MHz entwickelt wird. Für den Testbetrieb wurde uns eine Sondergenehmigung erteilt. Die grundsätzliche Struktur der Aussendungen, Signalisierung usw. wollen wir übernehmen -- und daher werfen wir jetzt einen Blick darauf. Die Form des fest getakteten "Frames" (Rahmen) ist beispielhaft in Abbildung 1 dargestellt. Die x-Achse stellt die Zeit dar, die y-Achse die Frequenz (Unterkanäle).

Zeitmultiplex

Bei WRAN arbeiten alle Stationen einer Zelle im selben Frequenzbereich. Als erstes strukturierendes Prinzip kommt Zeitmultiplex zum Einsatz. Die Basisstation übernimmt die Steuerung, wie die verfügbare Zeit-Spektrum-Fläche aufgeteilt wird: Alle 10 Millisekunden beginnt ein neuer Frame, in welchem zuerst die BS sendet (Übertragung zu den CPEs). Danach senden die angesprochenen CPEs gleichzeitig (!) retour -- dieses Verfahren erklären wir im nächsten Abschnitt. Am Ende des Frames ist Zeit für die gegenseitige Erkennung von benachbarten Zellen zwecks Koexistenz, das Aussenden der Stationskennung (Hardware-Adresse) sowie weitere Zeitpuffer vorgesehen.

Aus dem Aufbau des Frames ergibt sich auch eine Anforderung an die Funk-Hardware: Die Umschaltung zwischen Sende- und Empfangsbetrieb muss in einem Zeitfenster von rund 200 Mikrosekunden erfolgen. Die umgekehrte Richtung ist wegen Zeitpuffern weniger kritisch.

Orthogonaler Frequenzmultiplex (OFDM)

WRAN nutzt den gesamten verfügbaren Frequenzbereich gleichzeitig, indem dieser in Unterträger (Subcarriers) aufgeteilt wird, welche zu Unterkanälen (Subchannels) zusammengefasst sind. Benachbarte Unterträger haben immer denselben Frequenzabstand, proportional zum Kehrwert der angestrebten Symbolrate. Durch diese Konstruktion sind sie orthogonal und beeinflussen einander bei der Demodulation nicht gegenseitig.

Die Unterträger sind ihrerseits moduliert, und zwar angepasst an den aktuellen Signal-Rausch-Abstand: Ist dieser niedrig ("schlechter Empfang") bzw. werden wichtige Teile des Frames wie Präambeln ausgesendet, wird mit BPSK eine sehr robuste Modulation gewählt. Ist das SNR höher, kann bis zu 64-stufige Quadratur-Amplituden-Modulation (QAM) oder noch effizientere Trellis-Codierung verwendet werden. Die Symbolrate der Modulation ergibt sich aus dem Abstand der Unterträger, siehe oben.

Zur Messung des SNR und zur Synchronisierung der Stationen werden regelmäßig Pilot-Unterträger über das ganze genutzte Band hinweg ausgesendet. Damit können die Aussendungen feingranular an die frequenzspezifischen Ausbreitungsbedingungen angepasst werden (Equalization). Daneben müssen die einzelnen OFDM-Slots (Unterkanal-Symbolzeit-Flächen) robust gegen Mehrwegeausbreitung gemacht werden, z.B. mittels zyklischer Präfixe, und weitere Fehlerkorrektur sowie wiederholte Aussendung bei Übertragungsfehlern (ARQ) vorgesehen werden.

Für den ersten Abschnitt des Frames (downstream) sendet die BS über alle Unterkanäle zu den CPEs sequenziell, um in möglichst kurzer Zeit die Information an die CPEs zu übertragen. Im zweiten Abschnitt (upstream) senden die CPEs gleichzeitig, teilen sich aber die verfügbaren Unterkanäle überlappungsfrei auf, damit die Laufzeit im Rückkanal niedrig gehalten wird und die erlaubte Sendeenergie möglichst konzentriert eingesetzt werden kann. So wird die verfügbare Zeit-Spektrum-Fläche effizient ausgenutzt.

Codemultiplex (CDMA)

Noch eine dritte Modulationsart wird bei WRAN verwendet: Im Bereich der obersten Subchannels im zweiten Frame-Abschnitt ist Spektrumszeit reserviert, damit CPEs Signalisierungsinformation wie Bandbreitenanforderungen an die BS schicken können, Abstandsmessungen zur Anpassung

Ausgabe: 27.05.2024

von Timing und Sendeleistung (Ranging) durchgeführt sowie etwaige andere Spektrumsnutzung im Raum um ein CPE gemeldet werden können. Durch den verwendeten Codemultiplex können hier mehrere CPEs gleichzeitig und im selben Frequenzbereich senden. Das CPE moduliert seine Aussendungen dafür mit einer zufällig aus einer vorgegebenen Menge ausgewählten "Chip"-Folge, die untereinander wiederum orthogonal sind.

An der Basisstation sind die Chip-Folgen bekannt. Damit können aus dem empfangenen Gesamtsignal die einzelnen Anfragen mit hoher Wahrscheinlichkeit getrennt demoduliert und dann bearbeitet werden.

Steuerung durch die Basisstation

Das Zusammenspiel der vielen unterschiedlichen Teile wird durch die Basisstation koordiniert. Die Präambel am Framebeginn dient der Synchronisierung und Kanalschätzung. Frame-Steuerdaten (FCH) kodifizieren die Länge der folgenden "Maps" (Zuordnungen) von Funkressourcen. Diese Maps geben vor, welche Abschnitte der BS-Aussendung downstream an welche CPEs gehen sollen (DS-MAP), welche Abschnitte später im Frame upstream von welchem CPE genutzt werden dürfen (US-MAP), sowie die Modulations- und Leistungsparameter dazu (DCD und UCD).

