

Inhaltsverzeichnis

X ARCHIV Messungen digitaler Backbone	
2. Benutzer:Anonym	6

X ARCHIV Messungen digitaler Backbone

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 5. November 2008, 23:57 Uhr (Quelltext anzeigen)

Anonym (Diskussion | Beiträge)
← Zum vorherigen Versionsunterschied

Zeile 21: Zeile 21:

bei folgenden Messungen wurde der Ausgang der 5Ghz Wlan-Karte mittels Mischer auf eine ZF von 3.5Ghz gemischt, um das Signal mit dem 3.6Ghz Specktrumanalyzer messen zu können.

bei folgenden Messungen wurde der Ausgang der 5Ghz Wlan-Karte mittels Mischer auf eine ZF von 3.5Ghz gemischt, um das Signal mit dem 3.6Ghz Specktrumanalyzer messen zu können.

Version vom 6. November 2008, 00:10

Uhr (Quelltext anzeigen)

Anonym (Diskussion | Beiträge)

Zum nächsten Versionsunterschied →

Mischer: [http://www.minicircuits.com/pdfs

/ZX05-153+.pdf ZX05-153-S+ von Minicircuits]

Signalgenerator: **xxxGhz** LO-Frequenz mit 7dbm von einem R&S

Specktrumanalyzer:

genaue Daten:

*genaue Daten:

**Mischer: [http://www.minicircuits.com/pdfs/ZX05-153+.pdf ZX05-153-S+ von Minicircuits]

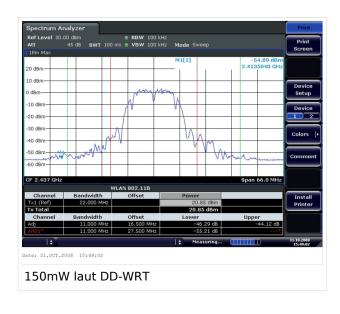
**Signalgenerator: [http://www2.rohdeschwarz.com/en/products /test and measurement /product categories/signal_generation /SMJ100A.html 1.680 Ghz LO-Frequenz mit 7dbm von einem R&S FSV100A]

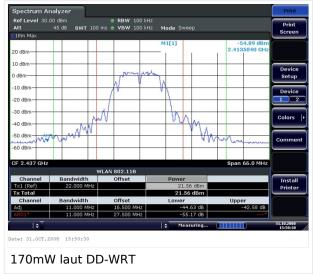
**Specktrumanalyzer: [http://www2.rohd e-schwarz.com/en/products /test and measurement /product categories/spectrum analysis /FSV.html R&S® FSV Signal and Spectrum Analyzer]

**Signalverluste: über einige Adapter ;-)

Version vom 6. November 2008, 00:10 Uhr

Inhaltsverzeichnis


1 Messungen am Linksys WRT54GL	1	.2
--------------------------------	---	----



Bilder der Messungen folgen in kürze.

Messungen am Linksys WRT54GL

Messungen am Mikrotik RB411 + R52 Karte bei 2.4Ghz

Messungen am Mikrotik RB411 + R52 Karte bei 5Ghz

bei folgenden Messungen wurde der Ausgang der 5Ghz Wlan-Karte mittels Mischer auf eine ZF von 3.5Ghz gemischt, um das Signal mit dem 3.6Ghz Specktrumanalyzer messen zu können.

- genaue Daten:
 - Mischer: ZX05-153-S+ von Minicircuits
 - Signalgenerator: 1.680 Ghz LO-Frequenz mit 7dbm von einem R&S FSV100A
 - Specktrumanalyzer: R&S® FSV Signal and Spectrum Analyzer
 - Signalverluste: über einige Adapter

X ARCHIV Messungen digitaler Backbone: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 5. November 2008, 23:57 Uhr (Quelltext anzeigen)

Anonym (Diskussion | Beiträge)

← Zum vorherigen Versionsunterschied

Version vom 6. November 2008, 00:10 Uhr (Quelltext anzeigen)

Anonym (Diskussion | Beiträge)

Zum nächsten Versionsunterschied →

Zeile 21:

bei folgenden Messungen wurde der Ausgang der 5Ghz Wlan-Karte mittels Mischer auf eine ZF von 3.5Ghz gemischt, um das Signal mit dem 3.6Ghz Specktrumanalyzer messen zu können.

Zeile 21:

bei folgenden Messungen wurde der Ausgang der 5Ghz Wlan-Karte mittels Mischer auf eine ZF von 3.5Ghz gemischt, um das Signal mit dem 3.6Ghz Specktrumanalyzer messen zu können.

- genaue Daten:
- Mischer: [http://www.minicircuits.com/pdfs
 /ZX05-153+.pdf ZX05-153-S+ von
 Minicircuits]

Signalgenerator: xxxGhz LO-Frequenz mit 7dbm von einem R&S

Specktrumanalyzer: ...