WRAN IEEE802.22 (Super WIFI): Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 18. Dezember 2022, 17:20 Uhr (Quelltext anzeigen)

OE3BIA (Diskussion | Beiträge)

Markierung: Visuelle Bearbeitung

← Zum vorherigen Versionsunterschied

Zeile 23:

== IEEE 802.22 - Ein neues Übertragungsverfahren ==

Version vom 18. Dezember 2022, 17:22 Uhr (Quelltext anzeigen)

OE3BIA (Diskussion | Beiträge)
Markierung: Visuelle Bearbeitung
Zum nächsten Versionsunterschied →

Zeile 23:

== IEEE 802.22 - Ein neues Übertragungsverfahren ==

Mit 802.22 "Wireless Regional Area Network" (WRAN) hat die IEEE vor gut zehn Jahren einen Standard für IPbasierte Funk-Zugangsnetze vorgelegt. Dieser ist für regionale (typisch bis 30 km), breitbandige (einige bis zig Megabit pro Sekunde) Zugänge innerhalb lokal ungenutzter Fernseh-Rundfunk-Kanäle, dem sogenannten "TV White Space" bzw. der "Digitalen Dividende", zwischen ca. 50 und 800 MHz mit 6-8 MHz Bandbreite gedacht. Eine oder mehrere Basisstationen (BS) können dabei im selben Frequenzbereich arbeiten. Sie steuern die Übertragung der Endgeräte (Customer Premises Equipment, CPE), koordinieren sich untereinander, und lassen wo nötig auch noch Zeit und Spektrum für andere Funkdienste frei. Letztere Funktion wird im Standard mit "Cognitive Radio" bezeichnet und wird in einem zukünftigen QSP-Artikel erläutert.

т

Für das WRAN-Projekt des ÖVSV haben wir eine amateurfunktaugliche Variante von 802.22 abgeleitet, die

aktuell für das 50 MHz-/6 m-Band und eine Bandbreite von nur 2 MHz entwickelt wird. Für den Testbetrieb wurde uns eine Sondergenehmigung erteilt. Die grundsätzliche Struktur der Aussendungen, Signalisierung usw. wollen wir übernehmen -- und daher werfen wir jetzt einen Blick darauf. Die Form des fest getakteten "Frames" (Rahmen) ist beispielhaft in Abbildung 1 dargestellt. Die x-Achse stellt die Zeit dar, die v-Achse die Frequenz (Unterkanäle).

+

+ === Zeitmultiplex ===

Bei WRAN arbeiten alle Stationen einer Zelle im selben Frequenzbereich. Als erstes strukturierendes Prinzip kommt Zeitmultiplex zum Einsatz. Die Basisstation übernimmt die Steuerung, wie die verfügbare Zeit-Spektrum-Fläche aufgeteilt wird: Alle 10 Millisekunden beginnt ein neuer Frame, in welchem zuerst die BS sendet (Übertragung zu den CPEs). Danach senden die angesprochenen CPEs gleichzeitig (!) retour -- dieses Verfahren erklären wir im nächsten Abschnitt. Am Ende des Frames ist Zeit für die gegenseitige Erkennung von benachbarten Zellen zwecks Koexistenz. das Aussenden der Stationskennung (Hardware-Adresse) sowie weitere Zeitpuffer vorgesehen.

+

Aus dem Aufbau des Frames ergibt sich auch eine Anforderung an die Funk-Hardware: Die Umschaltung

+

zwischen Sende- und
Empfangsbetrieb muss in einem
Zeitfenster von rund 200
Mikrosekunden erfolgen. Die
umgekehrte Richtung ist wegen
Zeitpuffern weniger kritisch.

+

=== Orthogonaler Frequenzmultiplex (OFDM) ===

WRAN nutzt den gesamten verfügbaren Frequenzbereich gleichzeitig, indem dieser in Unterträger (Subcarriers) aufgeteilt wird, welche zu Unterkanälen (Subchannels) zusammengefasst sind. Benachbarte Unterträger haben immer denselben Frequenzabstand, proportional zum Kehrwert der angestrebten Symbolrate. Durch diese Konstruktion sind sie orthogonal und beeinflussen einander bei der Demodulation nicht gegenseitig.

+

Die Unterträger sind ihrerseits moduliert, und zwar angepasst an den aktuellen Signal-Rausch-Abstand: Ist dieser niedrig ("schlechter Empfang") bzw. werden wichtige Teile des Frames wie Präambeln ausgesendet, wird mit BPSK eine sehr robuste Modulation gewählt. Ist das SNR höher, kann bis zu 64-stufige Quadratur-Amplituden-Modulation (QAM) oder noch effizientere Trellis-Codierung verwendet werden. Die Symbolrate der Modulation ergibt sich aus dem Abstand der Unterträger, siehe oben.

+

Zur Messung des SNR und zur Svnchronisierung der Stationen werden regelmäßig Pilot-Unterträger

über das ganze genutzte Band hinweg ausgesendet. Damit können die Aussendungen feingranular an die frequenzspezifischen
Ausbreitungsbedingungen angepasst werden (Equalization). Daneben müssen die einzelnen OFDM-Slots (Unterkanal-Symbolzeit-Flächen) robust gegen Mehrwegeausbreitung gemacht werden, z.B. mittels zyklischer Präfixe, und weitere Fehlerkorrektur sowie wiederholte Aussendung bei Übertragungsfehlern (ARQ) vorgesehen werden.

+

Für den ersten Abschnitt des Frames (downstream) sendet die BS über alle Unterkanäle zu den CPEs sequenziell, um in möglichst kurzer Zeit die Information an die CPEs zu übertragen. Im zweiten Abschnitt (upstream) senden die CPEs gleichzeitig, teilen sich aber die verfügbaren Unterkanäle überlappungsfrei auf, damit die Laufzeit im Rückkanal niedrig gehalten wird und die erlaubte Sendeenergie möglichst konzentriert eingesetzt werden kann. So wird die verfügbare Zeit-Spektrum-Fläche effizient ausgenutzt.

+

+ === Codemultiplex (CDMA) ===

Noch eine dritte Modulationsart wird bei WRAN verwendet: Im Bereich der obersten Subchannels im zweiten Frame-Abschnitt ist Spektrumszeit reserviert, damit CPEs Signalisierungsinformation wie Bandbreitenanforderungen an die BS schicken können, Abstandsmessungen zur Anpassung von Timing und Sendeleistung (Ranging) durchgeführt sowie

+ etwaige andere Spektrumsnutzung im Raum um ein CPE gemeldet werden können. Durch den verwendeten Codemultiplex können hier mehrere CPEs gleichzeitig und im selben Frequenzbereich senden. Das CPE moduliert seine Aussendungen dafür mit einer zufällig aus einer vorgegebenen Menge ausgewählten "Chip"-Folge, die untereinander wiederum orthogonal sind.

+

An der Basisstation sind die Chip-Folgen bekannt. Damit können aus dem empfangenen Gesamtsignal die einzelnen Anfragen mit hoher Wahrscheinlichkeit getrennt demoduliert und dann bearbeitet werden.

+

+ Basisstation ===

Das Zusammenspiel der vielen unterschiedlichen Teile wird durch die Basisstation koordiniert. Die Präambel am Framebeginn dient der Synchronisierung und Kanalschätzung, Frame-Steuerdaten (FCH) kodifizieren die Länge der folgenden "Maps" (Zuordnungen) von Funkressourcen. Diese Maps geben vor, welche Abschnitte der BS-Aussendung downstream an welche CPEs gehen sollen (DS-MAP), welche Abschnitte später im Frame upstream von welchem CPE genutzt werden dürfen (US-MAP), sowie die **Modulations- und Leistungsparameter** dazu (DCD und UCD).

Version vom 18. Dezember 2022, 17:22 Uhr

Inhaltsverzeichnis	
1 Überblick	18
2 Förderung durch ARDC	18
3 OpenSDR - Transceiver Kit - Made by ÖVSV	18
4 IEEE 802.22 - Ein neues Übertragungsverfahren	
4.1 Zeitmultiplex	20
4.2 Orthogonaler Frequenzmultiplex (OFDM)	20
4.3 Codemultiplex (CDMA)	20
4.4 Steuerung durch die Basisstation	21

Überblick

Das Projekt wurde von Michael, OE1MCU ins Leben gerufen, um den Zugang zum HAMNET einer großen Gruppe von Funkamateuren zu ermöglichen, auch wenn keine Sichtverbindung zum nächsten HAMNET Knoten besteht. Dazu soll vom ÖVSV ein neues Übertragungsverfahren und die nötige Hardware und Software entwickelt werden - ein sogenanntes "Super Wifi", bei dem ein Accesspoint einen Bereich von 20-30km abdecken kann. Das zugehörige Übertragungsverfahren folgt einem WLAN ähnlichen Standard - IEEE 802.22 und ist für Wireless Regional Area Networks (WRAN) definiert worden. Als Modulationsverfahren wird, so wie im Mobilfunk, Orthogonal Frequency Division Multiplexing (OFDM) verwendet.

Das Projektteam ist seit Beginn der Initiative in 2020 mittlerweile auf 5 OMs, die aktiv am Projekt mitarbeiten, gewachsen und hat im April 2022 eine Förderung von 62.775,- Euro von der in den USA ansässigen Amateur Radio Digital Communications (ARDC) erhalten.

Das Budget wird nun zur Entwicklung der Hardware und Software eingesetzt, die in Form eines Transceiver Kits realisiert wird und RPX-100 heißt. Es besteht aus einem Software Defined Radio Modul - dem LimeSDR, einem Class A HF Verstärker, Software steuerbarer Filter und einem EMI Class B konformen Power Supply. Die Module des Kits werden in einem eigens von Rupert, OE9RWV gestalteten HF Gehäuse zusammengefasst.