*genaue Daten:

**Mischer: [http://www.minicircuits.com/pdfs/ZX05-153+.pdf ZX05-153-S+ von Minicircuits]

**Signalgenerator: [http://www2.rohdeschwarz.com/en/products /test and measurement /product categories/signal_generation /SMJ100A.html 1.680 Ghz LO-Frequenz mit 7dbm von einem R&S FSV100A]

**Specktrumanalyzer: [http://www2.rohd e-schwarz.com/en/products /test and measurement /product categories/spectrum analysis /FSV.html R&S® FSV Signal and Spectrum Analyzer]

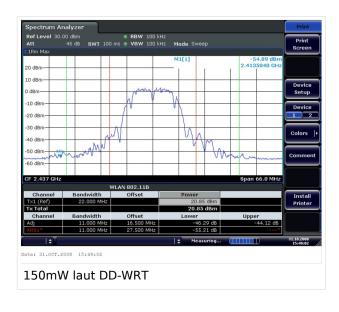
**Signalverluste: über einige Adapter;
-)

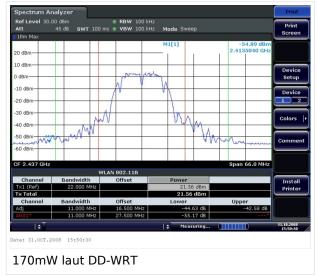
Version vom 6. November 2008, 00:10 Uhr

Inhaltsverzeichnis

Ausgabe: 19.05.2024

1 Messungen am Linksys WRT54GL




2 Messungen am Mikrotik RB411 + R52 Karte bei 2.4Ghz	9
3 Messungen am Mikrotik RB411 + R52 Karte bei 5Ghz	9

Bilder der Messungen folgen in kürze.

Messungen am Linksys WRT54GL

Messungen am Mikrotik RB411 + R52 Karte bei 2.4Ghz

Messungen am Mikrotik RB411 + R52 Karte bei 5Ghz

bei folgenden Messungen wurde der Ausgang der 5Ghz Wlan-Karte mittels Mischer auf eine ZF von 3.5Ghz gemischt, um das Signal mit dem 3.6Ghz Specktrumanalyzer messen zu können.

- genaue Daten:
 - Mischer: ZX05-153-S+ von Minicircuits
 - Signalgenerator: 1.680 Ghz LO-Frequenz mit 7dbm von einem R&S FSV100A
 - Specktrumanalyzer: R&S® FSV Signal and Spectrum Analyzer
 - Signalverluste: über einige Adapter

X ARCHIV Messungen digitaler Backbone: Unterschied zwischen den Versionen

Versionsgeschichte interaktiv durchsuchen VisuellWikitext

Version vom 5. November 2008, 23:57 Uhr (Quelltext anzeigen)

Anonym (Diskussion | Beiträge)

← Zum vorherigen Versionsunterschied

Version vom 6. November 2008, 00:10 Uhr (Quelltext anzeigen)

Anonym (Diskussion | Beiträge)

Zum nächsten Versionsunterschied →

Zeile 21:

bei folgenden Messungen wurde der Ausgang der 5Ghz Wlan-Karte mittels Mischer auf eine ZF von 3.5Ghz gemischt, um das Signal mit dem 3.6Ghz Specktrumanalyzer messen zu können.

Zeile 21:

bei folgenden Messungen wurde der Ausgang der 5Ghz Wlan-Karte mittels Mischer auf eine ZF von 3.5Ghz gemischt, um das Signal mit dem 3.6Ghz Specktrumanalyzer messen zu können.

- genaue Daten:
- Mischer: [http://www.minicircuits.com/pdfs /ZX05-153+.pdf ZX05-153-S+ von Minicircuits]

Signalgenerator: **xxxGhz** LO-Frequenz mit 7dbm von einem R&S

Specktrumanalyzer:

*genaue Daten:

**Mischer: [http://www.minicircuits.com/pdfs/ZX05-153+.pdf ZX05-153-S+ von Minicircuits]

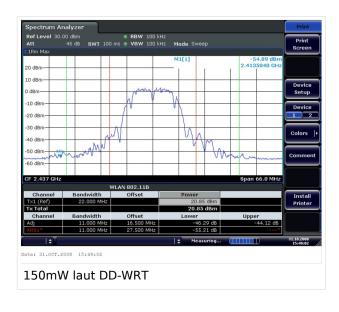
**Signalgenerator: [http://www2.rohdeschwarz.com/en/products /test and measurement /product categories/signal_generation /SMJ100A.html 1.680 Ghz LO-Frequenz mit 7dbm von einem R&S FSV100A]

**Specktrumanalyzer: [http://www2.rohd e-schwarz.com/en/products /test and measurement /product categories/spectrum analysis /FSV.html R&S® FSV Signal and Spectrum Analyzer]

**Signalverluste: über einige Adapter;
-)

Version vom 6. November 2008, 00:10 Uhr

Inhaltsverzeichnis



2 Messungen am Mikrotik RB411 + R52 Karte bei 2.4Ghz	
3 Messungen am Mikrotik RB411 + R52 Karte bei 5Ghz	

Bilder der Messungen folgen in kürze.

Messungen am Linksys WRT54GL

Messungen am Mikrotik RB411 + R52 Karte bei 2.4Ghz

Messungen am Mikrotik RB411 + R52 Karte bei 5Ghz

bei folgenden Messungen wurde der Ausgang der 5Ghz Wlan-Karte mittels Mischer auf eine ZF von 3.5Ghz gemischt, um das Signal mit dem 3.6Ghz Specktrumanalyzer messen zu können.

- genaue Daten:
 - Mischer: ZX05-153-S+ von Minicircuits
 - Signalgenerator: 1.680 Ghz LO-Frequenz mit 7dbm von einem R&S FSV100A
 - Specktrumanalyzer: R&S® FSV Signal and Spectrum Analyzer
 - Signalverluste: über einige Adapter