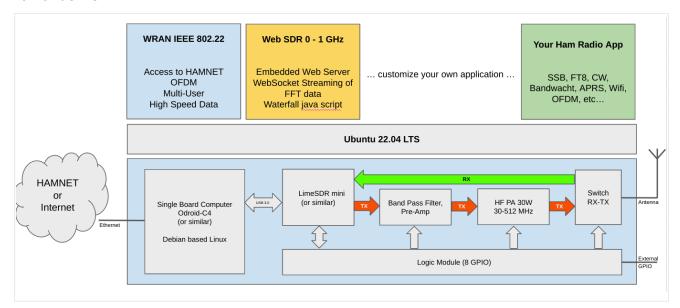
Förderung durch ARDC

Das WRAN Projekt des ÖVSV hat reges Interesse weltweit erweckt, und ist hier für die Community der Funkamateure beschrieben:

ARDC Förderung:

https://www.ampr.org/grants/2022-grants/grant-wireless-regional-area-network-in-sub-ghz-bands-as-last-mile-for-hamnet/

Project Homepage:


https://rpx-100.net/

OpenSDR - Transceiver Kit - Made by ÖVSV

Das Projektteam hat sich am 6. August in den Räumen des Landesverbandes Tirol, in Innsbruck, getroffen, um die Weiterentwicklung des Prototypen zu planen. Hier haben die Erfahrungen von Manfred, OE7AAI und Rainer, OE9RIR mit dem Einsatz von Transceivern im remote Betrieb am

Berg sehr geholfen. Das Transceiver Kit RPX-100 wurde nun in Hardware Module strukturiert, die jedes für sich von Funkamateuren auch in eigenen Projekten eingesetzt werden können und höchsten Qualitätsansprüchen genügen sollen. Hier geht es um HF dichten Aufbau, und der Entwicklung eines Power Supply, dass EMI Class B Konform ist, und am Eingang mit 12V auskommt, da diese Spannung in jedem Shak oder auch an einer Relaisstation am Berg vorhanden ist.

IEEE 802.22 - Ein neues Übertragungsverfahren

Mit 802.22 "Wireless Regional Area Network" (WRAN) hat die IEEE vor gut zehn Jahren einen Standard für IP-basierte Funk-Zugangsnetze vorgelegt. Dieser ist für regionale (typisch bis 30 km), breitbandige (einige bis zig Megabit pro Sekunde) Zugänge innerhalb lokal ungenutzter Fernseh-Rundfunk-Kanäle, dem sogenannten "TV White Space" bzw. der "Digitalen Dividende", zwischen ca. 50 und 800 MHz mit 6-8 MHz Bandbreite gedacht. Eine oder mehrere Basisstationen (BS) können dabei im selben Frequenzbereich arbeiten. Sie steuern die Übertragung der Endgeräte (Customer Premises Equipment, CPE), koordinieren sich untereinander, und lassen wo nötig auch noch Zeit und Spektrum für andere Funkdienste frei. Letztere Funktion wird im Standard mit "Cognitive Radio" bezeichnet und wird in einem zukünftigen QSP-Artikel erläutert.

Für das WRAN-Projekt des ÖVSV haben wir eine amateurfunktaugliche Variante von 802.22 abgeleitet, die aktuell für das 50 MHz-/6 m-Band und eine Bandbreite von nur 2 MHz entwickelt wird. Für den Testbetrieb wurde uns eine Sondergenehmigung erteilt. Die grundsätzliche Struktur der Aussendungen, Signalisierung usw. wollen wir übernehmen -- und daher werfen wir jetzt einen Blick darauf. Die Form des fest getakteten "Frames" (Rahmen) ist beispielhaft in Abbildung 1 dargestellt. Die x-Achse stellt die Zeit dar, die y-Achse die Frequenz (Unterkanäle).

Zeitmultiplex

Bei WRAN arbeiten alle Stationen einer Zelle im selben Frequenzbereich. Als erstes strukturierendes Prinzip kommt Zeitmultiplex zum Einsatz. Die Basisstation übernimmt die Steuerung, wie die verfügbare Zeit-Spektrum-Fläche aufgeteilt wird: Alle 10 Millisekunden beginnt ein neuer Frame, in welchem zuerst die BS sendet (Übertragung zu den CPEs). Danach senden die angesprochenen CPEs gleichzeitig (!) retour -- dieses Verfahren erklären wir im nächsten Abschnitt. Am Ende des Frames ist Zeit für die gegenseitige Erkennung von benachbarten Zellen zwecks Koexistenz, das Aussenden der Stationskennung (Hardware-Adresse) sowie weitere Zeitpuffer vorgesehen.

Aus dem Aufbau des Frames ergibt sich auch eine Anforderung an die Funk-Hardware: Die Umschaltung zwischen Sende- und Empfangsbetrieb muss in einem Zeitfenster von rund 200 Mikrosekunden erfolgen. Die umgekehrte Richtung ist wegen Zeitpuffern weniger kritisch.

Orthogonaler Frequenzmultiplex (OFDM)

WRAN nutzt den gesamten verfügbaren Frequenzbereich gleichzeitig, indem dieser in Unterträger (Subcarriers) aufgeteilt wird, welche zu Unterkanälen (Subchannels) zusammengefasst sind. Benachbarte Unterträger haben immer denselben Frequenzabstand, proportional zum Kehrwert der angestrebten Symbolrate. Durch diese Konstruktion sind sie orthogonal und beeinflussen einander bei der Demodulation nicht gegenseitig.

Die Unterträger sind ihrerseits moduliert, und zwar angepasst an den aktuellen Signal-Rausch-Abstand: Ist dieser niedrig ("schlechter Empfang") bzw. werden wichtige Teile des Frames wie Präambeln ausgesendet, wird mit BPSK eine sehr robuste Modulation gewählt. Ist das SNR höher, kann bis zu 64-stufige Quadratur-Amplituden-Modulation (QAM) oder noch effizientere Trellis-Codierung verwendet werden. Die Symbolrate der Modulation ergibt sich aus dem Abstand der Unterträger, siehe oben.

Zur Messung des SNR und zur Synchronisierung der Stationen werden regelmäßig Pilot-Unterträger über das ganze genutzte Band hinweg ausgesendet. Damit können die Aussendungen feingranular an die frequenzspezifischen Ausbreitungsbedingungen angepasst werden (Equalization). Daneben müssen die einzelnen OFDM-Slots (Unterkanal-Symbolzeit-Flächen) robust gegen Mehrwegeausbreitung gemacht werden, z.B. mittels zyklischer Präfixe, und weitere Fehlerkorrektur sowie wiederholte Aussendung bei Übertragungsfehlern (ARQ) vorgesehen werden.

Für den ersten Abschnitt des Frames (downstream) sendet die BS über alle Unterkanäle zu den CPEs sequenziell, um in möglichst kurzer Zeit die Information an die CPEs zu übertragen. Im zweiten Abschnitt (upstream) senden die CPEs gleichzeitig, teilen sich aber die verfügbaren Unterkanäle überlappungsfrei auf, damit die Laufzeit im Rückkanal niedrig gehalten wird und die erlaubte Sendeenergie möglichst konzentriert eingesetzt werden kann. So wird die verfügbare Zeit-Spektrum-Fläche effizient ausgenutzt.

Codemultiplex (CDMA)

Noch eine dritte Modulationsart wird bei WRAN verwendet: Im Bereich der obersten Subchannels im zweiten Frame-Abschnitt ist Spektrumszeit reserviert, damit CPEs Signalisierungsinformation wie Bandbreitenanforderungen an die BS schicken können, Abstandsmessungen zur Anpassung

Ausgabe: 27.05.2024

von Timing und Sendeleistung (Ranging) durchgeführt sowie etwaige andere Spektrumsnutzung im Raum um ein CPE gemeldet werden können. Durch den verwendeten Codemultiplex können hier mehrere CPEs gleichzeitig und im selben Frequenzbereich senden. Das CPE moduliert seine Aussendungen dafür mit einer zufällig aus einer vorgegebenen Menge ausgewählten "Chip"-Folge, die untereinander wiederum orthogonal sind.

An der Basisstation sind die Chip-Folgen bekannt. Damit können aus dem empfangenen Gesamtsignal die einzelnen Anfragen mit hoher Wahrscheinlichkeit getrennt demoduliert und dann bearbeitet werden.

Steuerung durch die Basisstation

Das Zusammenspiel der vielen unterschiedlichen Teile wird durch die Basisstation koordiniert. Die Präambel am Framebeginn dient der Synchronisierung und Kanalschätzung. Frame-Steuerdaten (FCH) kodifizieren die Länge der folgenden "Maps" (Zuordnungen) von Funkressourcen. Diese Maps geben vor, welche Abschnitte der BS-Aussendung downstream an welche CPEs gehen sollen (DS-MAP), welche Abschnitte später im Frame upstream von welchem CPE genutzt werden dürfen (US-MAP), sowie die Modulations- und Leistungsparameter dazu (DCD und UCD).

WRAN IEEE802.22 (Super WIFI)

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 18. Dezember 2022, 17:20 Uhr (Quelltext anzeigen)

OE3BIA (Diskussion | Beiträge)
Markierung: Visuelle Bearbeitung
← Zum vorherigen Versionsunterschied

Zeile 23:

== IEEE 802.22 - Ein neues Übertragungsverfahren == Version vom 18. Dezember 2022, 17:22 Uhr (Quelltext anzeigen)

OE3BIA (Diskussion | Beiträge)
Markierung: Visuelle Bearbeitung
Zum nächsten Versionsunterschied →

Zeile 23:

== IEEE 802.22 - Ein neues Übertragungsverfahren ==

Mit 802.22 "Wireless Regional Area Network" (WRAN) hat die IEEE vor gut zehn Jahren einen Standard für IPbasierte Funk-Zugangsnetze vorgelegt. Dieser ist für regionale (typisch bis 30 km), breitbandige (einige bis zig Megabit pro Sekunde) Zugänge innerhalb lokal ungenutzter Fernseh-Rundfunk-Kanäle, dem sogenannten "TV White Space" bzw. der "Digitalen Dividende", zwischen ca. 50 und 800 MHz mit 6-8 MHz Bandbreite gedacht. Eine oder mehrere Basisstationen (BS) können dabei im selben Frequenzbereich arbeiten. Sie steuern die Übertragung der Endgeräte (Customer Premises Equipment, CPE), koordinieren sich untereinander, und lassen wo nötig auch noch Zeit und Spektrum für andere Funkdienste frei. Letztere Funktion wird im Standard mit "Cognitive Radio" bezeichnet und wird in einem zukünftigen QSP-Artikel erläutert.

+

Für das WRAN-Projekt des ÖVSV haben wir eine amateurfunktaugliche Variante von 802.22 abgeleitet, die aktuell für das 50 MHz-/6 m-Band und

eine Bandbreite von nur 2 MHz entwickelt wird. Für den Testbetrieb wurde uns eine Sondergenehmigung erteilt. Die grundsätzliche Struktur der Aussendungen, Signalisierung usw. wollen wir übernehmen -- und daher werfen wir jetzt einen Blick darauf. Die Form des fest getakteten "Frames" (Rahmen) ist beispielhaft in Abbildung 1 dargestellt. Die x-Achse stellt die Zeit dar, die v-Achse die Frequenz (Unterkanäle).

+

+ === Zeitmultiplex ===

Bei WRAN arbeiten alle Stationen einer Zelle im selben Frequenzbereich. Als erstes strukturierendes Prinzip kommt Zeitmultiplex zum Einsatz. Die Basisstation übernimmt die Steuerung, wie die verfügbare Zeit-Spektrum-Fläche aufgeteilt wird: Alle 10 Millisekunden beginnt ein neuer Frame, in welchem zuerst die BS sendet (Übertragung zu den CPEs). Danach senden die angesprochenen CPEs aleichzeitia (!) retour -- dieses Verfahren erklären wir im nächsten Abschnitt. Am Ende des Frames ist Zeit für die gegenseitige Erkennung von benachbarten Zellen zwecks Koexistenz. das Aussenden der Stationskennung (Hardware-Adresse) sowie weitere Zeitpuffer vorgesehen.

+

Aus dem Aufbau des Frames ergibt sich auch eine Anforderung an die Funk-Hardware: Die Umschaltung zwischen Sende- und Empfangsbetrieb muss in einem Zeitfenster von rund 200 Mikrosekunden erfolgen. Die umgekehrte Richtung ist wegen Zeitpuffern weniger kritisch.

+

=== Orthogonaler Frequenzmultiplex (OFDM) ===

WRAN nutzt den gesamten verfügbaren Frequenzbereich gleichzeitig, indem dieser in Unterträger (Subcarriers) aufgeteilt wird, welche zu Unterkanälen (Subchannels) zusammengefasst sind. Benachbarte Unterträger haben immer denselben Frequenzabstand, proportional zum Kehrwert der angestrebten Symbolrate. Durch diese Konstruktion sind sie orthogonal und beeinflussen einander bei der Demodulation nicht gegenseitig.

+

Die Unterträger sind ihrerseits moduliert, und zwar angepasst an den aktuellen Signal-Rausch-Abstand: Ist dieser niedrig ("schlechter Empfang") bzw. werden wichtige Teile des Frames wie Präambeln ausgesendet, wird mit BPSK eine sehr robuste Modulation gewählt. Ist das SNR höher, kann bis zu 64-stufige Quadratur-Amplituden-Modulation (QAM) oder noch effizientere Trellis-Codierung verwendet werden. Die Symbolrate der Modulation ergibt sich aus dem Abstand der Unterträger, siehe oben.

+

Zur Messung des SNR und zur Synchronisierung der Stationen werden regelmäßig Pilot-Unterträger über das ganze genutzte Band hinweg ausgesendet. Damit können die Aussendungen feingranular an die frequenzspezifischen Ausbreitungsbedingungen angepasst werden (Equalization). Daneben müssen die einzelnen OFDM-Slots

•

(Unterkanal-Symbolzeit-Flächen)
robust gegen Mehrwegeausbreitung
gemacht werden, z.B. mittels
zyklischer Präfixe, und weitere
Fehlerkorrektur sowie wiederholte
Aussendung bei Übertragungsfehlern
(ARQ) vorgesehen werden.

+

Für den ersten Abschnitt des Frames (downstream) sendet die BS über alle Unterkanäle zu den CPEs seguenziell, um in möglichst kurzer Zeit die Information an die CPEs zu übertragen. Im zweiten Abschnitt (upstream) senden die CPEs gleichzeitig, teilen sich aber die verfügbaren Unterkanäle überlappungsfrei auf, damit die Laufzeit im Rückkanal niedrig gehalten wird und die erlaubte Sendeenergie möglichst konzentriert eingesetzt werden kann. So wird die verfügbare Zeit-Spektrum-Fläche effizient ausgenutzt.

+

=== Codemultiplex (CDMA) ===

Noch eine dritte Modulationsart wird bei WRAN verwendet: Im Bereich der obersten Subchannels im zweiten Frame-Abschnitt ist Spektrumszeit reserviert, damit CPEs Signalisierungsinformation wie Bandbreitenanforderungen an die BS schicken können, Abstandsmessungen zur Anpassung von Timing und Sendeleistung (Ranging) durchgeführt sowie etwaige andere Spektrumsnutzung im Raum um ein CPE gemeldet werden können. Durch den verwendeten Codemultiplex können hier mehrere CPEs gleichzeitig und im selben

Frequenzbereich senden. Das CPE moduliert seine Aussendungen dafür mit einer zufällig aus einer vorgegebenen Menge ausgewählten "Chip"-Folge, die untereinander wiederum orthogonal sind.

+

An der Basisstation sind die Chip-Folgen bekannt. Damit können aus dem empfangenen Gesamtsignal die einzelnen Anfragen mit hoher Wahrscheinlichkeit getrennt demoduliert und dann bearbeitet werden.

+

=== Steuerung durch die Basisstation ===

Das Zusammenspiel der vielen unterschiedlichen Teile wird durch die Basisstation koordiniert. Die Präambel am Framebeginn dient der Synchronisierung und Kanalschätzung, Frame-Steuerdaten (FCH) kodifizieren die Länge der folgenden "Maps" (Zuordnungen) von Funkressourcen. Diese Maps geben vor. welche Abschnitte der BS-Aussendung downstream an welche CPEs gehen sollen (DS-MAP), welche Abschnitte später im Frame upstream von welchem CPE genutzt werden dürfen (US-MAP), sowie die **Modulations- und Leistungsparameter** dazu (DCD und UCD).

Version vom 18. Dezember 2022, 17:22 Uhr

4 IEEE 802.22 - Ein neues Übertragungsverfahren	29
4.1 Zeitmultiplex	30
4.2 Orthogonaler Frequenzmultiplex (OFDM)	30
4.3 Codemultiplex (CDMA)	30
4.4 Steuerung durch die Basisstation	31

Überblick

Das Projekt wurde von Michael, OE1MCU ins Leben gerufen, um den Zugang zum HAMNET einer großen Gruppe von Funkamateuren zu ermöglichen, auch wenn keine Sichtverbindung zum nächsten HAMNET Knoten besteht. Dazu soll vom ÖVSV ein neues Übertragungsverfahren und die nötige Hardware und Software entwickelt werden - ein sogenanntes "Super Wifi", bei dem ein Accesspoint einen Bereich von 20-30km abdecken kann. Das zugehörige Übertragungsverfahren folgt einem WLAN ähnlichen Standard - IEEE 802.22 und ist für Wireless Regional Area Networks (WRAN) definiert worden. Als Modulationsverfahren wird, so wie im Mobilfunk, Orthogonal Frequency Division Multiplexing (OFDM) verwendet.

Das Projektteam ist seit Beginn der Initiative in 2020 mittlerweile auf 5 OMs, die aktiv am Projekt mitarbeiten, gewachsen und hat im April 2022 eine Förderung von 62.775,- Euro von der in den USA ansässigen Amateur Radio Digital Communications (ARDC) erhalten.

Das Budget wird nun zur Entwicklung der Hardware und Software eingesetzt, die in Form eines Transceiver Kits realisiert wird und RPX-100 heißt. Es besteht aus einem Software Defined Radio Modul - dem LimeSDR, einem Class A HF Verstärker, Software steuerbarer Filter und einem EMI Class B konformen Power Supply. Die Module des Kits werden in einem eigens von Rupert, OE9RWV gestalteten HF Gehäuse zusammengefasst.

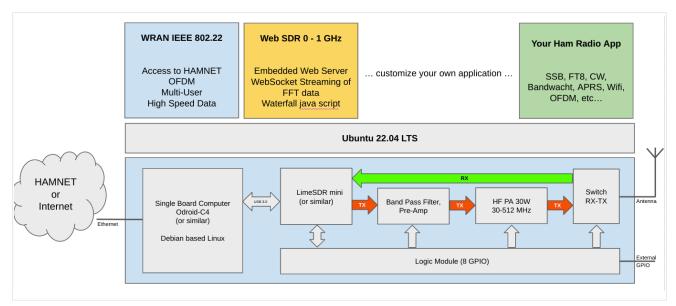
Förderung durch ARDC

Das WRAN Projekt des ÖVSV hat reges Interesse weltweit erweckt, und ist hier für die Community der Funkamateure beschrieben:

ARDC Förderung:

https://www.ampr.org/grants/2022-grants/grant-wireless-regional-area-network-in-sub-ghz-bands-as-last-mile-for-hamnet/

Project Homepage:


https://rpx-100.net/

OpenSDR - Transceiver Kit - Made by ÖVSV

Das Projektteam hat sich am 6. August in den Räumen des Landesverbandes Tirol, in Innsbruck, getroffen, um die Weiterentwicklung des Prototypen zu planen. Hier haben die Erfahrungen von Manfred, OE7AAI und Rainer, OE9RIR mit dem Einsatz von Transceivern im remote Betrieb am

Berg sehr geholfen. Das Transceiver Kit RPX-100 wurde nun in Hardware Module strukturiert, die jedes für sich von Funkamateuren auch in eigenen Projekten eingesetzt werden können und höchsten Qualitätsansprüchen genügen sollen. Hier geht es um HF dichten Aufbau, und der Entwicklung eines Power Supply, dass EMI Class B Konform ist, und am Eingang mit 12V auskommt, da diese Spannung in jedem Shak oder auch an einer Relaisstation am Berg vorhanden ist.

IEEE 802.22 - Ein neues Übertragungsverfahren

Mit 802.22 "Wireless Regional Area Network" (WRAN) hat die IEEE vor gut zehn Jahren einen Standard für IP-basierte Funk-Zugangsnetze vorgelegt. Dieser ist für regionale (typisch bis 30 km), breitbandige (einige bis zig Megabit pro Sekunde) Zugänge innerhalb lokal ungenutzter Fernseh-Rundfunk-Kanäle, dem sogenannten "TV White Space" bzw. der "Digitalen Dividende", zwischen ca. 50 und 800 MHz mit 6-8 MHz Bandbreite gedacht. Eine oder mehrere Basisstationen (BS) können dabei im selben Frequenzbereich arbeiten. Sie steuern die Übertragung der Endgeräte (Customer Premises Equipment, CPE), koordinieren sich untereinander, und lassen wo nötig auch noch Zeit und Spektrum für andere Funkdienste frei. Letztere Funktion wird im Standard mit "Cognitive Radio" bezeichnet und wird in einem zukünftigen QSP-Artikel erläutert.

Für das WRAN-Projekt des ÖVSV haben wir eine amateurfunktaugliche Variante von 802.22 abgeleitet, die aktuell für das 50 MHz-/6 m-Band und eine Bandbreite von nur 2 MHz entwickelt wird. Für den Testbetrieb wurde uns eine Sondergenehmigung erteilt. Die grundsätzliche Struktur der Aussendungen, Signalisierung usw. wollen wir übernehmen -- und daher werfen wir jetzt einen Blick darauf. Die Form des fest getakteten "Frames" (Rahmen) ist beispielhaft in Abbildung 1 dargestellt. Die x-Achse stellt die Zeit dar, die y-Achse die Frequenz (Unterkanäle).

Zeitmultiplex

Bei WRAN arbeiten alle Stationen einer Zelle im selben Frequenzbereich. Als erstes strukturierendes Prinzip kommt Zeitmultiplex zum Einsatz. Die Basisstation übernimmt die Steuerung, wie die verfügbare Zeit-Spektrum-Fläche aufgeteilt wird: Alle 10 Millisekunden beginnt ein neuer Frame, in welchem zuerst die BS sendet (Übertragung zu den CPEs). Danach senden die angesprochenen CPEs gleichzeitig (!) retour -- dieses Verfahren erklären wir im nächsten Abschnitt. Am Ende des Frames ist Zeit für die gegenseitige Erkennung von benachbarten Zellen zwecks Koexistenz, das Aussenden der Stationskennung (Hardware-Adresse) sowie weitere Zeitpuffer vorgesehen.

Aus dem Aufbau des Frames ergibt sich auch eine Anforderung an die Funk-Hardware: Die Umschaltung zwischen Sende- und Empfangsbetrieb muss in einem Zeitfenster von rund 200 Mikrosekunden erfolgen. Die umgekehrte Richtung ist wegen Zeitpuffern weniger kritisch.

Orthogonaler Frequenzmultiplex (OFDM)

WRAN nutzt den gesamten verfügbaren Frequenzbereich gleichzeitig, indem dieser in Unterträger (Subcarriers) aufgeteilt wird, welche zu Unterkanälen (Subchannels) zusammengefasst sind. Benachbarte Unterträger haben immer denselben Frequenzabstand, proportional zum Kehrwert der angestrebten Symbolrate. Durch diese Konstruktion sind sie orthogonal und beeinflussen einander bei der Demodulation nicht gegenseitig.

Die Unterträger sind ihrerseits moduliert, und zwar angepasst an den aktuellen Signal-Rausch-Abstand: Ist dieser niedrig ("schlechter Empfang") bzw. werden wichtige Teile des Frames wie Präambeln ausgesendet, wird mit BPSK eine sehr robuste Modulation gewählt. Ist das SNR höher, kann bis zu 64-stufige Quadratur-Amplituden-Modulation (QAM) oder noch effizientere Trellis-Codierung verwendet werden. Die Symbolrate der Modulation ergibt sich aus dem Abstand der Unterträger, siehe oben.

Zur Messung des SNR und zur Synchronisierung der Stationen werden regelmäßig Pilot-Unterträger über das ganze genutzte Band hinweg ausgesendet. Damit können die Aussendungen feingranular an die frequenzspezifischen Ausbreitungsbedingungen angepasst werden (Equalization). Daneben müssen die einzelnen OFDM-Slots (Unterkanal-Symbolzeit-Flächen) robust gegen Mehrwegeausbreitung gemacht werden, z.B. mittels zyklischer Präfixe, und weitere Fehlerkorrektur sowie wiederholte Aussendung bei Übertragungsfehlern (ARQ) vorgesehen werden.

Für den ersten Abschnitt des Frames (downstream) sendet die BS über alle Unterkanäle zu den CPEs sequenziell, um in möglichst kurzer Zeit die Information an die CPEs zu übertragen. Im zweiten Abschnitt (upstream) senden die CPEs gleichzeitig, teilen sich aber die verfügbaren Unterkanäle überlappungsfrei auf, damit die Laufzeit im Rückkanal niedrig gehalten wird und die erlaubte Sendeenergie möglichst konzentriert eingesetzt werden kann. So wird die verfügbare Zeit-Spektrum-Fläche effizient ausgenutzt.

Codemultiplex (CDMA)

Noch eine dritte Modulationsart wird bei WRAN verwendet: Im Bereich der obersten Subchannels im zweiten Frame-Abschnitt ist Spektrumszeit reserviert, damit CPEs Signalisierungsinformation wie Bandbreitenanforderungen an die BS schicken können, Abstandsmessungen zur Anpassung

Ausgabe: 27.05.2024

von Timing und Sendeleistung (Ranging) durchgeführt sowie etwaige andere Spektrumsnutzung im Raum um ein CPE gemeldet werden können. Durch den verwendeten Codemultiplex können hier mehrere CPEs gleichzeitig und im selben Frequenzbereich senden. Das CPE moduliert seine Aussendungen dafür mit einer zufällig aus einer vorgegebenen Menge ausgewählten "Chip"-Folge, die untereinander wiederum orthogonal sind.

An der Basisstation sind die Chip-Folgen bekannt. Damit können aus dem empfangenen Gesamtsignal die einzelnen Anfragen mit hoher Wahrscheinlichkeit getrennt demoduliert und dann bearbeitet werden.

Steuerung durch die Basisstation

Das Zusammenspiel der vielen unterschiedlichen Teile wird durch die Basisstation koordiniert. Die Präambel am Framebeginn dient der Synchronisierung und Kanalschätzung. Frame-Steuerdaten (FCH) kodifizieren die Länge der folgenden "Maps" (Zuordnungen) von Funkressourcen. Diese Maps geben vor, welche Abschnitte der BS-Aussendung downstream an welche CPEs gehen sollen (DS-MAP), welche Abschnitte später im Frame upstream von welchem CPE genutzt werden dürfen (US-MAP), sowie die Modulations- und Leistungsparameter dazu (DCD und UCD).